CN101319311A - 淀积氧化硅于大面积基板上的方法及设备 - Google Patents

淀积氧化硅于大面积基板上的方法及设备 Download PDF

Info

Publication number
CN101319311A
CN101319311A CNA2008100926851A CN200810092685A CN101319311A CN 101319311 A CN101319311 A CN 101319311A CN A2008100926851 A CNA2008100926851 A CN A2008100926851A CN 200810092685 A CN200810092685 A CN 200810092685A CN 101319311 A CN101319311 A CN 101319311A
Authority
CN
China
Prior art keywords
gasifier
teos
reaction chamber
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100926851A
Other languages
English (en)
Other versions
CN101319311B (zh
Inventor
桑贾伊·D·亚达夫
上泉元
温德尔·T·布伦尼格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN101319311A publication Critical patent/CN101319311A/zh
Application granted granted Critical
Publication of CN101319311B publication Critical patent/CN101319311B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明揭示了淀积氧化硅于大面积基板上的方法及设备,本发明提供一种用来以至少每分钟3000埃()的速率将一电介质淀积到一至少约0.35平方米的大面积基板上的方法及设备。在一实施例中,该电介质为氧化硅。也提供一种大面积基板,其具有一层电介质被淀积于其上,该电介质层是利用一可达到每分钟超过3000埃的淀积速率来进行淀积,也提供一种制造该大面积基板的反应腔。

Description

淀积氧化硅于大面积基板上的方法及设备
本申请是提交于2004年4月5日,申请号为200480006772.0,题为“淀积氧化硅于大面积基板上的方法及设备”的发明专利申请的分案申请。
技术领域
本发明涉及将一种淀积氧化硅于大面积基板上的方法及设备。
背景技术
薄膜晶体管(TFT)传统上是被制作在大面积玻璃基板或平板上以使用在监视器、平板显示器、太阳能电池、个人数字助理(PDA)、移动电话、或类似物上。许多TFT制造商利用大面积基板来制造尺寸超过550mm乘650mm的TFT,以符合更大平板的需求。可以预见的是,未来尺寸将超过4平方米。
TFT是在一集群式设备中通过设在一中央传输腔周围的真空反应腔中进行的包括非晶形硅、经过掺杂的及未经过掺杂的氧化硅、氮化硅及类似物的不同膜层的连续淀积来制成的。TFT通常包括两层玻璃板,其间夹了一层液晶物质。这两片玻璃板中的至少一片包括了至少一层设置于其上的导电膜,该导电膜层是连接至一电源供应器。从该电源供应器供应至该导电膜层的电力会改变该液晶物质的方向,产生一图案,如在显示器上所见到的文字或图像。一经常被用来制造平板的制程为等离子增强化学气相淀积(PECVD)。
等离子增强化学气相淀积通常用来在一基板上,如一平板或半导体晶片上淀积薄膜。等离子增强化学气相淀积通常是通过将一前体气体导入到一容纳了该基板的真空腔中来实现的。该前体气体典型地被引导通过一位于靠近该真空腔顶端的分配板。在该腔中的前体气体通过从一或多个连接至该腔的射频RF来源施加RF功率至该腔而被充能(即,受激)用以形成一等离子。该受激发的气体起反应以形成一层物质于该基板的表面上,该基板是位于一温度被控制的基板支撑件上。在基板承载一层低温多晶硅的应用中,该基板支撑件可被加热超过400℃。在该反应期间产生的挥发性副产物经过一排气系统从该反应腔中抽出。
在淀积薄膜,特别是由四乙氧基硅烷TEOS前体形成氧化硅薄膜中的阻碍之一为在大面积基板的表面上淀积一预定厚度需要很长的时间。尤其是,因为制程气体无法以符合商业应用的淀积速率提供至该腔,因而淀积速率缓慢。例如,适合用在化学气相淀积CVD制程中用来将液体TEOS气化为TEOS气体的常用气化器的局限在约10克/分钟,因而在典型的制程中将淀积速率限制在约1500埃/分钟至最大为2500埃/分钟。缺乏可以提供高体积流制程气体(即,超过15克/分钟)的产生器成为将氧化硅淀积到下一代的大面积基板上的商业化应用的一个主要障碍。
又,TEOS气化器,如使用在许多大面积基板CVD应用中的常规TEOS气泡机,也有在这些应用的操作的上端产生液滴和包含液滴的倾向,这使速率限制在约10克/分钟。进入到反应腔中的液滴会污染基板及/或导致制程变化。由于大面积基板的尺寸使得在材料及制程成本上需要相当的投资,所以由于液滴或不适当的前体气体产生的过多缺陷是无法接受的。又,进入到反应腔中的气体含有液滴会导致真空降压时间拖长。例如,常规的大面积基板CVD系统用常规产生5克/分钟TEOS的气化器的真空降压时间约需时23-30秒,用常规产生10克/分钟TEOS的气化器的真空降压时间约需时30-34秒。最小化真空降压时间将直接导致基板产量的提高,因此极其必要。
所以,需要一种能够产生以至少2000埃/分钟的速率淀积电介质在大面积基板上的TEOS气体(其它的前体或制程气体)的方法及设备。
发明内容
提供一种用来以至少每分钟3000埃
Figure A20081009268500041
的速率来将一电介质淀积到一至少约0.35平方米的大面积基板上的方法及设备。在一实施例中,该电介质为氧化硅。还提供一种大面积基板,其具有一层通过每分钟超过3000埃的淀积速率淀积于其上的电介质层,和一种制造该大面积基板的反应腔。
根据本发明的一个方面,提供一适合使用在半导体制程中的气化器模块。在一实施例中,该气化器包括一第一导热板,其具有一至少0.125英寸的厚度且被设置成与一第二导热板相对以限定一气化器组件。在该第一导热板上至少部分地形成若干个沟槽而且被该第二导热板所覆盖。在该气化器组件的两端形成一第一通道口和一第二通道口而且通过沟槽彼此流体连接。
附图说明
通过参照附图和实施例进一步详细说明以上简要说明的本发明。然而,应注意的是,附图中所示仅说明本发明的典型实施例,因此不应认为是本发明范围的限制,对于本发明还可有其他等效的实施例。
图1是包括本发明的气化器模块的一个实施例的大面积基板制程系统的剖面图;
图2是图1中包括了本发明的气化器模块的一个实施例的反应腔的剖面图;
图3A是本发明的气化器模块的一实施例的剖面图;
图3B是包括在图3A的气化器模块中的气化器的剖面图;及
图4是使用了图3A的气化器模块的一制程实施例的流程图。
为了便于了解,相同的标号用来标示各图中的相同组件。
附图标记说明
100系统           102传输腔
104反应腔         104’加热腔
106装载腔         108工厂界面
110界面机械手     112传输机械手
114气体输送系统   140基板
206腔壁           208底部
210盖组件         212制程空间
214抽吸空间       280气化器模块
218气体分配板        220内侧
222电源              230电源
232加热组件          238基板支撑组件
242杆                246风箱
248遮蔽框            250升举销
260支撑表面          272TEOS源
274氦气源            276气化器输入管路
278载运气体管路      280气化器
284氧气源            286等离子气体管路
288气化器输出管路    290限流器
302TEOS源            304氦气源
306气化器输入管路    308载运气体管路
310气化器            312加热器
314氧气供应          316等离子气体管路
318气化器输出管路    320容器
322分隔件            324通路
326导管              330气化器
340流量控制器        342散热器
346风扇              352本体
354罩盖              356入口通道口
358出口通道口        360通道
362沟槽              370入口侧
372出口侧
400方法(等离子增强化学气相淀积电介质于大面积基板)
402基板置于反应腔内的支撑件上
404加热基板
406制程气体导入反应腔
408以每分钟约3000到至少约3500埃的速率在基板上淀积氧化硅
具体实施方式
图1是用于以超过3000埃
Figure A20081009268500071
/分钟以及达到和超过14000埃/分钟的速率将电介质淀积到大面积基板上的等离子增强化学气相淀积系统100的实施例的俯视剖面图。典型地,大面积基板是指(其一面)具有面积大于或等于0.35平方米的基板。该系统100一般包括一中央传输腔102,其具有若干个反应腔104与其相连接。任意地,其中的一个反应腔104可以是一加热腔104’。至少一装载腔106连接在该传输腔102与一工厂界面108之间以方便工厂界面108与反应腔104之间基材140的传递(有两个被示出)。该系统100还包括一设置在工厂界面108内的一界面机械手110及一设置在该传输腔102内的传输机械手112,用以使基板能够被传送通过该装载腔106和在该系统100周围的反应腔。一种可采用的受益于本发明的大面积基板制程系统是由位于美国加州Santa Clara市的AppliedMaterial公司的分公司AKT公司所制造的AKT-5500等离子增强化学气相淀积(PECVD)系统。
每个反应腔104都用来处理一大面积基板,而且典型地具有至少约360公升的体积。每个反应腔104典型地连接至各自的气体输送系统114。该气体输送系统114向反应腔提供制程气体。每个气体输送系统114可以构成为提供一种或多种气体至其对应的反应腔104。在图1所示的实施例中,至少一气体输送系统114用来提供一制程气体或由一液体前体以大于约1160sccm的速率所产生的前体气体(如,每分钟至少10到至少100克的TEOS)。
图2显示图1中有一实施例的气体输送系统114与其相连接的反应腔104的剖面图。该反应腔104具有腔壁206,一底部208,及一盖组件210,它们共同限定了一制程空间212。制程空间212典型地可通过一设在腔壁206上的通道口(未示出)使基板140方便进出该反应腔104。腔壁206及底部208典型地是用一单一的铝块或其它能够与制程化学物兼容的整块材料制造的。该盖组件210包括一抽吸空间214,其将该制程空间212连接至一排气口(其包括不同的抽吸构件,未示出)。
该盖组件210被该腔壁206所支撑而且可被取下以维修该反应腔104。该盖组件210一般是由铝所制成而且还包括热传递流体通道用以让热传递流体流经盖组件来调节该盖组件210的温度。
一分配板218连接至该盖组件210的内侧220。该分配板218典型地是用铝制造而且包括一有孔区域,由该气体输送系统114所供应的制程气体及其它气体可经过该有孔区域被送到位于该基板支撑件238上的该基板140。该分配板218的有孔区域构成为以可使材料更为均匀地淀积到基板140上的方式分配制程气体。
一经过加热的基板支撑组件238设置在该反应腔104的中央。该支撑组件238在制程期间支撑着该基板140。该支撑组件238具有若干个升举销250,其可活动地穿设于其上。操作这些升举销250以使其从支撑表面260突出,因此将该基板用与该支撑组件238间隔开来的方式来放置,以方便用传输机械手112来传送基板。
一真空通道(未示出)被设置成穿过该支撑组件238而且用来施加一真空于该基板140与该支撑组件238之间,用以在制程期间将基板140固定在该支撑组件238上。加热组件232,如一设置在该支撑组件238内的电极,连接至一电源230,其将该支撑组件238及位于其上的基板140加热至一预定的温度。典型地,该加热组件232将基板140保持在一约150℃到至少约460℃的均匀温度。
另外,该支撑组件238支撑一限制遮蔽框248。该遮蔽框248构成为可覆盖基材140的边缘而且典型地是用陶瓷制成。该遮蔽框248可防止在基板140及支撑组件238边缘处的淀积,使得该基板不会粘到该支撑组件238上。任意地,一冲洗气体供应至该遮蔽框248与该支撑组件238之间以辅助防止在基板边缘处的淀积。
该支撑组件238由一杆242连接至一升降系统(未示出),其将该支撑组件238移动于一升高的位置(如所示)与一降低的位置之间。一风箱246提供该制程空间212与反应腔104外部的大气之间一真空密封,同时方便该支撑组件238的运动。另外,该杆242为该支撑组件238与该系统100的其它构件之间的电子导线,真空及气体供应线路提供一导管。
支撑组件238一般接地,由一电源222供应至该分配板218(或位于该腔的盖组件内或靠近盖组件的其它电极)的RF功率可将该制程空间212内位于该支撑组件238与该分配板218之间的气体激发。通常具有介于数Hz至13Hz或更高的频率的该RF功率以提供适合该基板表面积的功率。在一实施例中,该电源222包括一双频源其提供一低于2MHz(最好是约200至500kHz)的低频功率及一高于13MHz(最好是约13.56MHz)的高频功率。例如,频率可以是固定的或是可变的。对于一个550毫米乘650毫米的基板而言,低频功率约0.3至2kW而高频功率约为1至约5kW。一般该功率需要随着基板尺寸的减小或加大而相应减小或增加。
该气体输送系统114包括一四乙氧基硅烷(TEOS)源272,一氦气源274,及一气化器模块280,其通过一气化器输出管路288连接至该反应腔104。该TEOS源272包括管线、阀、流量控制器及类似物,用来通过一气化器输入管路276输送控制量的液体TEOS至该气化器模块280,该管路介于该TEOS源272与该气化器模块280之间。
该氦气源274包括管线、阀、流量控制器及类似物,用来输送控制量的氦气。该氦气可在制程中通过将氦气从该氦气源274经过该气化器输入管路276绕到该气化器模块280而被用作为一冲洗气体。该氦气也可被用作为一载运气体用来将氦气从该氦气源274绕经一与该气化器输出管路288相连接的载运气体管路278而将该TEOS运送到反应腔104内。
图3A显示该气化器模块280的一示意图。该气化器模块为一容器320,其包括了一液体流量控制器340及一气化器330。该容器320还包括一绝缘分隔件322,将该流量控制器340与该气化器330热隔离。一导管326穿过一形成在该绝缘分隔件322上的通路324将该流量控制器340连接至该气化器330。该容器320及该绝缘分隔件322可用适宜的材料制成。在所示的实施例中,该容器320是用不锈钢制造而该绝缘分隔件322是用硅橡胶制成的。
该流量控制器340经由气化器输入管路276连接至该TEOS源272而且经由该导管326连接至该气化器330。一散热器342被安装在该流量控制器340的底部。一风扇346被设置在邻近该散热器342处而且被安排成将空气吹送通过该散热器342,通过将该流量控制器保持在约室温的温度,或约25℃。该流量控制器340可以是能够控制液体流量的任何装置,如一质量或体积流量计。一适宜的流量控制器为由位于美国宾州Hatfield市的Porter Industrial Company所制造的一质量流量计,型号2000PI。通过将该流量控制器340与该气化器330热隔绝开来,该流量控制器340的温度可更容易被保持在一预定的数值,流量控制器340在该温度所提供的读数是在一已知的精确度及偏差值之内,因而可对前体的产生有更为精确的控制。
气化器330经由气化器输出管路288连接至该反应腔104及经由导管326连接至该流量控制器342。至少一加热器312被连接至该气化器模块280并加热该TEOS以便于液体TEOS气化成为气相。虽然图中加热器312(参考图3B)连接至气化器330,但其也可被设置在导管326内或与导管连接,或被设置在气化器330内。
图3B显示气化器330的一实施例的分解图。在一实施例中,该气化器330包括一导热本体352其用一导热罩354加以密封。该本体352具有若干个横向通道360及纵向沟槽362形成于其一侧上。该本体352用不与制程用化学物起反应的材料制成且具有足够的厚度以在这些通道360及沟槽362的制造期间保持其平坦度以及可让气化器330在约90℃或更高的温度下操作。该本体352可用不锈钢来制造,其具有至少约0.125英寸的厚度。发现一约0.1英寸厚或更薄的不锈钢本体其TEOS气化性能不佳,因为在输出中有高液体含量而不适合用在低缺陷淀积上,因为本体352在沟槽的形成期间太过挠曲及/或易于缠绕,使得介于本体352与罩子354之间的间隙会在其横越该本体352期间变化,通过让液体/气体可以流到沟槽362外而避免完全气化。
横向的通道360为与流经该气化器330的方向垂直。通道360中的一个通道被设置在靠近气化器330的入口侧370且经由一至少部分地穿过该本体352的入口通道口356(第一通道口)连接至该导管326。通道360中的一第二个通道被设置在靠近该气化器330的一出口侧372且经由至少部分地穿过该本体352的出口通道口358(第二通道口)(在图3B中被部分遮蔽)连接至气化器输出管路288。
这些若干个纵向沟槽362形成在该本体352上且与流经该气化器330的方向平行并与这些通道360互相流动地连接。沟槽362比通道360浅而且经过加工以保持所需的平坦性,让分流的TEOS流能够流经相邻的沟槽362来确保完全的气化。由沟槽362的化学刻蚀所产生的热会围绕该本体,因此阻止在沟槽362内的液流的隔离,将会妨碍TEOS的完全气化。液流的混合会导致气化性能不佳且会有过多的液滴产生,这对于大面积基板制程而言是无法接受的。该罩子354被固定到该本体352上,因此迫使流体流经气化器330使其只在若干个通道360及若干个沟槽362内流动。
沟槽362构成为具有足够的表面积用以确保至少每分钟约10克至约100克的TEOS完全气化。在一实施例中,至少有45个沟槽362形成在本体352上。每一沟槽362都具有约0.007英寸的深度及约0.015英寸的宽度。
本体352及罩子354被至少一设置成与该本体352及/或罩子354相接触的加热器312所加热用以对流经通道360及沟槽362的TEOS加热至约90℃至约150℃的温度,最好是120℃。进入到气化器的液体TEOS被加热并强迫流经沟槽362以产生TEOS气体。
当TEOS完全气化时,该真空降压时间即可被缩短。例如,使用气化器330的大面积基板CVD系统在产生5克/分钟TEOS时其降压时间约为15秒,而产生10克/分钟TEOS的气化器则需时约18秒,常规的气化器的降压时间约在21至34秒之间。因此,气化器330显示进入到反应腔中的液体百分比的减少,因而与常规的系统比较起来能够缩短循环时间并提高基板产量。
此外,该气化器输出的稳定时间及压力稳定性都可以比常规的气化器改进许多。例如,本发明的气化器在产生每分钟10克的TEOS时具有一约10秒钟的稳定时间(即,到达稳态输出的时间),常规的气化器则需时约20-45秒的时间。本发明的气化器的压力稳定性在产生每分钟10克的TEOS时约为±2.82百分比,常规的气化器的压力稳定性则为±6.09百分比。
回到图2,一限流器290被设置在该气化器输出管路288内并介于气化器330与反应腔104之间。该限流器290构成为可提供足够的背压给气化器330,使得气化液体的膨胀速度不会快到在完全气化之前就跑到气化器330外。又,该限流器290可提供一稳定的被气化的TEOS流,其可提高均匀且可重复的制程。在一实施例中,该限流器290具有一约0.187至约0.140英寸的孔口。
为了要防止被气化的TEOS在到达反应腔104之前即凝结,气化器输出管路288及载运气体管路278被加热。这可防止被气化的TEOS在运动经过该气化器输出管路288时或在与一较冷且没有被加热的载运气体混合时冷却下来。管路278、288可通过缠绕上加热带,施加接触式加热器,让热传递导管经过等方式来加热。该气化的TEOS或TEOS/载运气体混合物流经气化器输出管路288到达该反应腔104。气化器模块280与加热的管路288、278的此组合将可容许被气化的TEOS以超过每分钟10克的速率被输送。在另一实施例中,气化器模块280可构成为可以每分钟至少20克的速率,最高超过每分钟100克的速率来输送。可以有较大容量气化器的该气化器模块280的性质之一为可增加形成在该气化器模块280上的沟槽362的数目。
氧气从一氧气源284被提供至该反应腔,该氧气源通过一等离子气体管路286连接至该反应腔。该氧气与TEOS气体混合且在该反应腔104中被激发以形成一等离子。该TEOS在等离子中解离并淀积氧化硅层于一位于该反应腔104内的基板的表面上。
典型地,一远程等离子源(未示出)连接至该反应腔104并在完成多个制程循环之后被用来清洁该腔。该反应腔可在每一循环之后或在一预定的循环次数之后被清洁以使该腔内保持所需要的洁净度,同时可将昂贵的停机时间及由污染导致的缺陷减至最小。
图4显示一电介质等离子增强化学气相淀积于大面积基板上的方法400的流程图。在步骤402,参照图2-3,基板140被导入到该反应腔104且被放在该反应腔104内的基板支撑组件238上。该基板140被真空压力固持住且其周边被遮蔽框248所覆盖。
在步骤404,基板140被加热组件232加热至约350℃至约440℃之间的温度。典型地,该反应腔104的腔壁206被冷却用以将反应腔104的温度保持在约90℃至约150℃之间。
制程气体在步骤406被导入反应腔104。在一实施例中,该TEOS是以约1160至约11600sccm的流率从TEOS源272供应至该气化器330。气化器330及气化器输出管284被保持在约90℃至约150℃的温度,最好是120℃的温度。流经该被加热的气化器的TEOS被气化且TEOS气体流出该气化器输出管284进入到反应腔104。
流经该气化器输出管288的TEOS气体是经由盖组件210进入该反应腔104。从该氧气源284流经等离子气体管路286的氧气被同步地经由盖组件210被导入该反应腔104。该氧气的流率约为2000至约15000sccm。该TEOS与氧气混合并经由该气体分配板218进入到制程空间212。
在步骤408,通过从该电源222施加约5000W的RF能量至该气体分配板218,一等离子由该TEOS与氧气的混合物形成在该反应腔104的制程空间212内。该TEOS在该等离子中解离并当以约1160sccm的速率流入TEOS时,可在大面积基板的外露表面上约3000到至少3500埃/分钟的速率淀积的方式淀积氧化硅层于该基板的表面上,该大面积基板指基板的一表面积具有至少约0.357平方米的面积。在约11600sccm的TEOS流率下可得到约14000埃/分钟的淀积率。
在一实施例中,基板140被加热组件232加热至约440℃的温度。TEOS从TEOS源272以至少约每分钟10克的流率被供应至该气化器。该气化器被保持在约120℃的温度。流经该被加热的气化器的TEOS被气化并流出该气化器输出管288进入到该反应腔104。该气化器输出管288被加热至约120℃的温度用以防止TEOS气体在进入反应腔104之前凝结。
流经该气化器输出管288的TEOS气体是经由盖组件210进入该反应腔104。从该氧气源284流经等离子气体管路286的氧气被同步地经由盖组件210导入该反应腔104,该氧气的流率约为2000sccm。该TEOS与氧气混合并经由该气体分配板218进入到制程空间212。通过从该电源222施加约5000W的RF能量至该气体分配板218,一等离子从该TEOS与氧气的混合物形成在该反应腔104的制程空间212内且在约3000到至少4000埃/分钟的流率下使氧化硅层淀积在该基板上。
利用方法400淀积的该氧化硅材料并不只是在比常规的制程快许多的速率下被淀积,该氧化硅层还表现出坚实的物理特性。例如,该被淀积的氧化硅具有一范围在-2.68至3.03之间的应力;从约1.45到约1.47的折射率;及一从每分钟1250至约3100埃的湿式刻蚀率,所有这些特性比常规的用较慢速率淀积的材料的特性要好许多。
虽然以上所述是关于本发明的较佳实施例的,但本发明的其它及进一步的实施例也可在不偏离本发明的基本范围下被实施,本发明的范围是由以下的权利要求确定的。

Claims (4)

1.一种适合使用在半导体制程中的气化器模块,其至少包括:
一第一导热板,其具有一至少0.125英寸的厚度且具有一第一侧;
一第二导热板,其连接至所述第一导热板的第一侧上,用以界定所述气化器;
若干个沟槽,其至少部分被形成在所述第一导热板上且被所述第二导热板覆盖;
一第一通道口,其形成在所述气化器组件的第一端上;及
一第二通道口,其形成在所述气化器的第二端上且通过所述沟槽与所述第一通道口成流体连通。
2.如权利要求1所述的气化器模块,进一步包括一限流器其连接至所述第二通道口且具有一约0.14至约0.187英寸的孔口。
3.如权利要求1所述的气化器模块,其特征在于,所述的沟槽经过加工且具有足够的表面积用以在被加热至约90℃至约150℃之间的温度时可每分钟气化至少20克的TEOS。
4.如权利要求1所述的气化器模块,其特征在于,所述的沟槽是对称的且具有足够的表面积用以在被加热至约90℃至约150℃之间的温度时可每分钟气化至少100克的TEOS。
CN2008100926851A 2003-04-07 2004-04-05 淀积氧化硅于大面积基板上的方法及设备 Expired - Fee Related CN101319311B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/409,466 US7031600B2 (en) 2003-04-07 2003-04-07 Method and apparatus for silicon oxide deposition on large area substrates
US10/409,466 2003-04-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800067720A Division CN100555581C (zh) 2003-04-07 2004-04-05 淀积氧化硅于大面积基板上的方法及设备

Publications (2)

Publication Number Publication Date
CN101319311A true CN101319311A (zh) 2008-12-10
CN101319311B CN101319311B (zh) 2011-06-22

Family

ID=33097841

Family Applications (3)

Application Number Title Priority Date Filing Date
CNB2004800067720A Expired - Fee Related CN100555581C (zh) 2003-04-07 2004-04-05 淀积氧化硅于大面积基板上的方法及设备
CN2008100926851A Expired - Fee Related CN101319311B (zh) 2003-04-07 2004-04-05 淀积氧化硅于大面积基板上的方法及设备
CN2009101690107A Expired - Fee Related CN101643896B (zh) 2003-04-07 2004-04-05 淀积氧化硅于大面积基板上的方法及设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2004800067720A Expired - Fee Related CN100555581C (zh) 2003-04-07 2004-04-05 淀积氧化硅于大面积基板上的方法及设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2009101690107A Expired - Fee Related CN101643896B (zh) 2003-04-07 2004-04-05 淀积氧化硅于大面积基板上的方法及设备

Country Status (7)

Country Link
US (2) US7031600B2 (zh)
EP (1) EP1644972A2 (zh)
JP (1) JP4933894B2 (zh)
KR (1) KR101160357B1 (zh)
CN (3) CN100555581C (zh)
TW (1) TWI297739B (zh)
WO (1) WO2004093163A2 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040237889A1 (en) * 2003-05-28 2004-12-02 Winbond Electronics Corporation Chemical gas deposition process and dry etching process and apparatus of same
US9725805B2 (en) * 2003-06-27 2017-08-08 Spts Technologies Limited Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
US20050109276A1 (en) * 2003-11-25 2005-05-26 Applied Materials, Inc. Thermal chemical vapor deposition of silicon nitride using BTBAS bis(tertiary-butylamino silane) in a single wafer chamber
US20050223986A1 (en) * 2004-04-12 2005-10-13 Choi Soo Y Gas diffusion shower head design for large area plasma enhanced chemical vapor deposition
CA2566944C (en) * 2004-05-20 2016-10-11 Nam Hung Tran Bubbler for constant vapor delivery of a solid chemical
DE102004061095A1 (de) * 2004-12-18 2006-06-22 Aixtron Ag Vorrichtung zur temperierten Aufbewahrung eines Behälters
US8709162B2 (en) * 2005-08-16 2014-04-29 Applied Materials, Inc. Active cooling substrate support
US20070082507A1 (en) * 2005-10-06 2007-04-12 Applied Materials, Inc. Method and apparatus for the low temperature deposition of doped silicon nitride films
US7501355B2 (en) * 2006-06-29 2009-03-10 Applied Materials, Inc. Decreasing the etch rate of silicon nitride by carbon addition
US20100047954A1 (en) * 2007-08-31 2010-02-25 Su Tzay-Fa Jeff Photovoltaic production line
JP2010538475A (ja) * 2007-08-31 2010-12-09 アプライド マテリアルズ インコーポレイテッド 多サイズの光起電デバイスを形成するための生産ラインモジュール
US8168268B2 (en) * 2008-12-12 2012-05-01 Ovishinsky Innovation, LLC Thin film deposition via a spatially-coordinated and time-synchronized process
US8965185B2 (en) * 2009-03-02 2015-02-24 Btu International, Inc. Infrared furnace system
US20120009347A1 (en) * 2010-07-07 2012-01-12 Applied Materials, Inc. Precise temperature control for teos application by heat transfer fluid
JP6303733B2 (ja) * 2014-03-31 2018-04-04 ソニー株式会社 磁気記録媒体およびその製造方法、ならびに成膜装置
US9953843B2 (en) * 2016-02-05 2018-04-24 Lam Research Corporation Chamber for patterning non-volatile metals
KR102338026B1 (ko) * 2017-07-25 2021-12-10 가부시키가이샤 후지킨 유체 제어 장치
FR3079345B1 (fr) * 2018-03-26 2020-02-21 Soitec Procede de fabrication d'un substrat pour dispositif radiofrequence
CN112342531A (zh) * 2020-10-19 2021-02-09 绍兴同芯成集成电路有限公司 一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058571A1 (en) 1981-02-18 1982-08-25 National Research Development Corporation Method and apparatus for delivering a controlled flow rate of reactant to a vapour deposition process
US5000113A (en) * 1986-12-19 1991-03-19 Applied Materials, Inc. Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
US4872947A (en) * 1986-12-19 1989-10-10 Applied Materials, Inc. CVD of silicon oxide using TEOS decomposition and in-situ planarization process
ZA884511B (en) * 1987-07-15 1989-03-29 Boc Group Inc Method of plasma enhanced silicon oxide deposition
JP2631481B2 (ja) 1987-12-08 1997-07-16 株式会社 リンテック 質量流量計とその計測方法
JPH0784662B2 (ja) * 1989-12-12 1995-09-13 アプライドマテリアルズジャパン株式会社 化学的気相成長方法とその装置
US5078092A (en) * 1989-12-22 1992-01-07 Corning Incorporated Flash vaporizer system for use in manufacturing optical waveguide fiber
JPH0795527B2 (ja) 1991-02-05 1995-10-11 株式会社リンテック 液体原料用気化供給器
JPH06291040A (ja) 1992-03-03 1994-10-18 Rintetsuku:Kk 液体気化供給方法と液体気化供給器
JPH1089532A (ja) 1995-12-13 1998-04-10 Rintetsuku:Kk 気化装置の弁構造
JPH10150030A (ja) * 1996-11-19 1998-06-02 Kokusai Electric Co Ltd 成膜装置
US5849089A (en) 1997-03-14 1998-12-15 Kabushiki Kaisha Toshiba Evaporator for liquid raw material and evaporation method therefor
JP2000017457A (ja) * 1998-07-03 2000-01-18 Shincron:Kk 薄膜形成装置および薄膜形成方法
US6261374B1 (en) 1998-09-29 2001-07-17 Applied Materials, Inc. Clog resistant gas delivery system
DE29903296U1 (de) * 1999-02-24 2000-08-03 Cpc Cellular Process Chemistry Mikroreaktor
JP2001104769A (ja) 1999-10-04 2001-04-17 Mitsui Eng & Shipbuild Co Ltd 揮発性物質の供給装置およびその制御方法
KR100436657B1 (ko) * 2001-12-17 2004-06-22 미래산업 주식회사 반도체 소자 테스트 핸들러의 소자 가열 및 냉각장치

Also Published As

Publication number Publication date
JP2006522495A (ja) 2006-09-28
US20060127068A1 (en) 2006-06-15
WO2004093163A2 (en) 2004-10-28
CN101643896A (zh) 2010-02-10
CN100555581C (zh) 2009-10-28
CN101319311B (zh) 2011-06-22
KR101160357B1 (ko) 2012-06-26
US20040194701A1 (en) 2004-10-07
JP4933894B2 (ja) 2012-05-16
WO2004093163A3 (en) 2004-12-23
CN101643896B (zh) 2013-04-17
CN1759476A (zh) 2006-04-12
TWI297739B (en) 2008-06-11
TW200427862A (en) 2004-12-16
KR20050120641A (ko) 2005-12-22
US7031600B2 (en) 2006-04-18
EP1644972A2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
CN101319311B (zh) 淀积氧化硅于大面积基板上的方法及设备
CN1919768B (zh) 可主动冷却的基板支撑件
US5525159A (en) Plasma process apparatus
CN100495655C (zh) 气体处理装置和散热方法
CN201436515U (zh) 基板支撑组件
JP2012521093A (ja) 蒸着反応装置システム及びその方法
CN101148755A (zh) 衬底处理装置
CN103276373B (zh) 一种pecvd装置
US20120070590A1 (en) Plasma enhanced atomic layer deposition apparatus and the controlling method thereof
CN1748285B (zh) 用于均匀加热基片的腔室
CN116875961A (zh) 原子层沉积设备
CN108277479B (zh) 一种可控制气流均匀平稳的pecvd装置
CN201313936Y (zh) 常压等离子发生装置
CN102017084A (zh) 加热装置、膜形成装置及膜形成方法和元件
US11946686B2 (en) Thermally stable flow meters for precision fluid delivery
TW201339356A (zh) Pecvd系統的熱傳控制
CN218146934U (zh) 一种新型大宗液态前驱体供液用控制盘面
KR20140038107A (ko) 냉각 장치, 이를 구비하는 원료 공급 장치 및 기판 처리 장치
CN206650063U (zh) 一种静电吸盘
CN203284466U (zh) 一种pecvd装置
KR200480896Y1 (ko) 열전달 유체에 의한 teos 적용을 위한 정밀 온도 제어
CN117403211A (zh) 一种金属化学气相沉积装置
JPH06168877A (ja) 半導体装置の製造装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: American California

Patentee after: Applied Materials Inc.

Address before: American California

Patentee before: Applied Materials Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110622

Termination date: 20210405

CF01 Termination of patent right due to non-payment of annual fee