CN101294103A - 在浆料反应器中在杂多阴离子基催化剂存在下重烃原料的加氢转化方法 - Google Patents

在浆料反应器中在杂多阴离子基催化剂存在下重烃原料的加氢转化方法 Download PDF

Info

Publication number
CN101294103A
CN101294103A CNA200810128747XA CN200810128747A CN101294103A CN 101294103 A CN101294103 A CN 101294103A CN A200810128747X A CNA200810128747X A CN A200810128747XA CN 200810128747 A CN200810128747 A CN 200810128747A CN 101294103 A CN101294103 A CN 101294103A
Authority
CN
China
Prior art keywords
solution
salt
described method
cobalt
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200810128747XA
Other languages
English (en)
Other versions
CN101294103B (zh
Inventor
M·罗伊-奥伯格
D·基劳姆
K·马钱德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of CN101294103A publication Critical patent/CN101294103A/zh
Application granted granted Critical
Publication of CN101294103B publication Critical patent/CN101294103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/14Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles
    • C10G45/16Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/10Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 with moving solid particles
    • C10G49/12Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 with moving solid particles suspended in the oil, e.g. slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/27Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及在浆料反应器中在杂多阴离子基催化剂存在下重烃原料的加氢转化方法。本发明涉及在氢和固体催化剂存在下,含液体硫的重烃原料浆态相加氢转化方法,所述催化剂是由至少一种在其结构中结合钼和钴或钼和镍的杂多阴离子的至少一种钴和/或镍盐形成的水溶液制得的。该水溶液添加到含有沥青烯和/或树脂的烃油中生成乳状液,然后所述乳状液在上游或直接注入到浆料反应器中。

Description

在浆料反应器中在杂多阴离子基催化剂存在下重烃原料的加氢转化方法
技术领域
本发明涉及在氢和固体催化剂存在下,含硫液体重烃原料的浆态相的加氢转化方法,所述催化剂是由至少一种在其结构中结合钼和钴或钼和镍的杂多阴离子的至少一种钴和/或镍盐制成的水溶液得到。
背景技术
烃重质馏分加氢转化采用的浆态相方法是本技术领域的技术人员已知的方法,能够在可溶性催化剂前体的存在下获得重质原料加氢精炼。在专利US 3 231 488中,描述了呈有机金属化合物形式的注入金属在氢和/或H2S存在下,生成能在注入原料后加氢精炼残留物的细分散催化相。
一种或多种有机金属化合物选自第VB、VIB和VIII族金属,并在与原料混合前热分解生成与这些沥青烯的络合物。
在专利US 4 244 839中,CL.Aldridge和R.Bearden描述了一种由可溶于油并能热分解的催化剂前体制备的催化相,它特别用于在高温与氢和H2S存在下与原料接触的残留物加氢转化。该金属选自第II、III、IV、V、VIB、VIIB和VIII族金属。
大量催化剂前体能够起到可热分解金属化合物的作用:有机可溶性化合物,例如环烷酸钼、辛酸钼,水溶性化合物,像在专利中US 3 231488(UOP)、US 4 637 870和US 4 637 871引用的磷钼酸,以及专利US 6043 182中引用的七钼酸铵。
在水溶性化合物的情况下,一般让催化剂前体通过乳状液与该原料混合。在酸性介质(H3PO4)或碱性介质(NH4OH)中用钴或镍促进或没有促进催化剂前体(通常是钼)溶解构成了大量研究和发明的目的。
因此,在文件WO2006031575A1、WO2006031543A1和WO2006031570A1中,Chevron用氨水溶液溶解第VI族氧化物制成溶液,该溶液随后进行硫化,任选地通过在所述硫化后添加第VI族金属促进硫化,然后在最后步骤与原料混合。
另外,Exxon专利(US 4 637 870和US 4 637 871)在没有助催化剂与某些P/Mo比的范围和钼浓度(<5重量%)下,往磷钼酸或MoO3中添加H3PO4溶解钼。
在本申请人的专利EP 1637576中,浆料加氢转化方法使用由催化剂前体得到的催化相,该催化剂前体是钼基有机金属化合物、盐或酸。
现有技术还没有提及催化剂在重馏分浆料加氢转化中的用途,其中该催化剂前体使用在同一分子中结合至少一种钼和钴或钼和镍的杂多阴离子。
本申请人已发现由这样一种杂多阴离子基催化剂前体得到的分散催化剂,与分开注入钼前体和镍或钴前体水溶液相比,具有在浆料反应器使用时在加氢脱金属和加氢脱沥青方面具有显著改进的活性。此外,本发明人还发现除了在催化活性方面的优点外,按照所谓的“直接”制备法制备这种催化剂前体也是特别有利的。事实上,所述制备方法能获得有利于水溶液在含有沥青烯和/或树脂的烃油中产生稳定乳状液的pH条件。
发明内容
本发明涉及在氢和固体催化剂存在下,在浆料反应器中进行重质原料转化的方法,所述的催化剂是使用含有至少一种在其结构中结合钼和钴的杂多阴离子的至少一种钴和/或镍盐的水溶液制得的,所述的盐是CoII 3[CoIII 2Mo10O38H4]或NiII 3[CoIII 2Mo10O38H4],它们单独或分别与盐CoII 3/2[CoIIIMo6O24H6]或NiII 2[NiIIMo6O24H6]混合,或使用含有至少一种在其结构中结合钼和镍的杂多阴离子的至少一种钴和/或镍盐的水溶液制得的,所述方法包括以下步骤:
在水溶液中混合至少一种钼源和至少一种氧化性化合物,在酸性pH下合成过氧钼酸盐离子,(氧化性化合物/钼源)的摩尔比是0.1-20;
a)按照其中一种下述途径(b1、b2或b3)添加至少一种钴前体和/或镍前体:
b1)在没有镍前体存在时,在步骤a)的溶液中添加至少一种钴前体,制成含有至少所述盐的溶液,其中Co/Mo的摩尔比是0.40-0.85,
b2)在没有钴前体存在时,在步骤a)的溶液中添加至少一种镍前体,制成含有至少所述盐的溶液,其中Ni/Mo的摩尔比是0.40-0.85,
b3)在步骤a)的溶液中添加至少一种钴前体和至少一种镍前体,制成含有至少所述盐的溶液,其中(Co+Ni)/Mo的摩尔比是0.25-0.85,Ni/Mo的摩尔比是0.15-0.45,Co/Mo的摩尔比是0.10-0.40,
c)在低于温度60℃下,往含有沥青烯(asphaltène)和/或树脂的烃油里添加步骤b)得到的水溶液制成一种乳状液,
d)在上游或直接将步骤c)得到的所述乳状液注入到浆料反应器中。
本技术领域的技术人员知道具有安德森结构的杂多阴离子。通过氧代阴离子MO4 n-缩合,其中M是金属原子,得到表示为MkOyt-的异多阴离子。这种缩合是通过酸化介质发生的,然后除去水分子,在这些金属原子间产生氧代桥。这些钼化合物的这类反应是众所周知的,因为根据pH,溶液中的钼化合物可能呈MoO4 2-形式或呈根据该反应得到的安德森异多阴离子Mo7O24 6-形式:7MoO4 2-+8H+→Mo7O24 6-+4H2O。在氧代阴离子XO4 p-存在下,其中X是不同于M的原子,这些金属原子在这个氧代阴离子周围相连,然后缩聚得到称之杂多阴离子并表示为XxMkOy z-的混合化学物种。这些杂多阴离子CoIIIMo6O24H6 3-和NiIIMo6O24H6 4-是安德森杂多阴离子的最好实例。
催化剂前体溶液(水溶液)的制备
与所谓的“间接”制备法相反,例如在专利申请EP-A-1 393 802中描述的,本发明方法采用制备含有催化剂前体水溶液的“直接”法。间接法在于制备杂多阴离子铵盐必须采用沉淀、过滤和结晶步骤,然后通过在该反应介质中添加一种化合物,它的阴离子与铵阳离子生成溶解性非常差的化合物,该化合物沉淀并与含有钴和/或镍阳离子和杂多阴离子的溶液分离,这样在溶液中这些钴或镍阳离子可交换杂多阴离子的铵离子。该间接法还必须使用二聚剂,像活性炭或Raney镍。此外,该交换反应使用的化合物一般是磷钼酸钴盐或镍盐,即其制备也需要大量长而难以工业规模实施的基本步骤的盐。
本申请人已经研制一种制备由至少一种在其结构中结合钼和钴或钼和镍的杂多阴离子的至少一种钴和/或镍盐组成溶液的新“直接”法,该方法包括下述步骤:
a)在水溶液中混合至少一种钼源和至少一种氧化性化合物,在酸性pH下合成过氧钼酸盐离子,(氧化性化合物/钼源)的摩尔比是0.1-20,
b)在步骤a)得到的溶液中添加至少一种钴前体和/或至少一种镍前体,制成含有至少所述盐的溶液。
步骤a)进行过氧钼酸盐离子合成,该离子属于由单体过氧钼酸盐实体MoO3(O2)2-、二聚过氧钼酸盐实体Mo2O3(O2)4 2-和式MoO2(O2)2 2-、MoO(O2)3 2-和Mo(O2)4 2-、三-和四-过氧钼酸盐中间单体及其混合物组成的组。优选地,在步骤a)的过程中,使这些合成条件适合于制备二聚过氧钼酸盐离子,其拉曼光谱的主峰位于540cm-1和970cm-1。单体过氧钼酸盐离子的拉曼光谱特征在于主峰位于560和930cm-1,单体二-、三-和四-过氧钼酸盐类的特征在于中间峰是540-560cm-1和930-970cm-1,它们相应于伸长方式。
在水溶液中至少一种钼源与至少一种氧化性化合物混合实施该制备方法的所述步骤a)。这种混合进行直至得到透明的水溶液,在该水溶液中因所述氧化性化合物的作用,钼源完全溶解。这种混合是在室温下搅拌进行的,或者在30-90℃下,优选地在50-60℃下加热回流几分钟至几小时,直至得到透明的水溶液。在步骤a)结束时得到含有所述过氧钼酸盐离子的所述透明溶液是酸性pH,更精确地pH小于5,优选地小于2.5,更优选地小于1,更加优选地小于0.5。
一般而言,实施本发明制备方法所述步骤a)时使用的钼源选自氧化钼、氢氧化钼、钼酸及其盐,特别地例如钼酸铵、二钼酸铵、七钼酸铵和八钼酸铵之类的铵盐。
优选地,钼源是氧化钼MoO3
实施制备方法所述步骤a)时使用的氧化性化合物选自过氧化氢H2O2和烷基氢过氧化物(R-OOH),特别地叔丁基-过氢氧化物(tBu-OOH)。过氧化氢作为氧化性化合物使用是有利的。
根据本发明方法的步骤a),所述的氧化性化合物和钼源在水溶液中进行混合的比例是这样的,氧化性化合物与钼源的摩尔比是0.1-20,有利地0.5-10,非常有利地2-7。
根据制备方法的步骤b),把至少一种钴前体和/或至少一种镍前体加到来自所述步骤a)的酸性pH透明水溶液中,制成含有至少一种在其结构中结合钼和钴或钼和镍的杂多阴离子的至少一种钴盐和/或镍盐溶液。由本发明方法步骤b)得到的所述溶液的pH大于3,优选地大于或等于3.5,非常优选地3.5-4.0。优选地,所述步骤b)导致制成含有至少一种在其结构上结合钼和钴或钼和镍的杂多阴离子的至少一种钴盐或镍盐的溶液,所述的盐属于由盐CoII 3/2[CoIIIMo6O24H6]、NiII 3/2[CoIIIMo6O24H6]、CoII 3[CoIII 2Mo10O38H4]、NiII 3[CoIII 2Mo10O38H4]、NiII 2[NiIIMo6O24H6]和NiII 4[NiII 2Mo10O38H4]组成的组中。
加到来自步骤a)的含有过氧钼酸盐离子的溶液中的钴和/或镍前体选自硝酸盐、硫酸盐、磷酸盐、卤化物、如乙酸盐之类的羧酸盐、碳酸盐、氢氧化物和氧化物。优选地,使用碳酸盐基前体、氢氧化物基前体和羟基碳酸盐前体。优选的钴前体是碳酸钴,优选的镍前体是羟基碳酸镍。
钴和/或镍前体有利地加到来自步骤a)的溶液中,优选地在高于室温的温度下进行溶解时,将其冷却到室温后加到该溶液中。小心控制加入所述的前体,以限制与使用某些前体(特别地碳酸盐基前体)相关的放热和发泡。优选的是在强酸,特别地H2SO4、HNO3或HCl存在下不加入这些钴和/或镍前体。
根据步骤b)的第一个实施方式(步骤b1),没有镍前体存在时,把至少一种钴前体加到来自步骤a)的所述溶液中,以便生成至少一种在其结构中结合钼和钴的杂多阴离子的至少一种钴盐。钴前体的加入量是这样的,使得Co/Mo摩尔比是0.40-0.85,优选地0.40-0.55。根据这个第一种实施方式制备的盐特别地是相应于单体安德森杂多阴离子(CoIIIMo6O24H6)3-的盐CoII 3/2[CoIIIMo6O24H6],和相应于二聚安德森杂多阴离子(CoIII 2Mo10O38H4)6-的盐CoII 3[CoIII 2Mo10O38H4]。它们在来自步骤b)的所述溶液中可以单独或混合存在。制备这样一些盐优选地使用碳酸钴Co(CO3)2作为钴前体。
根据步骤b)的第二个实施方式(步骤b2),没有钴前体存在时,把至少一种镍前体加到来自步骤a)的所述溶液中,以便生成至少一种在其结构中结合钼和镍的杂多阴离子的至少一种镍盐。镍前体加入量是这样的,使得Ni/Mo摩尔比是0.40-0.85,优选地0.45-0.65。根据这个第二种实施方式制备的盐特别地是相应于单体安德森杂多阴离子(NiIIMo6O24H6)4-的盐NiII 2[NiIIMo6O24H6]和相应于二聚安德森杂多阴离子(NiII 2Mo10O38H4)8-的盐NiII 4[NiII 2Mo10O38H4]。它们在来自步骤b)的所述溶液中可以单独或混合存在。制备这样一些盐优选地使用羟基碳酸镍作为镍前体。
根据步骤b)的第三个实施方式(步骤b3),把至少一种钴前体和至少一种镍前体加到来自步骤a)的所述透明溶液中。优选地,往来自步骤a)的所述溶液中添加至少一种镍前体,接着添加至少一种钴前体,这样实施所述的步骤b)。钴前体和镍前体的添加比例是这样的,使得(Co+Ni)/Mo摩尔比是0.25-0.85,优选地0.28-0.55。镍前体的加入比例是这样的,使得Ni/Mo摩尔比是0.15-0.45,优选地0.25-0.35。钴前体的加入比例是这样的,使得Co/Mo摩尔比是0.10-0.40,优选地0.15-0.25。根据这个第三种实施方式制备的盐特别地是相应于单体安德森杂多阴离子(CoIIIMo6O24H6)3-的盐NiII 3/2[CoIIIMo6O24H6]和相应于二聚安德森杂多阴离子(CoIII 2Mo10O38H4)6-的盐NiII 3[CoIII 2Mo10O38H4]。它们在来自步骤b)的所述溶液中可以单独或混合存在。制备这样一些盐优选地使用羟基碳酸镍作为镍前体,碳酸钴作为钴前体。
在溶液中,至少一种单体安德森杂多阴离子(CoIIIMo6O24H6 3-、NiIIMo6O24H6 4-)和二聚安德森杂多阴离子(CoIII 2Mo10O38H4 6-、NiII 2Mo10O38H4 8-)的至少一种Co和/或Ni盐的存在,可以采用拉曼光谱法,借助与单体安德森杂多阴离子在903、920和952cm-1,二聚安德森杂多阴离子在917和957cm-1的Mo-O2t键伸长方式相关的位移进行表征。同样地在拉曼光谱中,相应于Mo-O-X键(其中X=Co或Ni)的振动方式的位移,单体化学物种是560和575cm-1,二聚化学物种是565和602cm-1。在溶液中,在钼和镍基安德森杂多阴离子Co和/或Ni盐的情况下,采用紫外可见光谱法也可将安德森杂多阴离子结构中氧化度为+3的钴与在该盐中作为反离子存在的氧化度为+2的钴或镍区别开来。Co2+或Ni2+的特征事实上在于510-515nm吸收带,它们相应于在八面体环境中Co2+(d7)或Ni2+(d7s1)的4T2g4T1g跃迁,而Co3+的特征在于在410和600nm的2个吸收带,它们归因于在八面体配位中Co3+(d6)的两个跃迁d-d,分别是1A1g1T2g1A1g1T1g
如前所述制备的至少一种在其结构中结合钼和钴或钼和镍的安德森杂多阴离子的一种或多种Co和/或Ni盐,与根据EP-A-1393802描述的间接法所制备的杂多阴离子盐具有相同的拉曼光谱和紫外可见光谱特征。
本发明的目的在于由至少一种在其结构中结合钼和钴或钼和镍的安德森杂多阴离子的至少一种钴和/或镍盐组成的溶液,在制备重质烃原料的浆态相加氢转化催化剂中的用途。
更确切地,在本发明范围内,把含有至少一种在其结构中结合钼和钴或钼和镍的安德森杂多阴离子的至少一种钴和/或镍盐的水溶液加到烃原料中制成乳状液,在适合制成重烃原料加氢转化的活性催化剂的H2S分压(ppH2S)和温度下,这些盐和杂多阴离子转变成分散混合硫化物相。
安德森HPA的特殊结构的好处是在其结构中结合Mo和Co或Mo和Ni,从而确保所述钴或镍与钼的强相互作用,于是确保高助催化率。至少一种在其结构中结合钼和钴或钼和镍的安德森杂多阴离子的一种或多种钴和/或镍盐优选地选自CoII 3/2[CoIIIMo6O24H6]、NiII 3/2[CoIIIMo6O24H6]、CoII 3[CoIII 2Mo10O38H4]、NiII 3[CoIII 2Mo10O38H4]、NiII 2[NiIIMo6O24H6]、NiII 4[NiII 2Mo10O38H4]。硫化后,产生MoS2薄层的Co/Mo和Ni/Mo比对于确保提高Mo活性一般是最适宜的。因此,与在水溶液中注入钼前体和镍前体相比,该分散催化剂具有相当大改进的活性。
此外,根据本发明制备水溶液的pH大于3,优选地大于或等于3.5,更优选地3.5-4,这特别有利于用含有沥青烯和/或树脂的烃油产生该水溶液的稳定乳状液。
此外,由此制备的溶液中的钼浓度以这样的方式升高到每升水溶液2.6摩尔钼,这能限制加入到该方法中的水的量。
乳状液的制备
在温度低于60℃,优选地低于50℃下,含有至少一种在其结构中结合钼和钴的安德森杂多阴离子的至少一种钴和/或镍盐的水溶液与含有沥青烯和/或树脂的烃油进行混合。于是得到“油包水”类型的乳状液。
可以采用本技术领域的技术人员已知的任何混合和搅拌技术。
在本发明的优选方式中,以这样的方式进行混合,使(沥青烯+树脂)/(第VIB族金属)的比例大于1,优选地大于或等于2。
所述乳状液然后可以在浆料反应器上游连同待转化原料进行干燥或注入。
实施
含有催化剂前体的乳状液或者在上游,或者直接在该反应器中注入并与待处理原料混合。在上游注入时,该原料与乳状液的混合物有利地在反应器外,在温度400℃或更低,优选地250-400℃下,在溶于原料中的H2S存在下进行热处理,以便有利于催化剂前体在硫化物相中分解,从而产生活性相。例如,H2S可以来自在原料中存在的或预先加入的有机硫分子热分解(DMDS等注入)的循环到浆料反应器的氢气中含有的H2S。
在本发明的优选方式中,在接近反应区的温度和压力条件下,含有催化剂前体的乳状液注入到至少一部分转化液体产物中,该产物含有溶解的硫化氢,这样导致形成固体催化相,它然后与原料一起注入到该反应器中。
根据另一个优选方式,含有前体的乳状液注入到部分或全部原料中,在其到达反应区之前,借助溶解的硫化氢进行硫化。
一旦生成,该分散催化剂与烃相一起在该反应器中循环,以重质原料的重量计,在其出口的钼浓度是10-1000ppm(重量),优选地50-500ppm(重量)。
有利地,一部分转化流出物可以再循环到实施加氢转化方法设备的上游。这些再循环的流出物含有一部分也再循环的催化剂。
往原料-乳状液混合物中添加固体颗粒可是有利的。所述固体颗粒呈氧化物状,该氧化物一般选自氧化铝、二氧化硅、二氧化硅-氧化铝、二氧化钛,或者是炭或焦炭颗粒。
优选地,该氧化物是氧化铝。
更优选地,所述氧化物颗粒是氧化铝颗粒并具有多模态的多孔结构,这种结构是由多个并列的聚集体构成的,每个聚集体是由多个针状板构成的,每个聚集体的这些板彼此放射状地并相对于聚集体中心取向,所述颗粒具有不规则的、非球状的形状,主要呈通过压碎氧化铝球得到的碎块状,它们具有以下特征:
-利用在1000℃下煅烧测定的烧失量是约1-15重量%,
-比表面是75-250m2/g,
-总孔体积(VPT)是0.5cm3/g至约2.0cm3/g。
-采用Hg孔隙度测定技术测定的孔径分布,其特征如下:
-平均直径小于
Figure A20081012874700131
的孔的总孔体积%:0-10
-平均直径100-
Figure A20081012874700132
的孔的总孔体积%:40-80,
-平均直径1000-
Figure A20081012874700133
的孔的总孔体积%:5-60,优选地8-35,
-平均直径5000-
Figure A20081012874700134
的孔的总孔体积%:3-50,优选地5-30,
-平均直径大于
Figure A20081012874700141
的孔的总孔体积%:5-20。
优选地,平均直径大于
Figure A20081012874700142
的孔的总孔体积大于20%,直径大于
Figure A20081012874700143
的孔的平均直径是4000-
Figure A20081012874700144
固体颗粒的平均尺寸是10-1000微米,优选地100-800微米。
固体颗粒在重烃原料中的浓度是0.1-20重量%,优选地0.5-10重量%。
通过或者在反应器上游原料与乳状液的混合物中,或者直接在反应器中注入所述颗粒,添加固体颗粒。
下述浆料烃转化条件通常是有利的:
-总压力1-50MPa,优选地2-30MPa,
-氢的分压1-50MPa,优选地2-30MPa,
-温度300-600℃,优选地350-500℃,
-液态烃在反应区中的停留时间5分钟到20小时,优选地1-10h。
采用本发明方法处理的重质原料是例如真空油蒸馏得到的馏出物或残留物之类的重烃原料。它还可以是以悬浮液加到液态原油馏分中的炭或焦炭。
更一般地,该方法部分地适用于处理原油馏分,例如由在塔底常压蒸馏得到的这些常压渣油或其中一部分渣油,或来自真空蒸馏的渣油(塔底)。一般而言,这些馏分的特征在于至少60重量%,优选地至少80重量%初始沸点高于300℃的原料化合物的沸点高于540℃。它们一般在100℃下的粘度小于40000cSt,优选地在100℃下小于20000cSt,Ni+V金属含量高于1ppm(重量),沥青烯含量(沉淀在庚烷中)大于0.1重量%。
具体实施方式
下述实施例详细说明本发明而不限制其保护范围。
实施例1:相应于单体安德森杂多阴离子的CoII 3/2[CoIIIMo6O24H6]和相应于二聚安德森杂多阴离子的CoII 3[CoIII 2Mo10O38H4]溶液的制备(根据本发明)
在圆底烧瓶中加入77g双氧水(纯度30%),然后加入21.2gMoO3(纯度96%),H2O2/Mo摩尔比是6。
通过在80℃加热回流,在1小时30分钟内溶解三氧化钼。溶液变得透明时,随后需要通过加热将溶液的体积减少到62ml。一旦回到室温,测定pH,得到的值等于0.05。
然后分小份小心加入碳酸钴(8.6g,纯度99%),以避免不受控制的任何放热和任何发泡,碳酸盐立即溶解;得到的溶液的pH是3.6。
该溶液的Co/Mo原子比是0.49。
钼的浓度是2.4mol/l。
这样制备溶液的拉曼光谱是溶液中Co2Mo10Co盐的特征带为957、917、602、565、355、222cm-1,溶液中CoMo6(Co)盐的特征带为952、903、575、355、222cm-1
实施例2:相应于二聚安德森杂多阴离子的CoII 3[CoIII 2Mo10O38H4]的溶液的制备(根据本发明)
根据专利申请FR 2 843 050实施例4制备CoII 3[CoIII 2Mo10O38H4]溶液。
得到仅含有CoII 3[CoIII 2Mo10O38H4]的溶液。
实施例3:相应于单体安德森杂多阴离子的单一CoII 3/2[CoIIIMo6O24H6]溶液的制备(非本发明)
根据专利申请FR 2843050实施例2制备单一CoII 3/2[CoIIIMo6O24H6]溶液。
因此得到含有单一CoII 3/2[CoIIIMo6O24H6]的溶液。
实施例4:NiII 2[NiIIMo6O24H6]盐的制备(根据本发明)
在10ml 30体积%H2O2中加入2.4g MoO3(纯度96%)。该混合物在80℃下加热回流1小时30分钟。氧化剂/钼源的摩尔比是6。然后缓慢添加呈[NiCO3,2Ni(OH)2,4H2O]形式的1.254g镍与0.7ml HCl。Ni/Mo的摩尔比因此是0.64。
如此制备溶液的拉曼光谱具有Mo-O键的主要特征带:955、906、560、360cm-1
根据实施例6的实验方案进行乳化。
实施例5:七钼酸铵(HMA)和硝酸钴溶液的制备(非本发明)
用体积75ml的水制备溶液4,它含有10.6g式(NH4)6Mo7O24,4H2O七钼酸铵(HMA)和7.2g硝酸钴Co(NO3)2,6H2O。
该溶液的Co/Mo原子比是0.41
钼的浓度是1.0mol/l。
溶液的pH是5。
实施例5的制备相应于盐的简单溶解,它不生成在其结构中结合钼、钴和/或镍的杂多阴离子。
实施例6:实施例1、2、3、4和5溶液的乳化
在含有沥青烯的重有机相中进行溶液1、2、3、4和5的乳化,沥青烯用LCO类芳族低馏分稀释并具有以下特征:
密度:0.965
沥青烯含量(C7不溶):8重量%
按照1/4水溶液与3/4油的比例,往该油中逐渐加入水溶液后,在室温下进行搅拌混合。
迅速生成乳状液。在这两种情况下沥青烯/Mo的比大于1。最终混合物中钼的浓度分别是:
-对于来自实施例1的溶液,5.4重量%=>乳状液A
-对于来自实施例5的溶液,1.9重量%=>乳状液E
这些乳状液然后与这种原料再混合,以便比较Mo(500ppm)和钴等浓度下的催化活性。
实施例7:在间断反应器中来自实施例6乳状液A、B、C、D和E的浆态残留物加氢转化性能的比较
在间断反应器中,来自乳状液A、B、C、D和E催化剂的浆态残留物加氢转化性能的比较。
在实施例3中得到的乳状液与原料混合,得到Mo含量500ppm。
使用的原料是富含金属的Zuata常压渣油(RA),其特征如下:
  原料   RA ZUATA
  比重   1.045
  硫(重量%)   4.35
  氮(ppm(重量))   9000
  粘度(cSt)   900
  粘度温度(℃)   125
  Conradson C.(重量%)   19.95
  沥青烯C7(重量%)   13
  Ni(ppm(重量))   134
  V(ppm(重量))   660
  DS:PI℃   295
  DS:05体积%℃   375
  DS:10体积%℃   419.5
  DS:30体积%℃   540
  DS:48体积%℃   613.5
  D 1160:60体积%℃   -
在间断反应器中加氢转化条件如下:
-温度:410℃
-H2压力:15MPa
-停留时间:2h
采用以下两个步骤进行高压釜试验:
-催化剂前体转化成硫化物相并去除水的步骤:在DMDS(二甲二硫醚)存在与氢压10MPa下,含有催化剂前体的乳状液与RA原料进行混合。整个在350℃加热一小时:该温度能够使DMDS分解,它因此产生H2S分压,而不会使热转化反应发生。该步骤能够使钼硫化,生成的MoS2分散在该原料中。
-随后,反应器进行冷却直到温度低于100℃,以便通过氮气汽提去除H2和H2S(以及任选地在该介质中的残留水)。然后在下面确定的条件下可以启动严格意义上的加氢转化步骤:410℃,H2分压:15MPa,停留时间:2h。
在该试验结束时,通过趁热过滤将固相与液相分开,滤液进行了金属和沥青烯的分析,测定%HDM(加氢脱金属)和HDAsph(加氢脱沥青)。
实验 催化剂前体   转化率(重量%)   HDM(重量%)   HDAsph(重量%)
  1乳状液A(根据本发明) Co2Mo10CoCoMo6(Co) 57 82 65
  2乳状液B(根据本发明) Co2Mo10Co 59 85 65
  3乳状液C(非本发明) CoMo6(Co) 55 80 61
  4乳状液D(根据本发明) NiII 2[NiIIMo6O24H6] 60 86 66
  5乳状液E(非本发明)  HMA+Co硝酸盐 55 76 60
上表所列结果证明,对于略为更高的转化率,使用在其结构中结合钴和钼的杂多阴离子类催化剂前体时,HDM和加氢脱沥青性能明显更好。

Claims (25)

1、在氢和固体催化剂存在下,重质原料在浆料反应器中进行的转化方法,所述催化剂是由含有至少一种在其结构中结合钼和钴的杂多阴离子的至少一种钴和/或镍盐制成的水溶液得到的,所述盐是CoII 3[CoIII 2Mo10O38H4]或NiII 3[CoIII 2Mo10O38H4],它是单一或分别与盐CoII 3/2[CoIIIMo6O24H6]或NiII 2[NiIIMo6O24H6]混合的,或由含有至少一种在其结构中结合钼和镍的杂多阴离子的至少一种钴和/或镍盐的水溶液得到的,所述方法包括以下步骤:
a)在水溶液中混合至少一种钼源和至少一种氧化性化合物,以便在酸性pH下合成过氧钼酸盐离子,(氧化性化合物/钼源)的摩尔比是0.1-20;
b)采用下述其中一种途径(b1、b2或b3)添加至少一种钴和/或镍前体:
b1)在没有镍前体存在下,在步骤a)的溶液中添加至少一种钴前体,制成含有至少所述盐的溶液,其中Co/Mo的摩尔比是0.40-0.85,
b2)在没有钴前体存在下,在步骤a)的溶液中添加至少一种镍前体,制成含有至少所述盐的溶液,其中Ni/Mo的摩尔比是0.40-0.85,
b3)在步骤a)的溶液中添加至少一种钴前体和至少一种镍前体,制成含有至少所述盐的溶液,其中(Co+Ni)/Mo的摩尔比是0.25-0.85,Ni/Mo的摩尔比是0.20-0.40,Co/Mo的摩尔比是0.10-0.30,
c)在低于温度60℃下,往含有沥青烯和/或树脂的烃油里添加步骤b)得到的水溶液,得到乳状液,
d)在上游或直接将步骤c)得到的所述乳状液注入到浆料反应器中。
2、根据权利要求1所述的方法,其中所述的至少一种在其结构中结合钼和镍的杂多阴离子的一种或多种钴和/或镍盐选自盐NiII 2[NiIIMo6O24H6]和NiII 4[NiII 2Mo10O38H4]。
3、根据权利要求1或2所述的方法,其中在所述步骤a)中使用的钼源是氧化钼MoO3
4、根据上述权利要求中任一项权利要求所述的方法,其中所述氧化性化合物是过氧化氢。
5、根据上述权利要求中任一项权利要求所述的方法,其中实施步骤a)时(氧化性化合物/钼源)的摩尔比是2-7。
6、根据上述权利要求中任一项权利要求所述的方法,其中来自所述步骤a)的所述过氧钼酸盐离子是在pH低于2.5的水溶液中。
7、根据上述权利要求中任一项权利要求所述的方法,其中所述步骤b)生成溶液的pH高于3。
8、根据上述权利要求中任一项权利要求所述的方法,其中在所述步骤b)中使用的钴前体和/或镍前体选自硝酸盐、硫酸盐、磷酸盐、卤化物、如乙酸盐之类的羧酸盐、碳酸盐、氢氧化物和氧化物。
9、根据上述权利要求中任一项权利要求所述的方法,其中在所述步骤b1)和b3)中使用的钴前体是碳酸钴。
10、根据上述权利要求中任一项权利要求所述的方法,其中在所述步骤b2)和b3)中使用的镍前体是羟基碳酸镍。
11、根据权利要求1-9中任一项权利要求所述的方法,其中在没有镍前体存在时,把至少一种钴前体加到来自步骤a)的所述溶液中,钴前体的加入量是这样的,使得Co/Mo摩尔比是0.40-0.55。
12、根据权利要求1-8和10中任一项权利要求所述的方法,其中在没有钴前体存在时,把至少一种镍前体加到来自步骤a)的所述溶液中,镍前体加入量是这样的,使得Ni/Mo摩尔比是0.40-0.65。
13、根据权利要求1-10中任一项权利要求所述的方法,其中把至少一种钴前体和至少一种镍前体加到来自步骤a)的所述溶液中,所述钴前体和镍前体的加入量是这样的,使得(Co+Ni)/Mo摩尔比是0.28-0.55。
14、根据上述权利要求中任一项权利要求所述的方法,其中以重质原料计,钼的浓度是10-1000ppm(重量)。
15、根据上述权利要求中任一项权利要求所述的方法,其中在步骤c)中生成的乳状液是由一种如此制备混合物得到的,以便使得(沥青烯+树脂)/(第VIB族金属)的比大于1。
16、根据上述权利要求中任一项权利要求所述的方法,其中在接近反应条件的温度和压力条件下,步骤c)中得到的所述乳状液与一部分转化液体产物接触,该液体产物含有溶解硫化氢、沥青烯和/或树脂,得到所述的催化剂。
17、根据权利要求1-15中任一项权利要求所述的方法,其中在到达反应区之前,所述乳状液与一部分或全部含有硫化氢的原料接触,得到所述的催化剂。
18、根据权利要求1-15中任一项权利要求所述的方法,其中所述乳状液在该反应器中直接与原料接触,得到所述的催化剂。
19、根据权利要求16-18中任一项权利要求所述的方法,其中往原料-乳状液混合物中添加氧化物颗粒,该氧化物选自氧化铝、二氧化硅、二氧化硅-氧化铝、二氧化钛。
20、根据权利要求16-18中任一项权利要求所述的方法,其中往原料-乳状液混合物中添加炭或焦炭颗粒。
21、根据权利要求19-20中任一项权利要求所述的方法,其中颗粒的平均尺寸是10-1000微米,这些颗粒在重烃原料中的浓度是0.5-10重量%。
22、根据权利要求19-21中任一项权利要求所述的方法,其中所述颗粒的平均尺寸是100-800微米。
23、根据权利要求18-22中任一项权利要求所述的方法,其中所述氧化物颗粒是氧化铝颗粒并具有多模态的多孔结构,这种结构是由多个并列的聚集体构成的,每个聚集体是由多个针状板构成的,每个聚集体的这些板彼此放射状地并相对于聚集体中心取向,所述颗粒具有不规则的、非球状的形状,主要呈通过压碎氧化铝球得到的碎块状,它们具有以下特征:
-利用在1000℃下煅烧测定的烧失量是约1-15重量%,
-比表面是75-250m2/g,
-总孔体积(VPT)是0.5cm3/g至约2.0cm3/g。
-采用Hg孔隙度测定技术测定的孔径分布,其特征如下:
-平均直径小于100
Figure A2008101287470004C1
的孔的总孔体积%:0-10
-平均直径100-1000
Figure A2008101287470004C2
的孔的总孔体积%:40-80,
-平均直径1000-5000
Figure A2008101287470004C3
的孔的总孔体积%:5-60,优选地8-35,
-平均直径5000-10000
Figure A2008101287470004C4
的孔的总孔体积%:3-50,优选地5-30,
-平均直径大于10000的孔的总孔体积%:5-20。
24、根据权利要求23所述的方法,其中所述氧化物颗粒的孔体积是这样的,使得平均直径大于1000
Figure A2008101287470004C6
的孔的总孔体积大于20%,直径大于1000的孔的平均直径是4000-6000
Figure A2008101287470004C8
25、根据权利要求1-24中任一项权利要求所述的方法,其中往浆料反应器供给重质烃原料,对于至少60重量%原料化合物,该原料的沸点高于540℃,浆料反应器在下述条件下进行操作:
-总压力1-50MPa,
-氢的分压1-50MPa,
-温度300-600℃,
-烃在反应区中的停留时间5分钟至20小时。
CN200810128747.XA 2007-03-16 2008-03-14 在浆料反应器中在杂多阴离子基催化剂存在下重烃原料的加氢转化方法 Active CN101294103B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR07/01982 2007-03-16
FR0701982A FR2913691B1 (fr) 2007-03-16 2007-03-16 Procede d'hydroconversion de charges hydrocarbonees lourdes en reacteur slurry en presence d'un catalyseur a base d'heteropolyanion

Publications (2)

Publication Number Publication Date
CN101294103A true CN101294103A (zh) 2008-10-29
CN101294103B CN101294103B (zh) 2013-08-21

Family

ID=38283180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810128747.XA Active CN101294103B (zh) 2007-03-16 2008-03-14 在浆料反应器中在杂多阴离子基催化剂存在下重烃原料的加氢转化方法

Country Status (5)

Country Link
US (1) US7935244B2 (zh)
CN (1) CN101294103B (zh)
CA (1) CA2625320C (zh)
FR (1) FR2913691B1 (zh)
SA (1) SA08290137B1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111741811A (zh) * 2017-12-13 2020-10-02 Ifp 新能源公司 在混合反应器中加氢转化重质烃原料的方法
CN112638524A (zh) * 2018-07-23 2021-04-09 Ifp 新能源公司 由含有杂多阴离子的溶液制成的共混催化剂、其生产方法及其在重质烃原料的加氢转化中的用途
CN113054116A (zh) * 2019-12-28 2021-06-29 Tcl集团股份有限公司 发光二极管

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090023965A1 (en) 2008-05-01 2009-01-22 Intevep, S.A. Dispersed metal sulfide-based catalysts
FR2940143B1 (fr) * 2008-12-18 2015-12-11 Inst Francais Du Petrole Catalyseurs d'hydrodemetallation et d'hydrodesulfuration et mise en oeuvre dans un procede d'enchainement en formulation unique
FR2940313B1 (fr) 2008-12-18 2011-10-28 Inst Francais Du Petrole Procede d'hydrocraquage incluant des reacteurs permutables avec des charges contenant 200ppm poids-2%poids d'asphaltenes
US9168506B2 (en) * 2010-01-21 2015-10-27 Intevep, S.A. Additive for hydroconversion process and method for making and using same
GB2478332A (en) 2010-03-04 2011-09-07 Grimley Smith Associates Method of metals recovery from refinery residues
RU2606505C2 (ru) * 2010-11-16 2017-01-10 Родиа Операсьон Пористый неорганический композитный оксид
CN103228355A (zh) * 2010-12-20 2013-07-31 雪佛龙美国公司 加氢加工催化剂及其制备方法
US8802587B2 (en) * 2010-12-30 2014-08-12 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9085737B2 (en) * 2013-03-14 2015-07-21 Exxonmobil Research And Engineering Company Functionalized polymers containing polyamine succinimide for demulsification in hydrocarbon refining processes
US9212326B2 (en) 2013-03-14 2015-12-15 Exxonmobil Research And Engineering Company Hydrohalogenation of vinyl terminated polymers and their functionalized derivatives for fouling mitigation in hydrocarbon refining processes
US9441171B2 (en) 2013-03-14 2016-09-13 Exxonmobil Research And Engineering Company Functionalized polymers containing polyamine succinimide for antifouling in hydrocarbon refining processes
US9334460B2 (en) 2013-03-14 2016-05-10 Exxonmobil Research And Engineering Company Ring opening cross metathesis of vinyl terminated polymers and their functionalized derivatives for fouling mitigation in hydrocarbon refining processes
US9617482B2 (en) 2013-03-14 2017-04-11 Exxonmobil Research And Engineering Company Functionalized polymers containing polyamine succinimide for demulsification in hydrocarbon refining processes
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2528721B1 (fr) * 1982-06-17 1986-02-28 Pro Catalyse Ste Fse Prod Cata Catalyseur supporte presentant une resistance accrue aux poisons et son utilisation en particulier pour l'hydrotraitement de fractions petrolieres contenant des metaux
CA1305467C (en) * 1986-12-12 1992-07-21 Nobumitsu Ohtake Additive for the hydroconversion of a heavy hydrocarbon oil
US5320741A (en) * 1992-04-09 1994-06-14 Stone & Webster Engineering Corporation Combination process for the pretreatment and hydroconversion of heavy residual oils
FR2843050B1 (fr) * 2002-08-01 2005-04-15 Inst Francais Du Petrole Catalyseur a base de metaux du groupe vi et du groupe viii presents au moins en partie sous la forme d'heteropolyanions dans le precurseur oxyde
CN1318137C (zh) * 2004-12-09 2007-05-30 中国科学院大连化学物理研究所 用于加氢脱硫的含硫过渡金属原子簇合物的催化剂制法
FR2895284B1 (fr) * 2005-12-22 2009-06-05 Inst Francais Du Petrole Catalyseur supporte de forme irreguliere, non spherique et procede d'hydroconversion de fractions petrolieres lourdes en lit bouillonnant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111741811A (zh) * 2017-12-13 2020-10-02 Ifp 新能源公司 在混合反应器中加氢转化重质烃原料的方法
CN111741811B (zh) * 2017-12-13 2023-10-13 Ifp 新能源公司 在混合反应器中加氢转化重质烃原料的方法
CN112638524A (zh) * 2018-07-23 2021-04-09 Ifp 新能源公司 由含有杂多阴离子的溶液制成的共混催化剂、其生产方法及其在重质烃原料的加氢转化中的用途
CN112638524B (zh) * 2018-07-23 2023-08-25 Ifp 新能源公司 由含有杂多阴离子的溶液制成的共混催化剂、其生产方法及其在重质烃原料的加氢转化中的用途
CN113054116A (zh) * 2019-12-28 2021-06-29 Tcl集团股份有限公司 发光二极管

Also Published As

Publication number Publication date
CA2625320A1 (fr) 2008-09-16
US20080223755A1 (en) 2008-09-18
CA2625320C (fr) 2015-11-17
CN101294103B (zh) 2013-08-21
US7935244B2 (en) 2011-05-03
SA08290137B1 (ar) 2011-11-16
FR2913691A1 (fr) 2008-09-19
FR2913691B1 (fr) 2010-10-22

Similar Documents

Publication Publication Date Title
CN101294103B (zh) 在浆料反应器中在杂多阴离子基催化剂存在下重烃原料的加氢转化方法
KR100876663B1 (ko) 고활성 슬러리 촉매 조성물을 사용하여 중유를 개량하는방법
US7214309B2 (en) Process for upgrading heavy oil using a highly active slurry catalyst composition
CN101152630B (zh) 至少一种杂多阴离子的至少一种钴和/或镍盐的制备方法
US9205413B2 (en) Hydroconversion multi-metallic catalysts and method for making thereof
EP1814662B1 (en) Process for the preparation of an active slurry catalyst
EP1799343B1 (en) Highly active slurry catalyst composition
US7678732B2 (en) Highly active slurry catalyst composition
CN101722055B (zh) 硫化型催化剂的制备方法
US11498060B2 (en) Ultra-stable heavy hydrocarbon hydroprocessing catalyst and methods of making and use thereof
RU2402380C1 (ru) Катализатор гидроочистки углеводородного сырья, способ его приготовления и процесс гидроочистки
CN101578352B (zh) 本体第viii族/第vib族金属催化剂及其制备方法
CN103182310B (zh) 一种馏分油加氢处理催化剂制备方法
EP0181035A2 (en) Preparation of high activity silica-supported hydrotreating catalysts and catalysts thus prepared
US11192089B2 (en) Process for hydroconversion of heavy hydrocarbon feedstock in hybrid reactor
CN102580757A (zh) 一种加氢处理催化剂及其制备和应用
CN106140293A (zh) 一种煤焦油加氢改质催化剂及其制备方法
CN107029779A (zh) 一种含y型分子筛的多级孔加氢裂化催化剂及其应用
CN104624215A (zh) 一种馏分油加氢精制催化剂及其制备及其应用
CN107867993A (zh) 一种有机钼盐组合物及其制备方法
BR102012021754A2 (pt) composiÇço catalÍtica, mÉtodo para manufatura de uma emulsço catalÍtica e processo de hidroconversço
JPS58210993A (ja) 重質炭化水素油の処理方法
CN103285871A (zh) 一种含助剂金属组分的加氢处理催化剂及其制备和应用
KR20160039471A (ko) 유용성 니켈-몰리브데늄-텅스텐 삼원금속 촉매의 제조방법
JPH08281117A (ja) 水素化精製触媒及び炭化水素油の水素化精製方法並びに脱硫軽油の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant