CN101278419A - 用于高效磷光oled的电子阻碍层 - Google Patents

用于高效磷光oled的电子阻碍层 Download PDF

Info

Publication number
CN101278419A
CN101278419A CNA2006800366261A CN200680036626A CN101278419A CN 101278419 A CN101278419 A CN 101278419A CN A2006800366261 A CNA2006800366261 A CN A2006800366261A CN 200680036626 A CN200680036626 A CN 200680036626A CN 101278419 A CN101278419 A CN 101278419A
Authority
CN
China
Prior art keywords
layer
emission
organic
electron
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800366261A
Other languages
English (en)
Other versions
CN101278419B (zh
Inventor
Y·通
B·W·丹德拉德
M·S·韦弗
J·埃斯勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Display Corp
Original Assignee
Universal Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Display Corp filed Critical Universal Display Corp
Publication of CN101278419A publication Critical patent/CN101278419A/zh
Application granted granted Critical
Publication of CN101278419B publication Critical patent/CN101278419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及包含在阴极和发射层之间的电子阻碍层的有机发光器件。一种有机发光器件,该器件包括按列举的顺序布置在基材上的:阳极;空穴传输层;包含发射层主体和发射掺杂剂的有机发射层;电子阻碍层;电子传输层;和阴极。

Description

用于高效磷光OLED的电子阻碍层
所要求保护的发明是代表一个或多个如下联合的大学公司研究协议当事人和/或与这些当事人相关而完成的:普林斯顿大学,南加州大学和the Universal Display Corporation。所述协议在所要求保护的发明完成日和之前是有效的,并且所要求保护的发明是作为在所述协议的范围内采取的行动的结果而完成的。
发明领域
本发明涉及有机发光器件(OLED),更具体而言,涉及具有电子阻碍层的磷光OLED。
背景技术
利用有机材料的光电器件由于许多理由越来越为人们所需求。用于制造此类器件的许多材料是相对便宜的,因此有机光电器件具有在成本上比无机器件有优势的可能。另外,有机材料的固有性能如它们的柔性可以使得它们非常适合于特殊应用,如在柔性基材上制造。有机光电器件的例子包括有机发光器件(OLED)、有机光敏晶体管、有机光生伏打电池和有机光检测器。对于OLED,有机材料可以比常规材料有性能优势。例如,有机发射层发光的波长一般可以容易地用合适的掺杂剂调节。
在这里使用的术语“有机”包括可用来制造有机光电器件的聚合物材料以及小分子有机材料。“小分子”指不是聚合物的任何有机材料,并且“小分子”实际上可以是相当大的。在一些情况下小分子可以包括重复单元。例如,使用长链烷基作为取代基不会将一个分子从“小分子”类型中排除。小分子也可以被引入聚合物中,例如作为在聚合物骨架上的侧基或作为骨架的一部分。小分子也可以用作树状分子的芯结构部分,该树状分子由在芯结构部分上构建的一系列化学壳组成。树状分子的芯结构部分可以是荧光或磷光小分子发射体。树状分子可以是“小分子”,并且据信目前在OLED领域中使用的所有树状分子都是小分子。通常,小分子具有明确定义的、有单一分子量的化学式,而聚合物的化学式和分子量在分子与分子之间可以不同。在这里使用的“有机”包括烃基和杂原子取代的烃基配位体的金属络合物。
OLED利用薄的有机膜,当对器件施加电压时所述有机膜会发光。OLED正在成为人们越来越感兴趣的技术,用于诸如平板显示器、照明和逆光照明之类的应用中。几种OLED材料和构造已被描述在美国专利5,844,363、6,303,238和5,707,745中,它们的全部内容通过引用结合在本文中。
OLED器件一般(但并不总是)意图通过电极中的至少一个发光,并且一个或多个透明电极可能被用于有机光电器件。例如,透明电极材料,如氧化铟锡(ITO),可以被用作底部电极。还可以使用透明顶部电极,如在美国专利5,703,436和5,707,745中公开的透明顶部电极,所述美国专利的全部内容通过引用结合在本文中。对于打算仅通过底部电极发光的器件,顶部电极不需要是透明的,并且可以由具有高导电性的、厚的并且反射性的金属层组成。类似地,对于打算仅通过顶部电极发光的器件,底部电极可以是不透明的和/或反射性的。当一个电极不需要是透明的时,使用较厚的层可提供更好的导电性,并且使用反射性电极可以通过将光反射回透明电极来增加通过所述另一电极发射的光的量。也可以制造完全透明的器件,其中两个电极都是透明的。还可以制造侧边发射的OLED,并且在此类器件中一个或两个电极可以是不透明的或反射性的。
在这里使用的“顶部”指最远离基材,而“底部”指最接近基材。例如,对于具有两个电极的器件,底部电极是最接近基材的电极,并且一般是所制造的第一个电极。底部电极有两个表面,即最接近基材的底面和远离基材的顶面。当第一层被描述为“布置在”第二层上,所述第一层远离基材来设置。在所述第一和第二层之间还可以有其它层,除非规定所述第一层与所述第二层“物理接触”。例如,阴极可以被描述为“布置在”阳极上,即使在两者之间有各种有机层。
在这里使用的“可溶液处理的”是指能够在液体介质中溶解、分散或输送和/或从液体介质中沉积,无论呈溶液或悬浮液的形式。
如本领域技术人员通常理解的,在这里使用时,第一“最高已占分子轨道”(HOMO)或“最低未占分子轨道”(LUMO)能级“大于”或“高于”第二HOMO或LUMO能级,如果所述第一能级更接近于真空能级。因为电离电位(IP)是作为相对于真空能级的负能量来测量的,较高的HOMO能级对应于具有较小绝对值的IP(不太负性的IP)。类似地,较高的LUMO能级对应于具有较小绝对值的电子亲合势(EA)(不太负性的EA)。在真空能级在顶部的普通的能级图上,材料的LUMO能级高于同一材料的HOMO能级。“较高的”HOMO或LUMO能级比“较低的”HOMO或LUMO能级更接近于这样的图的顶部。
发明概述
在一个实施方案中,本发明提供了有机发光器件,该器件包括按列举的顺序布置在基材上的阳极;空穴传输层;包含发射层主体和发射掺杂剂的有机发射层;电子阻碍层;电子传输层;和阴极。
优选地,发射层主体的HOMO比发射掺杂剂的HOMO低至少约0.5eV,更优选低约0.5eV到约0.8eV。优选地,电子阻碍层基本上由空穴传输材料或双极性的材料如mCBP组成。
优选地,所述器件发射蓝光。在一个特定的优选实施方案中,所述发射掺杂剂是化合物1。
在另一个实施方案中,本发明提供了一种OLED,该OLED包括阳极;阴极;布置在阳极和阴极之间的有机发射层,该有机发射层包含发射层主体和发射掺杂剂,其中发射层主体的HOMO比发射掺杂剂的HOMO低至少约0.5eV,优选低约0.5eV到约0.8eV;布置在有机发射层和阴极之间的第一有机层;布置在有机发射层和第一有机层之间并且与它们直接接触的第二有机层;其中第二有机层基本上由空穴传输材料或双极性材料组成。
在另一个实施方案中,本发明提供了一种OLED,该OLED包括阳极;阴极;布置在阳极和阴极之间的有机发射层,该有机发射层包含发射层主体和发射掺杂剂,其中发射层主体的HOMO比发射掺杂剂的HOMO低至少约0.5eV,优选低约0.5eV到约0.8eV;布置在有机发射层和阴极之间的第一有机层;布置在有机发射层和第一有机层之间并且与它们直接接触的第二有机层;其中第二有机层具有不超过Bphen的电子迁移率的0.001的相对电子迁移率。优选地,第二有机层基本上由这样一种材料组成,使得当所述材料用于其中第一有机层是Alq3的类似器件中时,增加第二有机层的厚度将引起从第一有机层中发光。
在另一个实施方案中,本发明提供了一种OLED,该OLED包括阳极;阴极;布置在阳极和阴极之间的有机发射层,该有机发射层包含发射层主体和发射掺杂剂,其中发射层主体的HOMO比发射掺杂剂的HOMO低至少约0.5eV,优选低约0.5eV到约0.8eV;和用于在阴极和发射层之间积聚电子的装置。
附图的简要说明
图1显示了一种具有单独的电子传输层、空穴传输层和发射层以及其它层的有机发光器件。
图2显示了一种不具有单独的电子传输层的颠倒的有机发光器件。
图3显示了包括电子阻碍层的有机发光器件。
图4显示了化合物1-5的结构。
图5显示了化合物1器件的外量子效率对电流密度。
图6显示了化合物1器件在10mA/cm2下的室温寿命。
图7显示了化合物2器件的外量子效率对电流密度。
图8显示了化合物3器件的外量子效率对电流密度。
图9显示了化合物4器件的外量子效率对电流密度。
图10显示了化合物4器件在10mA/cm2下的室温寿命。
图11显示了化合物5器件的外量子效率对电流密度。
图12显示了由于电子阻碍层厚度增大器件的发光。
图13显示了由于空穴封闭层厚度增大器件的发光。
图14显示了具有电子阻碍层的器件的举例性HOMO能级。
图15a和图15b显示了具有电子阻碍层的器件和该器件的能级图。
详细叙述
一般地,OLED包括布置在阳极和阴极之间并且电连接到阳极和阴极上的至少一个有机层。当施加电流时,阳极注入空穴和阴极注入电子到所述有机层中。注入的空穴和电子各自向着带相反电荷的电极迁移。当电子和空穴定域在同一分子上时,形成了“激子”,所述激子是具有激发能态的定域的电子-空穴对。当激子通过光发射机理松驰时,光被发射。在一些情况下,所述激子可以定域在受激准分子或激态复合物上。非辐射机理如热弛豫也可能发生,但一般被认为是不希望的。
最初的OLED采用从它们的单线态发光(“荧光”)的发射分子,所述发射分子公开在例如美国专利4,769,292中,该专利全部内容通过引用结合到本文中。荧光发射通常在小于10毫微秒的时间范围内发生。
最近,已经证实了具有从三重态发光(“磷光”)的发射材料的OLED。Baldo等人,“Highly Efficient Phosphorescent Emissionfrom Organic Electroluminescent Devices”,Nature,395卷,151-154,1998(“Baldo-I”);和Baldo等人,“Very high-efficiencygreen organic light-emitting devices based onelectrophosphorescence”,Appl.Phys.Lett.,75卷第1期,4-6(1999)(“Baldo-II”),它们的全部内容通过引用结合在本文中。磷光可以被称为“受禁”跃迁,因为该跃迁要求自旋状态的改变,并且量子力学指出这样的跃迁不是有利的。结果,磷光一般在超过至少10毫微秒,典型地大于100毫微秒的时间范围内发生。如果磷光的自然辐射寿命太长,则三重态可能通过非辐射机理衰减,这样没有光被发射。在非常低的温度下,在含有具有未共享电子对的杂原子的分子中也常常观察到有机磷光。2,2’-联吡啶是这样的分子。非辐射衰减机理典型地是温度依赖性的,这样在液态氮温度下显示磷光的有机材料典型地在室温下不显示磷光。但是,如Baldo所证明的,这一问题可以通过选择在室温下发磷光的磷光化合物来解决。代表性的发射层包括掺杂或未掺杂的磷光有机金属材料,例如在美国专利6,303,238和6,310,360;美国专利申请出版物2002-0034656;2002-0182441;2003-0072964;和WO-02/074015中所公开的。
一般地,在OLED中的激子被认为是以约3∶1的比率产生,即大约75%三重态和25%单线态。参见Adachi等人,“Nearly 100%InternalPhosphorescent Efficiency In An Organic Light Emitting Device”,J.Appl.Phys.,90,5048(2001),它的全部内容通过引用结合在本文中。在很多情况下,单线态激子可以容易地通过“系统间穿越(intersystem crossing)”将它们的能量转移到三重激发态,而三重态激子不能够容易地将它们的能量转移到单线激发态。结果,采用磷光OLED,100%的内量子效率在理论上是可能的。在荧光器件中,三重态激子的能量一般损失到加热该器件的无辐射衰变过程,导致低得多的内量子效率。利用从三重激发态发射的磷光材料的OLED被公开在例如美国专利6,303,238中,它的全部内容通过引用结合在本文中。
从三重激发态到中间的非三重态的跃迁可以先于磷光发射,从所述非三重态发生发射衰减。例如,配位于镧系元素上的有机分子常常从定域在镧系金属上的激发态发射磷光。然而,这样的材料不直接从三重激发态发射磷光,而是从以镧系金属离子为中心的原子激发态发射。铕二酮化物络合物是这些类型的物质中的一组。
通过将有机分子束缚(优选通过键接)在高原子序数的原子近处,可以相对于荧光增强来自三重态的磷光。这一被称作重原子效应的现象是通过被称为自旋轨道耦合的机理产生的。这样的磷光跃迁可以从有机金属分子如三(2-苯基吡啶)铱(III)的已激发的金属到配位体电荷转移(MLCT)状态观察到。
在这里使用的术语“三重态能量”是指与在给定材料的磷光光谱中可辩别的最高能量特征相对应的能量。所述最高能量特征不必是在磷光光谱中具有最大强度的峰,并且它例如可以是在这样的峰的高能量侧的清楚肩部的局部最大值。
在这里使用的术语“有机金属”如本领域普通技术人员一般所理解的那样,并且具有例如在“Inorganic Chemistry”(第二版),GaryL.Miessler and Donald A.Tarr,Prentice Hall(1998)中所给出的含义。因此,所述术语有机金属指具有通过碳-金属键键接到金属上的有机基团的化合物。这一类型本质上不包括配位化合物,配位化合物是仅具有来自杂原子的给体键的物质,例如胺、卤化物、拟卤化物(CN等)和类似物的金属络合物。在实践中,除连接到有机物质上的一个或多个碳-金属键之外,有机金属化合物通常包括一个或多个来自杂原子的给体键。连接到有机物质上的碳-金属键指在金属和有机基团如苯基、烷基、链烯基等的碳原子之间的直接的键,但不指连接到“无机碳”如CN或CO的碳上的金属键。
图1显示了有机发光器件100。这些图不一定按比例画出。器件100可以包括基材110,阳极115,空穴注入层120,空穴传输层125,电子封闭层130,发射层135,空穴封闭层140,电子传输层145,电子注入层150,保护层155,和阴极160。阴极160是具有第一导电层162和第二导电层164的复合阴极。器件100可以通过按照顺序沉积所述层来制造的。
基材110可以是提供所需的结构性能的任何合适基材。基材110可以是柔性的或刚性的。基材110可以是透明的、半透明的或不透明的。塑料和玻璃是优选的刚性基材材料的例子。塑料和金属箔是优选的柔性基材材料的例子。基材110可以是半导体材料,以帮助电路的制造。例如,基材110可以是硅晶片(在它之上制造电路),能够控制随后沉积在基材上的OLED。可以使用其它基材。可以选择基材110的材料和厚度,以获得所需的结构和光学性质。
阳极115可以是有足够的导电性以输送空穴到有机层中的任何合适阳极。阳极115的材料优选具有高于约4eV的功函数(“高功函数材料”)。优选的阳极材料包括导电性金属氧化物,如氧化铟锡(ITO)和氧化铟锌(IZO),氧化铝锌(AlZnO),和金属。阳极115(和基材110)可以是足够透明的,以制造底部发光的器件。一种优选的透明基材和阳极组合是可商购的、沉积在玻璃或塑料(基材)上的ITO(阳极)。柔性和透明的基材-阳极组合公开在美国专利5,844,363和6,602,540B2中,它们的全部内容通过引用结合在本文中。阳极115可以是不透明的和/或反射性的。反射性阳极115对于一些顶部发光型器件可能是优选的,以增加从器件的顶部发射出的光量。可以选择阳极115的材料和厚度,以获得所需的导电性和光学性质。当阳极115是透明的时,对于一种具体的材料可能有一定的厚度范围,即厚度要足够厚以提供所需的导电性,同时要足够薄以提供所需的透明度。可以使用其它阳极材料和结构。
空穴传输层125可以包括能够传输空穴的材料。空穴传输层130可以是本征的(未掺杂的),或者掺杂的。掺杂可以用于增强导电性。α-NPD和TPD是本征空穴传输层的例子。p-掺杂的空穴传输层的一个例子是按照50∶1的摩尔比率掺杂了F4-TCNQ的m-MTDATA,如在Forrest等人的美国专利申请出版物2003-02309890中所公开的,该文献的全部内容通过引用结合在本文中。可以使用其它空穴传输层。
发射层135可以包括当有电流在阳极115和阴极160之间通过时能够发射光的有机材料。优选地,发射层135含有磷光发光材料,虽然荧光发光材料也可以使用。磷光材料因为与此类材料有关的更高发光效率而是优选的。发射层135还可以包含能够传输电子和/或空穴、掺杂了发光材料的主体材料,该发光材料可以捕获电子、空穴和/或激子,使得激子经由光发射机理从所述发光材料松驰。发射层135可以包含兼有传输和发光性能的单一材料。不论发光材料是掺杂剂或主要成分,发射层135可以包含其它材料,如调节发光材料的发射的掺杂剂。发射层135可以包括能够在组合时发射所需光谱的光线的多种发光材料。磷光发光材料的例子包括Ir(ppy)3。荧光发光材料的例子包括DCM和DMQA。主体材料的例子包括Alq3,CBP和mCP。发光和主体材料的例子公开在Thompson等人的美国专利6,303,238中,该专利的全部内容通过引用结合在本文中。可以以许多方式将发光材料包括在发射层135中。例如,发光小分子可以被引入聚合物中。这可以通过几种方式来实现:通过将小分子作为单独的和不同的分子物种掺杂到聚合物中;或通过将小分子引入到聚合物的骨架中,以形成共聚物;或通过将小分子作为侧基键接在聚合物上。可以使用其它发射层材料和结构。例如,小分子发光材料可以作为树状分子的芯存在。
许多有用的发光材料包括键接于金属中心上的一个或多个配位体。如果配位体直接对有机金属发光材料的光活性性能有贡献,该配位体可以被称为“光活性的”。“光活性的”配位体与金属一起可以提供这样的能级,在发射光子时电子从所述能级出来或进入所述能级。其它配位体可以被称为“辅助的”。辅助的配位体可以改变分子的光活性性能,例如通过使光活性配位体的能级发生位移,但是辅助的配位体不直接提供在光发射中牵涉到的能级。在一个分子中是光活性的配位体在另一个分子中可以是辅助的。这些“光活性的”和“辅助的”的定义并不是限制性的理论。
电子传输层145可以包括能够传输电子的材料。电子传输层145可以是本征的(未掺杂的),或者掺杂的。掺杂可以被用于增强导电性。Alq3是本征电子传输层的一个例子。n-掺杂的电子传输层的一个例子是按照1∶1的摩尔比率掺杂了Li的BPhen,如在Forrest等人的美国专利申请出版物2003-02309890中所公开的,该文献的全部内容通过引用结合在本文中。可以使用其它电子传输层。
可以选择电子传输层的电荷携带组分,使得电子能够有效地从阴极注入到电子传输层的LUMO(最低未占分子轨道)能级。“电荷携带组分”是提供实际上传输电子的LUMO能级的材料。这一组分可以是基础材料,或者它可以是掺杂剂。有机材料的LUMO能级一般可以由该材料的电子亲合势来表征,而阴极的相对电子注入效率一般可以由阴极材料的功函数来表征。这意味着电子传输层和相邻的阴极的优选性能可以根据ETL的电荷携带组分的电子亲合势和阴极材料的功函数来确定。特别地,当希望高的电子注入效率时,阴极材料的功函数优选不比电子传输层的电荷携带组分的电子亲合势大大约0.75eV以上,更优选地,不比电子传输层的电荷携带组分的电子亲合势大大约0.5eV以上。类似的考虑适用于有电子注入其中的任何层。
阴极160可以是现有技术中已知的任何合适的材料或材料组合,使得阴极160能够传导电子和将电子注入器件100的有机层中。阴极160可以是透明的或不透明的,并且可以是反射性的。金属和金属氧化物是合适的阴极材料的例子。阴极160可以是单个层,或者可以具有复合结构。图1显示了具有薄的金属层162和较厚的导电性金属氧化物层164的复合阴极160。在复合阴极中,用于所述较厚层164的优选材料包括ITO,IZO和现有技术中已知的其它材料。美国专利5,703,436,5,707,745,6,548,956 B2和6,576,134 B2(它们的全部内容通过引用结合在本文中)公开了包括复合阴极在内的阴极的例子,所述复合阴极具有金属如Mg:Ag的薄层,在所述金属薄层上具有层叠的透明的、导电的、溅射沉积的ITO层。阴极160的与下面的有机层接触的部分(不论它是单层阴极160、复合阴极的薄金属层162或一些其它部分)优选由具有小于约4eV的功函数的材料(“低功函数材料”)制成。可以使用其它阴极材料和结构。
封闭层可以用于减少离开发射层的电荷载流子(电子或空穴)和/或激子的数量。电子封闭层130可以布置在发射层135和空穴传输层125之间,以在空穴传输层125的方向上阻断电子离开发射层135。类似地,空穴封闭层140可以布置在发射层135和电子传输层145之间,以在电子传输层145的方向上阻断空穴离开发射层135。封闭层还可以用来阻断激子从发射层中扩散出来。封闭层的理论和使用更详细地描述在美国专利6,097,147和美国专利申请出版物2003-02309890(Forrest等人),它们的全部内容通过引用结合在本文中。
在这里使用并且如本领域技术人员理解的,术语“封闭层”是指提供显著地抑制电荷载流子和/或激子传输通过器件的阻隔性的层,但并不暗示该层必定完全地阻断电荷载流子和/或激子。这样的封闭层在器件中的存在可以导致比没有封闭层的类似器件明显更高的效率。同时,封闭层可以用来将发射限制到OLED的希望的区域中。
一般地,注入层是由可以改进电荷载流子从一层(如电极或有机层)注入到相邻有机层中的材料组成的。注入层也可以发挥电荷传输功能。在器件100中,空穴注入层120可以是改进空穴从阳极115注入空穴传输层125中的任何层。CuPc是可用作从ITO阳极115和其它阳极注射空穴的空穴注入层的材料的一个实例。在器件100中,电子注入层150可以是改进电子向电子传输层145中的注入的任何层。LiF/Al是可用作从相邻层中注射电子到电子传输层中的电子注入层的材料的一个实例。其它材料或材料组合可以用于注入层。取决于具体器件的构型,注入层可以被布置在与在器件100中所示的那些位置不同的位置。在美国专利申请序列号09/931,948(Lu等人)中提供了注入层的更多实例,所述文献的全部内容通过引用结合在本文中。空穴注入层可以包含溶液沉积的材料,如旋涂的聚合物,例如PEDOT:PSS,或者它可以是蒸气沉积的小分子材料,例如CuPc或MTDATA。
空穴注入层(HIL)可以平面化或润湿阳极表面,以提供从阳极到空穴注射材料中的有效的空穴注入。空穴注入层还可以含有电荷携带组分,该电荷携带组分具有的HOMO(最高已占分子轨道)能级有利地与在HIL的一侧上的相邻阳极层和在HIL的相对侧上的空穴传输层相匹配,如由它们的在这里所述的相对电离电位(IP)能量所定义的。该“电荷携带组分”是提供实际上传输空穴的HOMO能级的材料。这一组分可以是HIL的基础材料,或者它可以是掺杂剂。使用掺杂的HIL允许因为掺杂剂的电性能而选择掺杂剂,并且允许因为形态特性如润湿性、柔性、韧性等而选择主体。对于HIL材料来说,优选的性能是使得空穴能够高效地从阳极注入到HIL材料中的性能。特别地,HIL的电荷携带组分的IP优选不比阳极材料的IP大大约0.75eV以上。更优选地,所述电荷携带组分的IP不比阳极材料的IP大大约0.5eV以上。类似的考虑适用于空穴注入其中的任何层。HIL材料还不同于通常用于OLED的空穴传输层中的普通空穴传输材料,因为这样的HIL材料可以具有明显低于普通空穴传输材料的空穴传导率的空穴传导率。本发明的HIL的厚度可以足够厚,以帮助平面化或润湿阳极层的表面。例如,对于非常光滑的阳极表面来说,小至10nm的HIL厚度可以是可接受的。然而,因为阳极表面往往是非常粗糙的,在一些情况下高达50nm的HIL厚度可能是希望的。
保护层可以被用来在后续制造过程中保护底层。例如,用于制造金属或金属氧化物顶部电极的过程可能损伤有机层,而保护层可用于减少或消除此类损伤。在器件100中,保护层155可以在阴极160的制造过程中减少对底下的有机层的损伤。优选地,保护层对于它所传输的载流子类型(在器件100中的电子)来说具有高的载流子迁移率,使得它不显著地增加器件100的工作电压。CuPc、BCP和各种金属酞菁是可用于保护层中的材料的实例。可以使用其它材料或材料组合。保护层155的厚度优选是足够厚的,使得有很少或没有因在有机保护层160沉积之后进行的制造工艺所导致的对底下的层的损伤,然而又不会厚到显著增加器件100的工作电压的程度。保护层155可以被掺杂,以提高它的传导性。例如,CuPc或BCP保护层160可以掺杂Li。保护层的更详细的描述可以在Lu等人的美国专利申请序列号09/931,948中找到,它的全部内容通过引用结合在本文中。
图2显示了颠倒的OLED 200。该器件包括基材210,阴极215,发射层220,空穴传输层225,和阳极230。器件200可以通过按照顺序沉积所述层来制造。因为最常见的OLED构型具有布置在阳极上的阴极,并且器件200具有布置在阳极230下的阴极215,因此器件200可以被称为“颠倒的”OLED。与讨论器件100时所描述的那些材料类似的材料可用于器件200的相应层中。图2提供了如何可以从器件100的结构中省略掉一些层的一个实例。
在图1和2中示出的简单层状结构是作为非限制性例子提供的,并且可以理解,本发明的实施方案可以与各种其它结构相结合使用。所述的特定材料和结构是举例性质的,并且其它材料和结构可以被使用。功能化的OLED可以通过以不同的方式组合所述的各种层来实现,或者某些层可以被完全省略,基于设计、性能和成本因素。没有具体描述的其它层也可以被包括。可以使用除了具体描述的那些材料之外的材料。虽然在这里提供的许多实施例将各种层描述为包括单一一种材料,但是可以理解,可以使用材料的组合,如主体和掺杂剂的混合物,或更一般地混合物。同时,这些层可具有各种亚层。在这里给予各种层的名称并不是意图严格限制的。例如,在器件200中,空穴传输层225传输空穴并将空穴注入到发射层220中,因此可以被描述为空穴传输层或空穴注入层。在一个实施方案中,OLED可以被描述为具有设置在阴极和阳极之间的“有机层”。该有机层可以包括单个层,或者可以进一步包括例如讨论图1和2时所述的不同有机材料的多个层。
没有具体描述的结构和材料也可以使用,例如由聚合物材料组成的OLED(PLED),如公开在美国专利5,247,190(Friend等人)中的PLED,该专利的全部内容通过引用结合在本文中。作为另一个例子,可以使用具有单个有机层的OLED。OLED可以堆叠,例如如在美国专利5,707,745(Forrest等人)中所述,该专利的全部内容通过引用结合在本文中。OLED结构可以背离在图1和2中图示说明的简单层状结构。例如,基材可以包括有角度的反射面以改进外偶合,如在Forrest等人的美国专利6,091,195中所述的台式结构,和/或在Bulovic等人的美国专利5,834,893中描述的坑形结构,所述专利的全部内容通过引用结合在本文中。
除非另作说明,各种实施方案的这些层中的任何一层可以通过任何合适的方法沉积。对于有机层,优选的方法包括热蒸发,墨喷(如在美国专利6,013,982和6,087,196中所述的,所述专利的全部内容通过引用结合在本文中),有机气相沉积(OVPD)(如在Forrest等人的美国专利6,337,102中所述的,该专利的全部内容通过引用结合在本文中),和通过有机蒸气喷印(OVJP)的沉积(如在美国专利申请10/233,470中所述的,该专利申请的全部内容通过引用结合在本文中)。其它合适的沉积方法包括旋涂和其它溶液型工艺。溶液型工艺优选在氮或惰性气氛中进行。对于其它层,优选的方法包括热蒸发。优选的图案化方法包括通过掩模的沉积,冷焊(如在美国专利6,294,398和6,468,819中描述的方法,所述专利的全部内容通过引用结合在本文中),和与某些沉积方法如墨喷和OVJP联合的图案化。其它方法也可以使用。被沉积的材料可以被改性,以使得它们与具体的沉积方法相容。例如,取代基如支化或未支化的并优选含有至少3个碳的烷基和芳基可以用于小分子中,以提高它们经历溶液加工的能力。可以使用具有20个碳或更多个碳的取代基,而3-20个碳是优选的范围。具有不对称结构的材料可以比具有对称结构的那些材料有更好的溶液加工性,因为不对称材料可以有更低的重结晶倾向。树状分子取代基可用来提高小分子经历溶液加工的能力。
在不脱离本发明的范围的情况下,在这里公开的分子可以以许多不同的方式被取代。例如,取代基可以被加到具有三个二齿配位体的化合物上,使得在加上所述取代基之后,所述二齿配位体中的一个或多个被连在一起以形成例如四齿或六齿配位体。可以形成其它这样的连接。据信,相对于没有连接的类似化合物,这一类型的连接可以提高稳定性,这是由于在本领域中通常理解为“螯合效应”的作用。
根据本发明的实施方案制造的器件可以结合到各种各样的消费产品中,包括平板显示器,计算机显示器,电视,广告牌,内部或外部照明和/或发信号的光源,平视显示器(heads up display),全透明显示器,柔性显示器,激光打印机,电话,移动电话,个人数字助理(PDA),膝上型计算机,数字式摄像机,摄像放像机,取景器,微型显示器,车辆,大面积幕墙,戏院或露天运动场屏幕,或标牌。各种控制机构可用来控制根据本发明制造的器件,包括无源矩阵和有源矩阵。许多的器件预计在人感觉舒适的温度范围如18℃到30℃的范围中使用,更优选在室温(20-25℃)使用。
在这里描述的材料和结构可以应用在不同于OLED的器件中。例如,其它光电器件如有机太阳能电池和有机光检测器可以使用所述材料和结构。更一般地,有机器件如有机晶体管可以使用所述材料和结构。
在一个实施方案中,本发明提供了一种器件,该器件解决了当OLED具有电子多数发射层时所遇到的问题。当与空穴向发射层的阴极侧迁移相比电子更快地向发射层的阳极侧迁移时,出现了电子多数发射层。特别关注的一种类型的电子多数发射层是空穴捕获阱,后者在一些蓝色磷光器件中出现。当发射层主体的HOMO比发射掺杂剂的HOMO低至少约0.5eV,更优选低约0.5eV到约0.8eV时,可以实现在发射层中的空穴捕获阱。当空穴进入此类发射层中时,空穴积累在接近空穴传输层/发射层界面的掺杂剂分子上。这又使重组定域在空穴传输层/发射层界面附近,在此激子可以被空穴传输层猝灭。重组的定域可以通过本领域中已知的技术来测量,例如通过使用在美国专利申请序列号11/110,776中描述的探针掺杂的层来测量,该专利申请的全部内容通过引用结合在本文中。为了避免定域在空穴传输层附近,希望使空穴进一步移动到发射层中,并因此使重组进一步移动到发射层中。空穴移动可以通过多种结构特征来实现,所述结构特征包括但不限于:插入电子阻碍层,制造LUMO阻隔层,使用实际上是弱的电子传输体的电子传输层,在发射层和阴极之间插入厚的有机层,选择是弱的电子传输体的发射层主体材料,选择改变发射层或传输层的电子迁移率的掺杂剂,或另外减少发射层的电子密度。
将空穴进一步引诱到发射层中的一种方式是在发射层和阴极之间包括一个用于积聚电子的装置。电子的积聚使得穿过发射层的电场重新分布,并迫使重组远离空穴传输层/发射层界面。用于积聚电子的装置可以是例如电子阻碍层。
因此,在一个实施方案中,本发明提供了OLED,该OLED包括阳极;阴极;布置在阳极和阴极之间的有机发射层,该有机发射层包含发射层主体和发射掺杂剂,其中发射层主体的HOMO比发射掺杂剂的HOMO低至少约0.5eV,优选低约0.5eV到约0.8eV;和在阴极和发射层之间的、用于积聚电子的装置。优选地,电子被积聚在第一有机层和第二有机层之间的界面上。
在一个优选的实施方案中,本发明提供了有机发光器件,该有机发光器件包括阳极;空穴传输层;包括发射层主体和发射掺杂剂的有机发射层;电子阻碍层;电子传输层;和阴极,它们按该顺序布置在基材上。
电子阻碍层(IMP)被定义为在器件内的、在发射层和阴极之间的层,它减慢电子到发射层(EML)的传输,它具有由大多数电子组成的电流,并且它具有可以忽略的空穴电流。在超过IMP的临界厚度(约50埃)时,电子电流被减小,并且在ETL中可以发生空穴-电子重组。如果所述ETL是发射性的,则这一重组导致来自ETL的不希望的发射。空穴封闭层(HBL)可以区别于IMP,因为较厚的HBL一般不会限制电子流到在ETL中发生重组的程度。通过增大电子阻碍层的厚度与通过增大空穴封闭层的厚度所获得的发射光谱间的差异由图12和13证明。参见实施例2。
IMP层一般具有低于典型的空穴封闭层(HBL)如BAlq2、HPT或BAlq的相对电子传导率。优选地,IMP层具有不超过Bphen的电子迁移率的0.001的相对电子传导率,优选具有不超过Bphen的电子迁移率的0.0005的相对电子传导率,更优选具有不超过Bphen的电子迁移率的0.0001的相对电子传导率。用于IMP的合适材料包括空穴传输材料和双极性材料。通过用夹在发射性HTL(在材料的阳极侧上)和发射性ETL(在材料的阴极侧上)间的所关心的材料制造试验性OLED,材料可以被表征为空穴传输材料或双极性材料。在施加的电压下,含有空穴传输材料的这样的器件将具有由特征性ETL EL主宰的EL谱。在施加的电压下,含有双极性材料的这样的器件将具有含有来自HTL和ETL层二者的明显发射的EL谱。用于表征材料为空穴传输材料或双极性材料的合适的试验器件可以被制造成例如如下器件:CuPc(100埃)/NPD(300埃)/所关心的材料(300埃)/BAlq2(400埃)/LiF(10埃)/Al(1000埃),或者CuPc(100埃)/NPD(300埃)/所关心的材料(300埃)/Alq3(400埃)/LiF(10埃)/Al(1000埃)。
用于电子阻碍层的合适材料包括mCBP,它能够与许多发射层材料组合使用,例如为mCP或mCBP的发射层主体和为化合物1-5中的一种的发射掺杂剂。参见表1和图4。本申请涉及美国临时申请60/678,170(2005年5月6日申请),美国临时申请60/701,929(2005年7月25日申请),标题为“IMPROVED STABILITY OLED MATERIALS ANDDEVICES”且代理案卷号为10052/76103的美国临时申请(2005年9月20日申请),和标题为“IMPROVED STABILITY OLED MATERIALS ANDDEVICES”且代理案卷号为10052/76104的美国实用新型申请(2005年10月4日申请)。这些申请的内容全部通过引用结合到本文中。在某些优选的器件中,在这些相关申请中描述的掺杂剂化合物可以作为掺杂剂用于具有阻碍层的器件。
因为绝对的电子传导率或迁移率的测量值在不同实验室和其它实验条件间往往不同,比较在同一实验装置中测量的两种材料的电子迁移率通常是更可靠的,即,一种新材料可以与迁移率值已经出版公开的普通参考材料如Bphen对比测试。所述相对测量可以按照在文献中报道的方法来进行,例如:Yasuda,T.等人,Jpn.J.Appl.Phys.,41(9):5626-5629(2002);Kulkarni,A.等人,Chem.Mater.,16:4556-4573(2004);Naka,S.,Applied Physics Letters,76(2):197-199(2000);和Strohriegl,P.等人,Adv.Mater.,14(20):1439-1452(2002)。材料的载流子迁移率可以按照标准技术,通过应用合适的实验技术如飞行时间(time-of-flight)(TOF),空间电荷限制的电流(SCLC)测量或场效应(FE)方法来估算。
本领域技术人员将认识到可实现电子传导率反差并因此可用于本发明的材料的其它组合。如由举例性的组合所证实的,电子阻碍层可以是与发射层主体相同的材料。
总之,电子阻碍层是在发射层和阴极之间的、显示出下列性能中的一个或多个的层:
a)当与潜在地发射性的电子传输层如Alq3组合用于OLED中时,当给厚得多的IMP层提供足够高的电压时在电子传输层中产生发射。电子传输层不可以是当空穴被迫进入到电子传输层中时典型地发射光的材料。因此,在一个实施方案中,所述器件包括基本上由这样一种材料组成的有机层,当所述材料用于其中第一有机层是Alq3的类似器件中时,增大第二有机层的厚度将引起从第一有机层中发光。
b)电子阻碍材料可以具有比典型的和指定的空穴封闭材料如Bphen、BAlq2、HPT或BAlq低或显著更低的相对电子迁移率和/或电子传导率。优选地,IMP层具有不超过Bphen的电子迁移率的0.001的相对电子传导率,优选具有不超过Bphen的电子迁移率的0.0005的相对电子传导率,更优选具有不超过Bphen的电子迁移率的0.0001的相对电子传导率。
c)所述电子阻碍材料可以是空穴传输材料,即,空穴迁移率大于电子迁移率的材料。因此,在一个实施方案中,所述器件包括基本上由空穴迁移率大于电子迁移率的材料如TCTA、Irppz、NPD、TPD、mCP和它们的衍生物组成的有机层。
d)电子阻碍材料可以是双极性材料。因此,在一个实施方案中,所述器件包括基本上由双极性材料如mCBP组成的有机层。
在一个优选的实施方案中,发射掺杂剂具有约-5eV或更高的HOMO。在另一个优选的实施方案中,电子阻碍层材料的HOMO比发射掺杂剂的HOMO低至少约0.5。参见图14。在又一个优选的实施方案中,电子阻碍层材料的带隙大于发射掺杂剂的带隙。图15a和15b描述了具有示例性电子阻碍层的器件的能级图。
在一个优选的实施方案中,所述电子阻碍层是纯的层。
优选地,所述电子阻碍层具有约20埃到约75埃的厚度,优选具有约50埃的厚度。如果电子阻碍层太薄,该层不能提供对电子流的连续阻碍。如果电子阻碍层太厚,过大的厚度可能提供对电子流的太大的障碍,并在第一有机层中导致激子形成。
在一个实施方案中,本发明提供了发射蓝光的器件。在一个优选的实施方案中,发射掺杂剂在发射光谱中具有低于约500nm,优选低于450nm的峰。发射的光优选具有(X≤0.2,Y≤0.3)的CIE坐标。在一个具体的优选实施方案中,发射掺杂剂是三(N-2,6-二甲基苯基-2-苯基咪唑),在这里称作化合物1。
在一个优选的实施方案中,相对于没有用于积聚电子的装置的其它等同的器件,例如除电子阻碍层被电子传输层替代外其它等同的器件,所述器件显示出提高的效率。本发明的器件优选具有大于约5%的未改进的外量子效率。在优选的实施方案中,相对于没有用于积聚电子的装置(例如没有电子阻碍层)的其它等同的器件,所述器件显示出提高的效率,提高的电压,和相同或更好的寿命。
在另一个实施方案中,所述OLED包括阳极;阴极;布置在阳极和阴极之间的有机发射层,该有机发射层包含发射层主体和发射掺杂剂,其中发射层主体的HOMO比发射掺杂剂的HOMO低至少约0.5eV,优选低约0.5eV到约0.8eV;布置在有机发射层和阴极之间的第一有机层;布置在有机发射层和第一有机层之间并与两者直接接触的第二有机层,其中所述第二有机层基本上由空穴传输材料或双极性材料组成。
应该理解,在这里描述的各种实施方案仅是作为实例,并且不是为了限制本发明的范围。例如,在不脱离本发明的精神的情况下,在这里描述的许多材料和结构可以被其它材料和结构取代。应该理解,关于本发明为什么发挥作用的各种理论并不是意图是限制性的。例如,涉及电荷转移的理论并不是意图是限制性的。
材料定义
在这里使用的一些缩写是指如下材料:
CBP:4,4’-N,N-二咔唑-联苯
m-MTDATA:4,4’,4”-三(3-甲基苯基苯基氨基)三苯基胺
Alq3:三(8-羟基喹啉)铝
Bphen:4,7-二苯基-1,10-菲咯啉
n-Bphen:n-掺杂的Bphen(用锂掺杂)
F4-TCNQ:四氟-四氰基-二甲基苯醌
p-MTDATA:p-掺杂的m-MTDATA(用F4-TCNQ掺杂)
Ir(ppy)3:三(2-苯基吡啶)合铱
Ir(ppz)3:三(1-苯基吡唑根,N,C(2’))合铱(III)
BCP:2,9-二甲基-4,7-二苯基-1,10-菲咯啉
TAZ:3-苯基-4-(1’-萘基)-5-苯基-1,2,4-三唑
CuPc:铜酞菁
ITO:氧化铟锡
NPD:N,N’-二苯基-N,N’-二(1-萘基)-联苯胺
TPD:N,N’-二苯基-N,N’-二(3-甲苯基)-联苯胺
BAlq:双(2-甲基-8-羟基喹啉根).4-苯基苯酚根合铝(III)
HPT:2,3,6,7,10,11-六苯基苯并[9,10]菲
mCP:1,3-N,N-二咔唑-苯
DCM:4-(二氰基亚乙基)-6-(4-二甲基氨基苯乙烯基-2-甲基)-4H-吡喃
DMQA:N,N’-二甲基喹吖啶酮
PEDOT:PSS:聚(3,4-亚乙基二氧基噻吩)与聚苯乙烯磺酸盐(PSS)的水性分散体
实验
现在将描述本发明的具体的代表性实施方案,包括这样的实施方案可以如何被制备。应该理解,所述的具体的方法、材料、条件、工艺参数、装置等不必然地限制本发明的范围。
所有器件是在高真空(<10-7托)下通过热蒸发制造的。阳极电极是约800埃的氧化铟锡(ITO)。有机层以0.3到3.0埃/秒的速率沉积。阴极由以0.1埃/秒沉积的10埃的LiF和后面的以2埃/秒沉积的1,000埃的Al组成。所有器件在制造之后马上在氮气手套箱(<1ppm的H2O和O2)中用玻璃盖子盖上并用环氧树脂密封,并且在包装材料内引入吸湿气剂。示例性的发射掺杂剂示于图4中。
实施例1:本发明的特定的示例性器件(以粗体编号)和对比器件列在表1中。应该理解,所述特定的方法、材料、条件、工艺参数、装置等不一定限制本发明的范围。
                    表1:示例性器件和对比器件
  实施例   结构(所有厚度以埃为单位,并且掺杂浓度是wt%)
  1   CuPc(100)/NPD(300)/mCBP:化合物1(9%,300)/mCP(50)/Balq(400)/LiF/Al
  2   CuPc(100)/NPD(300)/mCBP:化合物1(9%,300)/Balq(400)/LiF/Al
  3   CuPc(100)/NPD(300)/mCBP:化合物1(18%,300)/mCP(50)/Balq(400)/LiF/Al
  4   CuPc(100)/NPD(300)/mCBP:化合物1(18%,300)/Balq(400)/LiF/Al
  5   CuPc(100)/NPD(300)/mCBP:化合物1(9%,300)/mCBP(50)/Balq(400)/LiF/Al
  6   CuPc(100)/NPD(300)/mCP:化合物1(9%,300)/mCP(50)/Balq(400)/LiF/Al
  7   CuPc(100)/NPD(300)/mCP:化合物1(9%,300)/Balq(400)/LiF/Al
  8   CuPc(100)/NPD(300)/mCP:化合物1(9%,300)/mCBP(50)/Balq(400)/LiF/Al
  9   CuPc(100)/NPD(300)/mCBP:化合物2(9%,300)/mCP(50)/Balq(400)/LiF/Al
  10   CuPc(100)/NPD(300)/mCBP:化合物2(9%,300)/Balq(400)/LiF/Al
  11   CuPc(100)/NPD(300)/mCP:化合物3(9%,300)/mCP(50)/Balq(400)/LiF/Al
  12   CuPc(100)/NPD(300)/mCP:化合物3(9%,300)/mCBP(50)/Balq(400)/LiF/Al
  13   CuPc(100)/NPD(300)/mCP:化合物3(9%,300)/Balq(400)/LiF/Al
  14   CuPc(100)/NPD(300)/mCBP:化合物4(9%,300)/mCBP(50)/Balq(400)/LiF/Al
  15   CuPc(100)/NPD(300)/mCBP:化合物4(9%,300)/Balq(400)/LiF/Al
  16   CuPc(100)/NPD(300)/mCBP:化合物4(9%,300)/mCP(50)/Balq(400)/LiF/Al
  17   CuPc(100)/NPD(300)/mCP:化合物5(9%,300)/mCP(50)/Balq(100)/Alq(400)/LiF/Al
  18   CuPc(100)/NPD(300)/mCP:化合物5(9%,300)/Balq(100)/Alq(400)/LiF/Al
图5显示,在使用掺杂剂化合物1的器件中,与没有电子阻碍层的对比器件(器件2,4和7,由完全开放的符号显示)相比,包括电子阻碍层的示例性器件(器件1,3,5,6和8)的外量子效率更高。图6显示,与对比器件2和4相比,示例性器件1,3和5具有相同或更好的寿命。
图7显示,对于使用掺杂剂化合物2的器件,包括电子阻碍层的示例性器件9的外量子效率更高,与没有这样的电子阻碍层的对比器件10相比。
图8显示,在使用掺杂剂化合物3的器件中,包括电子阻碍层的示例性器件(器件11和12)的外量子效率更高,与没有这样的电子阻碍层的对比器件13相比。
图9显示,在使用掺杂剂化合物4的器件中,包括电子阻碍层的示例性器件(器件14和16)的外量子效率更高,与没有这样的电子阻碍层的对比器件15相比。图10显示,所述示例性器件具有相同或更好的寿命,与所述对比器件相比。
图11显示,对于使用掺杂剂化合物5的器件,包括电子阻碍层的示例性器件17的外量子效率更高,与没有这样的电子阻碍层的对比器件18相比。
实施例2:示例性器件A-D包括不同厚度的电子阻碍层。对比器件E和F包括不同厚度的空穴封闭层。
               表2:示例性器件和对比器件
  实施例   结构(所有厚度以埃为单位,并且掺杂浓度是wt%)
  A   CuPc(100)/NPD(300)/mCBP:化合物6(9%,300)/Alq3(400)/LiF/Al
  B   CuPc(100)/NPD(300)/mCBP:化合物6(9%,300)/mCBP(20)/Alq3(400)/LiF/Al
  C   CuPc(100)/NPD(300)/mCBP:化合物6(9%,300)/mCBP(50)/Alq3(400)/LiF/Al
  D   CuPc(100)/NPD(300)/mCBP:化合物6(9%,300)/mCBP(100)/Alq3(400)/LiF/Al
  E   Ir(ppy)3(100)/NPD(300)/CBP:化合物7(8%,300)/HPT(50)/Alq3(450)/LiF/Al
  F   Ir(ppy)3(100)/NPD(300)/CBP:化合物7(8%,300)/HPT(150)/Alq3(350)/LiF/Al
图12显示,随着电子阻碍层的厚度增加,电子传输层中发射的量增加。
图13显示,随着空穴封闭层的厚度增加,发射没有变化。
所有上面提到的出版物、专利和专利申请通过引用全部内容结合到本文中,如同各个出版物、专利或专利申请被具体地和各个地指明通过引用全部内容结合到本文中一样。
尽管结合具体的实施例和优选的实施方案描述了本发明,但应该理解,本发明不局限于这些实施例和实施方案。因此所要求保护的本发明包括这里所述的具体实施例和优选实施方案的变化形式,这些变化形式对于本领域技术人员来说是显而易见的。

Claims (48)

1.有机发光器件,该器件包括按列举的顺序布置在基材上的:
a)阳极;
b)空穴传输层;
c)包含发射层主体和发射掺杂剂的有机发射层;
d)电子阻碍层;
e)电子传输层;和
f)阴极。
2.权利要求1的器件,其中所述发射层主体的HOMO比所述发射掺杂剂的HOMO低至少约0.5eV。
3.权利要求2的器件,其中所述发射层主体的HOMO比所述发射掺杂剂的HOMO低约0.5eV到约0.8eV。
4.权利要求1的器件,其中所述发射掺杂剂具有约-5eV或更高的HOMO。
5.权利要求4的器件,其中所述发射掺杂剂选自由化合物1-5组成的组。
6.权利要求5的器件,其中所述发射掺杂剂是化合物1。
7.权利要求1的器件,其中所述电子阻碍层基本上由空穴迁移率大于电子迁移率的材料组成。
8.权利要求7的器件,其中所述电子阻碍层基本上由选自下组的材料组成:TCTA,Irppz,NPD,TPD,mCP和它们的衍生物。
9.权利要求1的器件,其中所述电子阻碍层基本上由双极性材料组成。
10.权利要求9的器件,其中所述双极性材料是mCBP。
11.权利要求1的器件,其中所述电子阻碍层基本上由与所述发射层主体相同的材料组成。
12.权利要求1的器件,其中所述电子阻碍层是纯的层。
13.权利要求1的器件,其中所述电子阻碍层具有约20埃至约75埃的厚度。
14.权利要求13的器件,其中所述电子阻碍层具有约50埃的厚度。
15.权利要求1的器件,其中所述电子阻碍层材料的HOMO比发射掺杂剂的HOMO低至少约0.5。
16.权利要求1的器件,其中所述电子阻碍层材料的带隙大于所述发射掺杂剂的带隙。
17.权利要求1的器件,其中所述发射掺杂剂在发射光谱中具有小于约500nm的峰。
18.权利要求1的器件,其中所述有机发射层发射具有(X≤0.2,Y≤0.3)的CIE坐标的光。
19.权利要求1的器件,其中所述器件用于有源矩阵有机发光器件显示器。
20.权利要求1的器件,其中相对于除其中电子阻碍层被电子传输层替代外其它等同的器件,所述器件显示出提高的效率。
21.权利要求20的器件,其中相对于除其中电子阻碍层被电子传输层替代外其它等同的器件,所述器件显示出提高的效率,提高的电压,和相同或更好的寿命。
22.权利要求1的器件,其中所述未改进的外量子效率大于约5%。
23.有机发光器件,它包括:
a)阳极;
b)阴极;
c)布置在所述阳极和所述阴极之间的有机发射层,所述有机发射层包含发射层主体和发射掺杂剂,其中所述发射层主体的HOMO比所述发射掺杂剂的HOMO低至少约0.5eV;
d)布置在所述有机发射层和所述阴极之间的第一有机层;
e)布置在所述有机发射层和所述第一有机层之间并与两者直接接触的第二有机层,其中所述第二有机层基本上由空穴传输材料或双极性材料组成。
24.权利要求23的器件,其中所述发射层主体的HOMO比所述发射掺杂剂的HOMO低约0.5eV至约0.8eV。
25.权利要求23的器件,其中所述发射掺杂剂具有约-5eV或更高的HOMO。
26.权利要求25的器件,其中所述发射掺杂剂选自由化合物1-5组成的组。
27.权利要求26的器件,其中所述发射掺杂剂是化合物1。
28.权利要求23的器件,其中所述第二有机层基本上由空穴迁移率大于电子迁移率的材料组成。
29.权利要求28的器件,其中所述第二有机层基本上由选自下组的材料组成:TCTA、Irppz、NPD、TPD、mCP和它们的衍生物。
30.权利要求23的器件,其中所述第二有机层基本上由双极性材料组成。
31.权利要求30的器件,其中所述双极性材料是mCBP。
32.权利要求23的器件,其中所述第二有机层基本上由与所述发射层主体相同的材料组成。
33.权利要求23的器件,其中所述第二有机层是纯的层。
34.权利要求23的器件,其中所述第二有机层具有约20埃至约75埃的厚度。
35.权利要求34的器件,其中所述第二有机层具有约50埃的厚度。
36.权利要求23的器件,其中所述第二有机层材料的HOMO比所述发射层掺杂剂的HOMO低至少约0.5。
37.权利要求23的器件,其中所述第二有机层材料的带隙大于所述发射掺杂剂的带隙。
38.权利要求23的器件,其中所述发射掺杂剂在发射光谱中具有小于约500nm的峰。
39.权利要求23的器件,其中所述有机发射层发射具有(X≤0.2,Y≤0.3)的CIE坐标的光。
40.权利要求23的器件,其中所述器件用于有源矩阵有机发光器件显示器。
41.权利要求23的器件,其中相对于除其中第二有机层基本上由电子传输材料组成外其它等同的器件,所述器件显示出提高的效率。
42.权利要求41的器件,其中相对于除其中第二有机层基本上由电子传输材料组成外其它等同的器件,所述器件显示出提高的效率,提高的电压,和相同或更好的寿命。
43.权利要求23的器件,其中所述未改进的外量子效率大于约5%。
44.有机发光器件,它包括:
a)阳极;
b)阴极;
c)布置在所述阳极和所述阴极之间的有机发射层,所述有机发射层包含发射层主体和发射掺杂剂,其中所述发射层主体的HOMO比所述发射掺杂剂的HOMO低至少约0.5eV;
d)布置在所述有机发射层和所述阴极之间的第一有机层;
e)布置在所述有机发射层和所述第一有机层之间并与两者直接接触的第二有机层,其中所述第二有机层具有不超过Bphen的电子迁移率的0.001的相对电子迁移率。
45.权利要求44的器件,其中所述第二有机层具有不超过Bphen的电子迁移率的0.0005的相对电子迁移率。
46.权利要求45的器件,其中所述第二有机层具有不超过Bphen的电子迁移率的0.0001的相对电子迁移率。
47.权利要求44的器件,其中所述第二有机层基本上由这样一种材料组成,当所述材料用于其中第一有机层是Alq3的权利要求44的器件中时,增大第二有机层的厚度将引起从第一有机层中发光。
48.有机发光器件,它包括:
a)阳极;
b)阴极;
c)布置在所述阳极和所述阴极之间的有机发射层,所述有机发射层包含发射层主体和发射掺杂剂,其中所述发射层主体的HOMO比所述发射掺杂剂的HOMO低至少约0.5eV;和
d)在所述阴极和所述发射层之间的、用于积聚电子的装置。
CN2006800366261A 2005-10-04 2006-09-26 用于高效磷光oled的电子阻碍层 Active CN101278419B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/242,025 US8148891B2 (en) 2005-10-04 2005-10-04 Electron impeding layer for high efficiency phosphorescent OLEDs
US11/242,025 2005-10-04
PCT/US2006/037788 WO2007044236A2 (en) 2005-10-04 2006-09-26 Electron impeding layer for high efficiency phosphorescent oleds

Publications (2)

Publication Number Publication Date
CN101278419A true CN101278419A (zh) 2008-10-01
CN101278419B CN101278419B (zh) 2012-05-23

Family

ID=37847158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800366261A Active CN101278419B (zh) 2005-10-04 2006-09-26 用于高效磷光oled的电子阻碍层

Country Status (7)

Country Link
US (1) US8148891B2 (zh)
EP (1) EP1932193B1 (zh)
JP (1) JP5328356B2 (zh)
KR (2) KR101384449B1 (zh)
CN (1) CN101278419B (zh)
TW (1) TWI413287B (zh)
WO (1) WO2007044236A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437290A (zh) * 2011-09-28 2012-05-02 昆山维信诺显示技术有限公司 一种有机电致发光显示器用蓝光器件及其制备方法
CN105870349A (zh) * 2016-06-06 2016-08-17 京东方科技集团股份有限公司 发光二极管及其制备方法、发光器件
US11462706B2 (en) 2018-05-31 2022-10-04 Beijing Boe Technology Development Co., Ltd. Quantum dot light emitting diode and method for manufacturing the same, and display panel

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
US8007927B2 (en) 2007-12-28 2011-08-30 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
US7902374B2 (en) * 2005-05-06 2011-03-08 Universal Display Corporation Stability OLED materials and devices
US8142909B2 (en) * 2006-02-10 2012-03-27 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials
WO2007097149A1 (ja) * 2006-02-20 2007-08-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、白色発光素子、表示装置、及び照明装置
CN101931056B (zh) 2006-06-01 2014-07-09 株式会社半导体能源研究所 发光元件、发光器件和电子器件
WO2008035571A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Élément électroluminescent organique
EP3457452B1 (de) * 2006-09-21 2022-11-02 UDC Ireland Limited Oled-anzeige mit verlängerter lebensdauer
US9397308B2 (en) * 2006-12-04 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US20080286610A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid oled with fluorescent and phosphorescent layers
US20080284317A1 (en) * 2007-05-17 2008-11-20 Liang-Sheng Liao Hybrid oled having improved efficiency
US20080284318A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid fluorescent/phosphorescent oleds
KR101375331B1 (ko) * 2007-06-22 2014-03-18 삼성디스플레이 주식회사 백색 유기발광소자 및 그를 포함하는 표시장치와 조명장치
JP5119775B2 (ja) * 2007-07-11 2013-01-16 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
TWI481308B (zh) 2007-09-27 2015-04-11 Semiconductor Energy Lab 發光元件,發光裝置,與電子設備
CN101803058B (zh) * 2007-10-19 2012-07-11 株式会社半导体能源研究所 发光元件、发光设备和电子设备
WO2009060779A1 (ja) * 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8476822B2 (en) * 2007-11-09 2013-07-02 Universal Display Corporation Saturated color organic light emitting devices
US8815411B2 (en) * 2007-11-09 2014-08-26 The Regents Of The University Of Michigan Stable blue phosphorescent organic light emitting devices
DE102008025755A1 (de) 2008-05-29 2009-12-03 Osram Opto Semiconductors Gmbh Organisches Licht emittierendes Bauteil und Leuchtmittel mit einem solchen Bauteil
JP5367095B2 (ja) * 2009-02-03 2013-12-11 日東電工株式会社 有機発光ダイオードにおける両極性ホスト
US7893430B2 (en) * 2009-02-26 2011-02-22 Battelle Memorial Institute OLED devices
US20120205645A1 (en) 2009-10-28 2012-08-16 Basf Se Heteroleptic carbene complexes and the use thereof in organic electronics
US8242489B2 (en) * 2009-12-17 2012-08-14 Global Oled Technology, Llc. OLED with high efficiency blue light-emitting layer
US8227801B2 (en) * 2010-04-26 2012-07-24 Universal Display Corporation Bicarbzole containing compounds for OLEDs
CN101851972A (zh) * 2010-06-04 2010-10-06 大连皿能光电科技有限公司 后粘贴式太阳能发电幕墙组件
KR101182268B1 (ko) * 2010-07-09 2012-09-12 삼성디스플레이 주식회사 유기 발광 장치
KR20130143034A (ko) 2010-09-16 2013-12-30 닛토덴코 가부시키가이샤 유기 발광 소자에 사용하기 위한 치환된 비피리딘
CN102587545A (zh) * 2011-01-11 2012-07-18 上海泰莱钢结构工程有限公司 一种光伏建筑玻璃幕墙组件
KR102166396B1 (ko) * 2011-06-08 2020-10-16 유니버셜 디스플레이 코포레이션 헤테로렙틱 이리듐 카르벤 착물 및 이를 사용한 발광 디바이스
KR20130022986A (ko) * 2011-08-26 2013-03-07 엘지디스플레이 주식회사 유기전계 발광표시장치
US9328094B2 (en) 2011-09-19 2016-05-03 Nitto Denko Corporation Substituted biaryl compounds for light-emitting devices
KR101305869B1 (ko) * 2011-10-12 2013-09-09 포항공과대학교 산학협력단 단순화된 유기 발광 소자 및 이의 제조 방법
JP5760941B2 (ja) * 2011-10-18 2015-08-12 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2013150909A1 (ja) * 2012-04-03 2013-10-10 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP5630511B2 (ja) * 2013-02-06 2014-11-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR102253192B1 (ko) * 2013-06-06 2021-05-17 메르크 파텐트 게엠베하 유기 전계발광 디바이스
TWI581477B (zh) * 2014-04-15 2017-05-01 豐彩科技有限公司 有機發光二極體結構及其製造方法
EP3136152A4 (en) * 2014-04-22 2017-12-20 Shenzhen Guohua Optoelectronics Co., Ltd. Display structure having paper effect and manufacturing method therefor
KR102408143B1 (ko) 2015-02-05 2022-06-15 삼성전자주식회사 유기금속 화합물, 유기금속 화합물-함유 조성물 및 이를 포함한 유기 발광 소자
US10326086B2 (en) 2015-02-06 2019-06-18 Samsung Electronics Co., Ltd. Organometallic compound, composition containing the organometallic compound, and organic light-emitting device including the organometallic compound or composition
KR102637099B1 (ko) 2016-04-08 2024-02-19 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
CN105895819B (zh) * 2016-04-28 2018-07-06 京东方科技集团股份有限公司 一种oled器件及其制备方法、oled显示面板
JP2018022862A (ja) * 2016-07-20 2018-02-08 株式会社Joled 有機電界発光素子、有機電界発光装置および電子機器
JP6768534B2 (ja) * 2016-07-20 2020-10-14 株式会社Joled 有機電界発光素子、有機電界発光装置および電子機器
US10935492B2 (en) 2018-04-13 2021-03-02 Applied Materials, Inc. Metrology for OLED manufacturing using photoluminescence spectroscopy
KR20210101631A (ko) 2020-02-10 2021-08-19 삼성전자주식회사 유기 발광 소자
WO2024069881A1 (ja) * 2022-09-29 2024-04-04 シャープディスプレイテクノロジー株式会社 発光素子、表示装置、発光素子の製造方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720432A (en) * 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
US5703436A (en) 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
KR100462723B1 (ko) 1996-08-12 2004-12-20 더 트러스티즈 오브 프린스턴 유니버시티 가요성 유기발광장치 및 그것을 제조하는 방법
US5844363A (en) 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
US5834893A (en) 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US6013982A (en) 1996-12-23 2000-01-11 The Trustees Of Princeton University Multicolor display devices
US6091195A (en) 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6337102B1 (en) 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
US6087196A (en) 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6830828B2 (en) * 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
GB9822963D0 (en) 1998-10-20 1998-12-16 Agner Erik Improvements in or relating to chromatography
US6310360B1 (en) 1999-07-21 2001-10-30 The Trustees Of Princeton University Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices
US6294398B1 (en) 1999-11-23 2001-09-25 The Trustees Of Princeton University Method for patterning devices
US6939624B2 (en) 2000-08-11 2005-09-06 Universal Display Corporation Organometallic compounds and emission-shifting organic electrophosphorescence
JP3669333B2 (ja) * 2001-02-06 2005-07-06 ソニー株式会社 有機電界発光素子及び表示装置
KR100916231B1 (ko) 2001-03-14 2009-09-08 더 트러스티즈 오브 프린스턴 유니버시티 청색 인광계 유기발광다이오드용 재료 및 장치
JP2002359076A (ja) * 2001-03-27 2002-12-13 Konica Corp 有機エレクトロルミネッセンス素子、表示装置、発光方法、表示方法および透明基板
KR100888424B1 (ko) * 2001-05-16 2009-03-11 더 트러스티즈 오브 프린스턴 유니버시티 고효율 다칼라 전기 유기 발광 장치
US7071615B2 (en) 2001-08-20 2006-07-04 Universal Display Corporation Transparent electrodes
KR100917347B1 (ko) 2001-08-29 2009-09-16 더 트러스티즈 오브 프린스턴 유니버시티 금속 착물들을 포함하는 캐리어 블로킹층들을 갖는 유기발광 디바이스들
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
KR100596028B1 (ko) * 2001-11-12 2006-07-03 네오뷰코오롱 주식회사 고효율 유기 전계발광 소자
US20030230980A1 (en) * 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
JP3970253B2 (ja) * 2003-03-27 2007-09-05 三洋電機株式会社 有機エレクトロルミネッセンス素子
KR20040094078A (ko) * 2003-05-01 2004-11-09 학교법인 영남학원 백색 유기발광소자
JP2004362914A (ja) * 2003-06-04 2004-12-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
US7018723B2 (en) * 2003-07-25 2006-03-28 The University Of Southern California Materials and structures for enhancing the performance of organic light emitting devices
US6881502B2 (en) 2003-09-24 2005-04-19 Eastman Kodak Company Blue organic electroluminescent devices having a non-hole-blocking layer
TW200531587A (en) * 2003-12-09 2005-09-16 Showa Denko Kk Polymer for anode buffer layer, coating solution for anode buffer layer, and organic light emitting device
US7151339B2 (en) 2004-01-30 2006-12-19 Universal Display Corporation OLED efficiency by utilization of different doping concentrations within the device emissive layer
JP4546203B2 (ja) * 2004-06-15 2010-09-15 キヤノン株式会社 発光素子
US20060008670A1 (en) * 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
US7709100B2 (en) * 2004-07-07 2010-05-04 Universal Display Corporation Electroluminescent efficiency
US20060006792A1 (en) 2004-07-09 2006-01-12 Eastman Kodak Company Flat panel light emitting devices with two sided
TWI240593B (en) 2004-10-15 2005-09-21 Ind Tech Res Inst Top-emitting organic light emitting diode (OLED)
KR100670803B1 (ko) * 2004-12-21 2007-01-19 한국전자통신연구원 쇼키 장벽 금속 산화물 반도체 전계 효과 트랜지스터의양극 전도성을 이용한 소자
US7683536B2 (en) * 2005-03-31 2010-03-23 The Trustees Of Princeton University OLEDs utilizing direct injection to the triplet state
US7807275B2 (en) * 2005-04-21 2010-10-05 Universal Display Corporation Non-blocked phosphorescent OLEDs

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437290A (zh) * 2011-09-28 2012-05-02 昆山维信诺显示技术有限公司 一种有机电致发光显示器用蓝光器件及其制备方法
CN102437290B (zh) * 2011-09-28 2016-03-23 昆山维信诺显示技术有限公司 一种有机电致发光显示器用蓝光器件及其制备方法
CN105870349A (zh) * 2016-06-06 2016-08-17 京东方科技集团股份有限公司 发光二极管及其制备方法、发光器件
CN105870349B (zh) * 2016-06-06 2017-09-26 京东方科技集团股份有限公司 发光二极管及其制备方法、发光器件
WO2017211127A1 (zh) * 2016-06-06 2017-12-14 京东方科技集团股份有限公司 发光二极管及其制备方法、发光器件
US11462706B2 (en) 2018-05-31 2022-10-04 Beijing Boe Technology Development Co., Ltd. Quantum dot light emitting diode and method for manufacturing the same, and display panel

Also Published As

Publication number Publication date
US20070075631A1 (en) 2007-04-05
KR101567661B1 (ko) 2015-11-10
US8148891B2 (en) 2012-04-03
WO2007044236A2 (en) 2007-04-19
EP1932193B1 (en) 2014-07-30
JP5328356B2 (ja) 2013-10-30
WO2007044236A3 (en) 2007-12-21
KR20140007019A (ko) 2014-01-16
TW200721564A (en) 2007-06-01
KR101384449B1 (ko) 2014-04-10
JP2009510796A (ja) 2009-03-12
EP1932193A2 (en) 2008-06-18
KR20080063765A (ko) 2008-07-07
CN101278419B (zh) 2012-05-23
TWI413287B (zh) 2013-10-21

Similar Documents

Publication Publication Date Title
CN101278419B (zh) 用于高效磷光oled的电子阻碍层
CN101952990B (zh) 具有多个单独的发射层的有机发光器件
CN101427397B (zh) 多重掺杂剂发射层oled
CN101156257B (zh) 利用到三重态的直接注入的oled
US6891326B2 (en) Structure and method of fabricating organic devices
US7993763B2 (en) Organometallic compounds having host and dopant functionalities
US8021763B2 (en) Phosphorescent OLED with interlayer
US7045952B2 (en) OLEDs with mixed host emissive layer
CN101454921B (zh) 使用邻苯二甲酰亚胺化合物的有机电子器件
US20070103066A1 (en) Stacked OLEDs with a reflective conductive layer
KR20090082200A (ko) 백색 발광 oled용 단일항 및 삼중항 엑시톤의 효율적인 수집을 위한 물질 및 구조
US8330351B2 (en) Multiple dopant emissive layer OLEDs
CN101669226A (zh) 长寿命磷光有机发光器件(oled)结构
US20060251921A1 (en) OLEDs utilizing direct injection to the triplet state
US20040096570A1 (en) Structure and method of fabricating organic devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant