发明内容
用于燃料电池的全氟磺酸离子膜需要满足高机械强度的要求。一般而言,当离子交换能力升高时,全氟聚合物的当量值下降(当量值EW值减小,离子交换容量IEC=1000/EW)同时膜的强度也降低。因此,制备具有高离子交换能力,同时能够维持机械强度的离子膜是非常重要的。
针对现有技术的不足,本发明的目的是提供一种具有较好机械强度的纤维增强的含氟多层离子交换膜及制备方法。纤维增强多层复合离子交换膜可有效的阻止氢气及甲醇的穿透,提高膜的机械稳定性,层与层的界面可有效阻止膜的机械残损的蔓延。
本发明提供一种纤维增强多层含氟离子交换膜,包括2-40层含氟离子交换树脂为基体的单层膜,其特征是:至少有一层单层膜添加作为增强物的纤维,总厚度10~300μm,EW值为600~1300。所述含氟离子交换树脂是由含氟烯烃、一种或几种含功能基团的含氟烯单体共聚形成,也可以是上述共聚物的混合物。所述的含氟烯烃选自:四氟乙烯,三氟氯乙烯,三氟乙烯,六氟丙烯,和/或偏氟乙烯中的一种或几种,优选的,含氟烯烃选自四氟乙烯或三氟氯乙烯。所述的含功能基团含氟烯单体为通式(I),(II)(III)中的一种或几种:
Rf3CF=CF(CF2)dY2
(II)
其中,a,b,c为0或1,但不可同时为零;
d为0~5的整数
n为0或1;
Rf1,Rf2和Rf3分别选自全氟烷基或氟氯烷基;
X选自F,Cl,Br,或I;
Y1,Y2,Y3选自SO2M、COOR3、或PO(OR4)(OR5),其中:
M选自F、Cl、OR、NR1R2、R选自甲基、乙基或丙基,H、Na、Li、K或铵根;R1和R2分别选自H、甲基、乙基或丙基;R3选自H、Na、Li、K、铵根、甲基、乙基、或丙基;R4,R5选自H、Na、Li、K、铵根,甲基、乙基、或丙基。
优选的,EW值为700~1200。
优选的,所述的纤维与含氟离子交换树脂的质量比为0.1~100∶100,优选0.5~50∶100,更优的1~25∶100。
优选的,所述的增强纤维的直径为0.005μm~50μm,长度为0.05μm~300mm。
作为增强物的纤维包括但不限于下述物质的一种或多种的混合:聚合物、单质、氧化物、含氧盐类、碳化物、氮化物、硼化物、硫化物、硅化物、磷化物。
优选的,作为增强物的纤维选自玻璃纤维、氟碳聚合物纤维、陶瓷纤维、矿物纤维、氧化物纤维中的一种或几种。
所述的玻璃纤维选自耐碱玻璃纤维、或无碱玻璃纤维;所述的氟碳聚合物纤维选自如聚四氟乙烯纤维、聚全氟乙丙烯纤维、自制具有离子交换功能的纤维(CN101003588A)或聚全氟丙基乙烯基醚纤维;所述的陶瓷纤维选自天然焦宝石纤维、碳化硅纤维、或硅酸铝纤维;所述的矿物纤维选自石英纤维、或玄武岩纤维。
优选具有离子交换能力或表面具有保水基团的纤维,如自制具有离子交换功能的纤维(使用CN101003588A所述的方法制备),表面硅酸、磺化、硫酸化、磷酸化、亲水改性的氟碳聚合物纤维,表面进行硅酸、磺化、硫酸化、磷酸化氧化物、碳化物、含氧盐类等。现有的对于聚四氟乙烯的表面改性方法都适合于对氟碳聚合物纤维的改性,包括钠萘溶液的还原改性、激光辐射改性、等离子改性和硅酸活化法。其中硅酸活化法为首选的方法,因为它可以在氟碳纤维表面直接沉积上保水的二氧化硅。其他的改性方法通过改性后氟碳纤维表面有了亲水的基团,但最好在此基础上再进一步的改性如将改性的纤维在正硅酸乙酯、ZrOCl2-H3PO4或钛酸酯等中进一步的改性。
而对于无机纤维的表面改性这可以将这些纤维直接放置于正硅酸乙酯、ZrOCl2-H3PO4或钛酸酯等中进行改性,也可在纤维时加入改性剂直接生成改性纤维,如将磷酸酯和正硅酸乙酯混合,用碱凝胶在抽丝得到改性纤维。
本发明还提供一种纤维增强多层含氟离子交换膜的制备方法,其特征在于,各单层膜利用溶液或熔融物的浇铸、挤出、热压、旋涂、流延、丝网印刷工艺、喷涂或浸渍工艺制成;多层膜的制备是通过单层膜间复合,多层膜与单层膜间复合、或多层膜与多层膜间复合,也可以直接在已制得的单层膜或多层膜上利用溶液或熔融物的浇铸、挤出、热压、旋涂、流延、丝网印刷工艺、喷涂或浸渍工艺制备。
优选的,溶液流延、溶液浇注、丝网印刷工艺、旋涂、喷涂或浸渍的步骤如下:
(1)将含氟离子交换树脂、和作为增强物的纤维分散到溶剂形成混和物;混合物中含氟离子交换树脂含量为1~80%,重量比;
(2)利用步骤(1)中制备溶液在平板上或已制备的单层或多层膜上通过溶液流延、溶液浇注、丝网印刷工艺、旋涂、喷涂或浸渍工艺成膜;成膜时要在30~300℃的温度下热处理0.01~600分钟处理成膜;
优选的,步骤(2)中成膜时要在80~250℃的温度下热处理0.1~600分钟;优选的,在100~200℃的温度下热处理1~30min。
优选的,步骤(2)所述的溶剂为二甲基甲酰胺、二甲基乙酰胺、甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮、六甲基磷酸胺、丙酮、水、乙醇、甲醇、丙醇、异丙醇、乙二醇或丙三醇中的一种或几种;
优选的,用步骤(2)已制备的单层或多层膜进行复合,得到本发明所述的纤维增强多层含氟离子交换膜。
优选的,熔融挤出和热压法的步骤如下:
(1).根据纤维增强多层含氟离子交换膜中各层配方的需要制备适合的含氟离子交换树脂、纤维增强物、和无机掺杂物混和物,利用双螺杆挤出机、密炼机或开炼机在200~280℃混合;所述的含氟离子交换树脂为磺酰氟、磺酰氯、或磺酰溴树脂;
(2)将步骤(1)混合好的树脂利用螺杆挤出机或平板硫化机成膜;
(3)单层膜复合,得到所述的多层膜。
优选的,可以将所得的膜事先转化为酸型与其它已得膜复合,也可先与其它的膜复合再转为酸型。
以往加入纤维增强离子交换膜时,所加入的纤维因不具有保水基团和离子交换基团,所以纤维在膜中仅起到增强物的作用,而且对于氟碳纤维由于其表面是憎水的,因此和离子交换树脂的结合力很弱。在我们的发明中,纤维表面被功能团化接上了亲水保水或离子传导基团,不仅仅增加了纤维与离子交换树脂的亲和力而且也起到了离子传导能力。
由于增强纤维的存在还大大增加了膜尺寸稳定性,同时一定程度上减小燃料渗透率,究其可能的原因是我们所发明的膜是一种多层结构的膜,因而层与层之间存在着界面,界面的存在使得燃料的渗透被抑制。
一般来说界面的存在同时还会大大降低物质电导率,因为界面对导电的载流子会出现散射现象。但在我们的技术中这种现象没有出现而且膜的高温导电率比别的专利还有显著的提高。这可能是因为界面的存在使得保存在膜中的少量水分的流失现象也同时受到抑制,使得膜的保水能力比起单纯的单层膜大大提高。
凡此种种效应互相耦合协同在提高了膜的机械稳定性的同时大大提高了膜在高温时的导电性。其次由于纤维表面的改性使得制备膜时的程序变得简单因为这些纤维很容易和离子交换树脂及其溶液混合分散,不必再加入分散剂和用强力的分散装置。
具体实施方式:
以下通过实施例对本发明进行进一步说明,但本发明不仅限于以下几个实施例。
实施例1:
将聚四氟乙烯纤维放置在SiCl4气氛中1个小时后升温到110℃保持1小时,再冷却到60℃后,喷水处理得到二氧化硅改性的聚四氟乙烯纤维。
实施例2:
将无碱玻璃纤维置于Ti(OEt)4水混合体系中搅拌下加入浓氨水水解静止得到二氧化钛修饰的无碱玻璃纤维。
实施例3:
磷酸三乙酯与正硅酸乙酯(1∶100质量比)混合加入水及浓氨水静止凝胶12小时,然后利用该凝胶使用静电纺丝或抽丝技术得到磷酸改性二氧化硅纤维
实施例4:
将重复单元为
E.W.=900g/mmol的的聚合物溶解于二甲基亚砜中,形成26%重量比的溶液。通过溶液流延的方法190℃,30min制备25μm的单层膜1#。
将重复单元为
E.W.=1000g/mmol的聚合物和将重复单元为
E.W.=1100g/mmol的聚合物按质量比为1∶2混合并制备成固含量为15%重量比的DMF溶液,向DMF溶液中加入直径为0.01μm,长度为1μm的实施1制备的改性聚四氟乙烯纤维使纤维∶聚合物=1∶10,重量比,在剧烈搅拌下制备出分散体系。利用喷涂的方法在120℃,15min制备出10μm的单层膜2#。将单层膜1#和单层膜2#利用热压的方法在120度,3.5MPa,4min得到纤维增强两层全氟离子交换膜。然后将上述两层膜在5%H2SO4中酸化得到纤维增强两层含氟离子交换膜3#。
实施例5:
将重复单元为
E.W.=800g/mmol的聚合物溶解于乙二醇中,形成30%重量比的溶液,再加入实施例2制备的改性无碱玻璃纤维(直径0.05μm长度5um,无碱玻璃纤维与全氟磺酸树脂的质量比为1∶40)分散的分散系。然后通过丝网印刷的方法150℃,5min制备30μm的单层膜4#。
将重复单元为
E.W.=950g/mmol的聚合物在170℃熔融,聚全氟乙丙烯纤维(直径0.1μm长度20um)其中聚全氟乙丙烯纤维∶全氟磺酰氟树脂为1∶10重量比)混合通过螺杆挤出机挤出的单层膜5#;单层膜4#和单层膜5#利用热压的方法在150度,2.5MPa,1min得到纤维增强两层全氟离子交换膜;将热压好的两层膜依次用15%氢氧化钠和10%硫酸溶液处理后的增强两层含氟离子交换膜6#.
实施例6:
将重复单元为
E.W.=1150g/mmol的聚合物和等质量的重复单元为
E.W.=850g/mmol全氟磺酸树脂溶解于甲基甲酰胺中,形成10%重量比的溶液,在搅拌下分散后再加入自制具有离子交换功能的纤维(CN101003588A(直径0.005μm长度0.5um)、聚全氟丙基乙烯基醚纤维(直径0.05μm长度0.5um)与全氟磺酸树脂的分散体系(三者的质量比为1∶0.5∶10)。通过浇铸的方法170℃,60min制备10μm的单层膜7#。将重复单元为
E.W.=1000g/mmol的聚合物在乙二醇中溶解,将聚全氟乙丙烯纤维(直径0.1μm长度20um)其中聚全氟乙丙烯纤维∶聚合物为3∶10重量比)分散于上述溶液中。将未从基板上剥离的单层膜7#直接浸渍在上述分散系,10min后200℃处理110min制备得到纤维增强两层含氟离子交换膜8#。
实施例7:
将重复单元为
E.W.=700g/mmol的聚合物和自制具有离子交换功能的纤维(CN101003588A)(直径5μm长度100μm,纤维与树脂的质量比为1∶5)混合挤出成10μm的单层膜9#。
将重复单元为
E.W.=1200g/mmol的聚合物挤出成20μm的单层膜10#。将膜两张单层膜10#置于单层膜9#的两边经热压,KOH水解,HNO3酸化处理制备得到纤维增强三层含氟离子交换膜11#。
实施例8:
将重复单元为
E.W.=600g/mmol的聚合物和根据实施例2程序制备的ZrO2改性碳化硅纤维(直径8μm长度100μm,纤维与树脂的质量比为1∶50)混合分散于N-甲基吡咯烷酮中,利用流延的方法制的厚度为30μm的单层膜12#。
再将重复单元为
E.W.=1000g/mmol的聚合物溶于N-甲基吡咯烷酮在膜12#两边旋涂成15μm的膜,制备得到纤维增强三层含氟离子交换膜13#。
实施例9:
将重复单元为
E.W.=1200g/mmol的聚合物溶于丙三醇中。利用浸渍的方法在聚四氟乙烯基板上形成厚度为50μm的膜,然后将其剥离得单层膜14#。
再使用将重复单元为
E.W.=1200g/mmol的聚合物与重复单元为
E.W.=960g/mmol的聚合物混合(两种聚合物的质量比为1∶2),和石英纤维(直径15μm长度100μm,纤维与树脂的质量比为3∶100)混合分散于二甲基乙酰胺。将单层膜14#浸于上述二甲基乙酰胺溶液中10分钟,取出用KOH水解,HNO3酸化处理得到厚度为100μm的纤维增强三层含氟离子交换膜15#。
实施例10:
将重复单元为
E.W.=1200g/mmol的聚合物和重复单元为
E.W.=960g/mmol的聚合物混合溶解于二甲基亚砜中,形成10%重量比的溶液,向上述溶液加入天然焦宝石纤维及自制具有离子交换功能的纤维(纤维与全氟磺酸树脂的质量比为1∶5)在搅拌下分散值得分散液1。将分散液1通过溶液流延的方法190℃,30min制备80μm的单层膜16#。
上述两种聚合物的10%二甲基亚砜溶液中加入耐碱玻璃纤维(直径为20μm,长度为2000μm),使纤维∶全氟磺酸树脂=1∶5,重量比,在剧烈搅拌下制备出分散体系,利用喷涂的方法在膜16#两边成膜经120℃,15min制备出总厚为150μm纤维增强三层含氟离子交换膜18#。
实施例11:
将重复单元为
E.W.=700g/mmol的聚合物和玄武岩纤维(直径30μm长度3mm,纤维与树脂的质量比为0.01∶100)混合分散于甲基甲酰胺和乙醇的混合溶剂中,利用浇铸的方法制的厚度为60μm的单层膜19#。
再使用将重复单元为
E.W.=800g/mmol的聚合物溶于N-甲基吡咯烷酮中用浇铸的方法制制得10μm单层膜20#。
用重复单元为
E.W.=1100g/mmol的全氟磺酰氟树脂通过熔融挤出制得15μm的单层膜21#,将单层膜19#,20#,21#按顺序排列后热压,LiOH水解,HCl酸化得到纤维增强85μm三层含氟离子交换膜22#。
实施例12:
使用重复单元为
E.W.=1100g/mmol的聚合物自制具有离子交换功能的纤维(按照CN101003588A所述的方法制备)(直径10μm长度500μm,纤维与树脂的质量比为1∶5)混合挤出成10μm的单层膜23#。
使用重复单元为
E.W.=800g/mmol的聚合物溶于N-甲基吡咯烷酮喷涂的方法于120℃,300min制备30μm的单层膜24#.
使用重复单元为
E.W.=700g/mmol的聚合物和天然焦宝石纤维(直径15μm长度30mm,纤维与树脂的质量比为1∶100)混合分散于二甲基甲酰胺和丙醇的混合溶剂中,利用浇铸的方法制的厚度为30μm的单层膜25#。将膜23#,24#,25#按顺序排列后热压,硝酸化水解得到纤维增强60μm三层含氟离子交换膜26#。
实施例13
使用重复单元为
E.W.=800g/mmol的聚合物制备全氟磺酸树脂丙三醇溶液备用。称取0.15克实施例3制得的磷酸改性二氧化硅纤维(直径1μm,长度50μm),加入3.0克去离子水,制得纤维分散液。
将制备的纤维分散液加入上述5wt%全氟磺酸树脂溶液中,超声分散20分钟,真空高速搅拌30分钟制得共混液。得到纤维∶全氟磺酸树脂等于0.01∶100。然后将共混液浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,制得单层纤维增强离子交换膜27#。
全氟磺酸树脂溶液浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时,将膜剥离单层28#。
将两张上述制得28#单层膜中间夹上两张单层纤维增强离子交换膜27#,叠合后,在其底部和上部各放置一张相同尺寸的聚四氟乙烯薄膜,制得叠置件。
采用平板压机对叠置件进行热压,压力为2.5MPa,时间为3分钟,温度130℃,热压后取出叠置件,揭去表面的聚四氟乙烯薄膜,制得本发明所述的增强四层含氟离子交换膜29#,厚度50μm。
实施例14
重复单元为
EW=800的聚合物和EW=1000、重复单元为
的聚合物制备5wt%聚合物六甲基磷酸胺溶液1。
分别称取2份0.15克聚四氟乙烯纤维(直径0.1μm,长度10μm)和玻璃纤维(直径0.1μm,长度10μm),分别加入3.0克去离子水,制得聚四氟乙烯纤维分散液和玻璃纤维分散液。
将制备的聚四氟乙烯纤维分散液加入到上述制得的溶液1中,超声分散20分钟,得共混液1。将制备的玻璃纤维分散液加入到上述制得的溶液1中,超声分散20分钟,真空高速搅拌30分钟制得共混液2。两种共混液中纤维∶全氟磺酸树脂均等于5∶100。然后将共混液1和2分别浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,分别在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,分别制得含聚四氟乙烯纤维的单层增强膜30#和含玻璃纤维的单层增强膜31#。
将溶液1浇铸到两个水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时,将膜剥离制得膜32#和膜33#。
依次放置30#,31#,32#和33#,叠合后,在其底部和上部各放置一张相同尺寸的聚四氟乙烯薄膜,制得叠置件。
采用平板压机对叠置件进行热压,压力为2MPa,时间为2分钟,温度125℃,热压后取出叠置件,揭去表面的聚四氟乙烯薄膜,制得本发明所述的增强四层含氟离子交换膜34#(厚度30μm)。
实施例15
分别将重复单元为
和重复单元为
的聚合物分别制成5%的溶液,标记为溶液1和溶液2。
分别称取2份0.15克钠萘溶液处理的聚六氟丙烯纤维(直径5μm,长度100μm)和实施例2的ZrO2-磷酸改性碳化硅纤维(直径5μm,长度100μm),分别加入3.0克去离子水,,制得聚六氟丙烯纤维和碳化硅纤维分散液。
钠萘溶液处理的聚六氟丙烯纤维和改性碳化硅纤维分散液分别加入到溶液1和溶液2的1∶1混合液中,超声分散20分钟,真空高速搅拌30分钟制得共混液1和共混液2。然后将共混液1,2分别浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,制得含聚六氟丙烯纤维的单层增强膜35#和含碳化硅纤维的单层增强膜36#。
用溶液1中全氟磺酸树脂浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时,将膜剥离制得掺杂膜37#。
将EW=1000的聚合物,其重复单元为如下:
通过挤出机,在250℃下挤出,制得掺杂膜38#。
依次放置35#,36#,37#,38#叠合后,在其底部和上部各放置一张相同尺寸的聚四氟乙烯薄膜,制得叠置件。
采用平板压机对叠置件进行热压,压力为2MPa,时间为2分钟,温度125℃,热压后取出叠置件,揭去表面的聚四氟乙烯薄膜,制得本发明所述的增强四层含氟离子交换膜39#(厚度100μm)。
实施例16
称取2份0.075克玻璃纤维(直径0.01μm,长度5μm)和自制具有离子交换功能的纤维(直径0.1μm,长度10μm),混合后加入3.0克去离子水,制得纤维分散液。
将EW=970的聚合物,其重复单元为:
制成5%的溶液。
将纤维分散液加入到上述5%的全氟磺酸树脂溶液中,超声分散20分钟,真空高速搅拌30分钟制得共混液。然后将共混液浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,制得含玻璃纤维和自制具有离子交换功能的纤维的单层增强膜40#。
将EW=1030的聚合物,其重复单元为:
通过挤出机,在250℃下挤出得单层膜41#。
依次放置增强膜40#,EW=1030膜41#,EW=1030膜41#,增强膜40#,叠合后,在其底部和上部各放置一张相同尺寸的聚四氟乙烯薄膜,制得叠置件。
采用平板压机对叠置件进行热压,压力为2MPa,时间为2分钟,温度125℃,热压后取出叠置件,揭去表面的聚四氟乙烯薄膜,制得本发明所述的增强四层含氟离子交换膜42#(厚度30μm)。
实施例17
分别将EW=800的聚合物,其重复单元为
EW=970的聚合物,其重复单元为
EW=1000的聚合物,其重复单元为
EW=1030的聚合物,其重复单元为
的四种聚合物,制成5%的溶液,标记为溶液1、溶液2、溶液3和溶液4。
分别称取0.05克聚四氟乙烯纤维(直径10μm,长度200μm),聚六氟丙烯纤维(直径10μm,长度200μm),玻璃纤维(直径10μm,长度200μm)和碳化硅纤维(直径10μm,长度200μm),分别加入3.0克去离子水,并制得4份分散液。
将上述4份分散液分别加入到溶液1,溶液2,溶液3和溶液4中,然后将其分别浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,制得含四氟乙烯纤维的单层增强膜1,含聚六氟丙烯纤维的增强膜2,含玻璃纤维的增强膜3和含碳化硅纤维的增强膜4。
依次放置增强膜1,增强膜2,增强膜3,增强膜4,叠合后,在其底部和上部各放置一张相同尺寸的聚四氟乙烯薄膜,制得叠置件。
采用热压复合,压力为2MPa,时间为2分钟,温度125℃,热压后取出叠置件,揭去表面的聚四氟乙烯薄膜,制得本发明所述的增强四层含氟离子交换膜43#(厚度150μm)。
实施例18
将EW=800的聚合物,其重复单元为:
制备成5wt%全氟磺酸树脂溶液混合,超声10min,得溶液1。
称取0.15克聚四氟乙烯纤维(直径0.05μm,长度70μm),加入3.0克去离子水,制得聚四氟乙烯纤维分散液。
将制备的纤维分散液加入到溶液1中,超声分散20分钟,真空高速搅拌30分钟制得共混液。得到纤维∶全氟磺酸树脂等于0.01。然后将共混液浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,制得单层纤维增强膜1。
将上述增强膜1浸入到溶液1中,30分钟后将膜取出,水平放置于加热板上进行干燥,其间用胶辊对膜进行滚压。将滚压后的膜再次浸入到溶液1中,重复上述步骤,制得三层增强离子交换膜44#。
将EW=1030的聚合物,其重复单元为:
制得15wt%全氟磺酸树脂溶液混合,超声10min,得溶液2。
将制备的聚四氟乙烯纤维分散液加入到溶液2中,超声分散20分钟,真空高速搅拌30分钟制得共混液。得到纤维∶全氟磺酸树脂等于9∶100。然后将共混液浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,制得单层纤维增强膜45#。
在增强膜45#的一侧喷涂上溶液2,干燥得双层增强离子交换膜46#。
将三层增强离子交换膜44#与双层增强离子交换膜46#的增强侧叠合后,在其底部和上部各放置一张相同尺寸的聚四氟乙烯薄膜,制得叠置件。采用平板压机对叠置件进行热压,压力为2.5MPa,时间为3分钟,温度125℃,热压后取出叠置件,揭去表面的聚四氟乙烯薄膜,制得本发明所述的增强五层含氟离子交换膜47#(厚度20μm)。
实施例19
分别将EW=1000的聚合物,其重复单元为:
和将EW=1030的聚合物,其重复单元为:
分别制成20%的溶液,标记为溶液1和溶液2。
称取0.15克根据实施2程序Al2O3修饰的玻璃纤维(直径1μm,长度80μm),加入3.0克去离子水,并制得玻璃纤维分散液。
将制备的玻璃纤维分散液加入到溶液1中,得到纤维∶全氟磺酸树脂等于13∶100混合液。然后将混合液浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,制得单层纤维增强离子交换膜48#。
将上述单层纤维增强离子交换膜48#浸入到溶液1中,30分钟后将膜取出,水平放置于加热板上进行干燥,其间用胶辊对膜进行滚压。将滚压后的膜再次浸入到溶液1中,重复上述步骤,制得三层增强离子交换膜49#。
将三层增强离子交换膜浸入到溶液2中,30分钟后将膜取出,水平放置于加热板上进行干燥,其间用胶辊对膜进行滚压。将滚压后的膜再次浸入到溶液2中,重复上述步骤,制得五层增强离子交换膜50#(厚度60μm)。
实施例20
分别将EW=800的聚合物,其重复单元为
和EW=970的聚合物,其重复单元为
分别制成5%的溶液,标记为溶液1和溶液2。将溶液1与溶液2按1∶1比例混合制得溶液3。
分别称取0.15克聚六氟丙烯纤维(直径0.5μm,长度20μm)、石棉纤维(直径2μm,长度100μm)和EW=2000的自制具有离子交换功能的纤维(直径5μm,长度100μm),分别加入3.0克去离子水,制得聚六氟丙烯纤维、石棉纤维和自制具有离子交换功能的纤维分散液。
将聚六氟丙烯纤维、石棉纤维和自制具有离子交换功能的纤维分散液分别加入到溶液1、溶液2和溶液3中,超声分散20分钟,真空高速搅拌30分钟制得共混液1、共混液2和共混液3。然后将共混液1、共混液2和共混液3分别浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,制得含聚六氟丙烯纤维的单层增强膜1、含石棉纤维的单层增强膜2和含自制具有离子交换功能的纤维的单层增强膜3。
溶液1,溶液2分别浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时,将膜剥离制得EW=800单层膜51#,EW=970单层膜52#。
依次放置增强膜1,EW=800单层膜51#,增强膜2,EW=970单层膜52#,增强膜3,叠合后,在其底部和上部各放置一张相同尺寸的聚四氟乙烯薄膜,制得叠置件。
采用平板压机对叠置件进行热压,压力为2MPa,时间为2分钟,温度125℃,热压后取出叠置件,揭去表面的聚四氟乙烯薄膜,制得本发明所述的增强五层含氟离子交换膜53#(厚度90μm)。
实施例21
分别将EW=800的聚合物,其重复单元为
和EW=1000的聚合物,其重复单元为
分别制成5%的溶液,标记为溶液1和溶液2。将溶液1与溶液2按1∶1比例混合制得溶液3。
称取0.3克聚四氟乙烯纤维(直径10μm,长度1000μm)和石英纤维(直径2μm,长度300μm),分别加入3.0克去离子水,制得聚四氟乙烯纤维和石英纤维分散液。
将聚四氟乙烯纤维和石英纤维分散液加入到溶液1中,超声分散20分钟,真空高速搅拌30分钟制得共混液1。然后将共混液1浇铸到水平放置的聚四氟乙烯铸模内,经过80℃真空干燥12小时后,将膜剥离,在摩尔浓度为0.5M的H2SO4溶液中煮沸1小时,并用去离子水洗涤,制得聚四氟乙烯纤维和石英纤维的单层增强膜54#。
将上述单层纤维增强膜54#浸入到溶液1中,30分钟后将膜取出,水平放置于加热板上进行干燥,其间用胶辊对膜进行滚压。将滚压后的膜再次浸入到溶液1中,重复上述步骤,制得三层增强离子交换膜55#。
依次放置两个三层增强离子交换膜55#叠合后,在其底部和上部各放置一张相同尺寸的聚四氟乙烯薄膜,制得叠置件。
采用平板压机对叠置件进行热压,压力为2MPa,时间为2分钟,温度125℃,热压后取出叠置件,揭去表面的聚四氟乙烯薄膜,制得本发明所述的增强六层含氟离子交换膜56#(厚度100μm)。
实施例22
将两张实施例7制得的三层增强全氟离子交换膜相互叠合,其中一张膜的膜2部分与另一张膜的膜1部分接触。经热压后制得本发明所述的增强六层含氟离子交换膜60#(厚度60μm)。
实施例23
将两张实施例9制得的三层增强全氟离子交换膜相互叠合,经热压后制得本发明所述的增强六层含氟离子交换膜61#(厚度200μm)。
实施例24
将两张实施例19和20制得的五层增强全氟离子交换膜相互叠合,经热压后制得本发明所述的增强十层含氟离子交换膜62#(厚度150μm)。
实施例25
将实施例11、13、14、16、17制得的多层增强全氟离子交换膜相互叠合,经热压后制得本发明所述的增强十九层含氟离子交换膜63#(厚度200μm)。
实施例26
将五张实施例22制得的多层增强全氟离子交换膜相互叠合,经热压后制得本发明所述的增强三十层含氟离子交换膜64#(厚度300μm)。
比较例27:
利用5%容液加入粒度为长5微米直径0.01微米聚四氟乙烯纤维(聚四氟乙烯纤维与全氟磺酸树脂的质量比为5∶100)利用浇注的方法在170℃处理得到60微米厚的离子交换膜。
实施例28
对各实施例制得的多层膜的性能进行表征,结果见表1。由表1可以看出,纤维增强的多层含氟离子交换膜的100℃电导率、拉伸强度、氢气渗透电流等性能均优于普通的单层纤维增强离子交换膜。
表1各种膜表征