CN101254905A - 一种调控氮化碳材料物相的溶剂热恒压合成方法 - Google Patents

一种调控氮化碳材料物相的溶剂热恒压合成方法 Download PDF

Info

Publication number
CN101254905A
CN101254905A CNA2008100016752A CN200810001675A CN101254905A CN 101254905 A CN101254905 A CN 101254905A CN A2008100016752 A CNA2008100016752 A CN A2008100016752A CN 200810001675 A CN200810001675 A CN 200810001675A CN 101254905 A CN101254905 A CN 101254905A
Authority
CN
China
Prior art keywords
carbon
carbon nitride
reaction
solvent
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100016752A
Other languages
English (en)
Other versions
CN100588609C (zh
Inventor
崔得良
陆希峰
赖泽锋
朱玲玲
王琪珑
蒋民华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN200810001675A priority Critical patent/CN100588609C/zh
Publication of CN101254905A publication Critical patent/CN101254905A/zh
Application granted granted Critical
Publication of CN100588609C publication Critical patent/CN100588609C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

一种用于调控氮化碳材料物相的溶剂热恒压合成方法,属于化工生产和新材料领域。该方法包括碳源液和氮源液的配制、装釜,加热之前先施加40~2000MPa的恒定压力,控制温度以0.01~60℃/分钟的速度加热到220~1000℃,反应结束,冷却至室温,对产品进行后处理。本发明的方法合成硼碳氮时,反应体系的温度和压力可以独立地分别调控,既能使反应过程在恒定的压力下进行,又可以根据需要改变体系的压力,从而对合成氮化碳的反应进行的速度和方向进行控制。利用本发明的方法,可得到大粒度的氮化碳晶体。

Description

一种调控氮化碳材料物相的溶剂热恒压合成方法
本申请是200610042101.0,名称为“一种调控硼碳氮材料物相的溶剂热恒压合成方法”的分案申请,申请日2006年1月4日。
一、技术领域
本发明涉及一种调控硼碳氮材料物相的溶剂热恒压合成方法,属于化工新材料领域。
二、背景技术
立方氮化硼、金刚石、氮化碳(统称为硼碳氮)作为性能优异的超硬材料,在日常生活和工业生产中已经和即将起着举足轻重的作用,实现这些材料的人工合成,特别是低成本大批量合成,一直是人类梦寐以求的。为了实现这一理想,人们发展并改进了各种各样的制备方法,其中高温高压方法最为成熟。到目前为止,利用这种方法,已经实现了立方氮化硼和金刚石的产业化。但是,综合分析该方法不难看出,制备过程仍然需要使用极端条件(例如1200~2000℃,3~20万大气压),因而对设备提出了十分苛刻的要求,这直接导致投入-产出比大幅度提高,产品价格居高不下,严重限制了这些材料的应用范围。此外,利用高温高压方法制备的金刚石和立方氮化硼缺陷较多,晶粒粒度可调范围窄,而且用这种方法无法生长大的体块晶体。
为了在温和的条件下制备金刚石和立方氮化硼,人们发展了一系列新的合成方法,其中软化学合成方法是近年来发展较快的方法之一。例如,中国科技大学利用密闭高压釜内的催化还原热解反应方法制备了具有较大颗粒度的金刚石,山东大学则利用溶剂热合成方法制备了立方相含量很高的纳米氮化硼。然而,这些方法都存在各自的局限性:例如,除了控制反应温度外,我们几乎不可能对反应釜内的其它影响因素进行调控,也就很难快速优化制备条件,实现这两种材料的低成本大批量合成。鉴于这种情况,我们又发展了选相原位合成方法,实现了根据需要人为地控制反应过程的开始和终止,并能够在相当大范围内调控反应速度。利用这种方法制备的氮化硼纳米材料的物相纯度和结晶质量均得到了明显提高。但是在选相原位合成方法中,溶剂热反应在密闭的高压容器内进行,一旦反应原料的组成和用量确定,在特定的填充率下,反应体系的温度和压力按一定的方式相互关联,无法独立调控,特别是难于控制初期的升温过程以及后期的降温过程中发生的化学反应;因此,对合成过程的准确调控仍然受到较多的限制。
通过系统深入地分析已有方法我们发现:对于材料制备过程中涉及到的化学反应,尽管每个反应都有一定的阈值温度或压力,但由于反应物分子所处的能量状态不同,即使在低于该阈值条件时也会有少量分子发生反应。对于那些多相共存的材料体系,在较低的压力条件下生成的物相主要是热力学稳定相,例如六方氮化硼、石墨和石墨型氮化碳。一旦这些稳定的物相生成并稳定下来,要使它们转变成立方结构(如立方氮化硼、金刚石或者立方氮化碳)将变得十分困难。此外,当反应过程完成并开始降温时,原先生成的立方结构物相也有可能发生物相逆转,使产物中多种物相共存,严重损害反应过程的选择性并降低了产物的应用价值。
三、发明内容
本发明针对现有硼碳氮材料合成方法存在的缺点,提出了一种调控氮化碳材料物相的溶剂热恒压合成方法,一方面可以对反应体系的温度和压力相对独立地进行调控,使合成硼碳氮化合物的反应过程可控性更强,从而能够更好地对最终产物的物相进行控制。另一方面可以使反应温度和压力的可控范围更大,使该方法适用的材料种类更多。再者,对于那些对压力敏感的反应来讲,利用该方法可以控制反应进行的速度和方向,从而改善合成材料的粒度和结晶质量。
本发明的调控氮化碳材料物相的溶剂热恒压合成方法,包括以下步骤,其中碳源液和氮源液的配制步骤不分先后:
1.碳源液的配制
在保护气体中,把碳源溶入去除水和氧的有机溶剂中,浓度为0.005~18摩尔/升,快速搅拌后得到碳源的溶液或悬浊液。
2.氮源液的配制
在保护气体中,边搅拌边将化学计量比的氮源溶入有机溶剂中,得到氮源的溶液或者悬浊液。
3.装釜
把上述碳源液和氮源液按化学计量比混合,搅拌均匀后装入热压釜中。用保护气体在混合溶液中鼓泡以排除其中的空气,然后把热压釜封装好。
4.反应
在对热压釜加热之前,首先给它施加一个40~2000MPa的压力,接着控制热压釜的温度以0.01~60℃/分钟的速度加热到220~1000℃,恒温恒压反应8~480小时,然后自然冷却至室温。
5.产品后处理
反应结束后,首先把溶剂抽滤掉,然后依次用丙酮、乙醇、稀盐酸洗涤,以除去产物中的有机副产物及其它杂质,再用去离子水反复洗涤产物,直到滤液呈中性;上述产物在真空中加热到60~200℃干燥,就可以得到粒度均匀的氮化碳材料。
依照热压釜温度和所施加压力的不同,得到的硼碳氮材料可以是六方氮化硼、正交氮化硼、立方氮化硼、石墨、六方金刚石、金刚石、石墨型氮化碳、类立方氮化碳、立方氮化碳以及六方氮化碳等。随着热压釜温度和压力的提高,具有立方结构的硼碳氮化合物的含量不断增大。对于有气体参加的反应,调控热压釜的压力还可以控制反应速度,从而控制所得材料的粒度和结晶质量。
上述步骤1和2中所用的有机溶剂可相同,也可不同。
有机溶剂的预处理如下:
按照0.01~1.0克/毫升溶剂的用量在有机溶剂中加入干燥剂并静置10~72小时后蒸馏,以便除去溶剂中含有的水和氧等杂质。
上述的有机溶剂选自苯、烷基苯、卤代苯、烷烃及卤代烷、腈类、吡啶、吡咯、液氨、有机胺、酰胺类、四氢化萘、十氢化萘、二甲基亚砜(DMSO)、二硫化碳、四氢呋喃(DHF)、六氢吡啶、氨基吡啶、肼类以及离子液体溶剂中的一种或者多种。
上述干燥剂选自碱金属、碱金属氧化物、碱金属氢化物、碱金属氢氧化物、碱金属硫酸盐、碱土金属、碱土金属氢化物、碱土金属卤化物、碱土金属氧化物、碱土金属硫酸盐、分子筛、活性氧化铝、五氧化二磷、氢化铝锂、石蜡片、碱石灰、金属溴化物、碳酸钾以及硅胶中的一种或者多种。
本发明方法中所使用的保护气体选自氮气、氦气、氖气或氩气。
在上述步骤1中使用的碳源从碳的卤化物、卤代烷、碳的硫化物、碳的氧化物、碳酸盐、卤代嗪以及有机胺中选取一种或者多种。
在上述步骤2中使用的氮源从金属氮化物、叠氮化物、氨及铵盐、三卤化氮、有机胺、氨基钠、氨基酯类、肼类或肼类配合物中选取一种或者多种。
在上述步骤4中,当把热压釜的温度以较快的速度20~60℃/min升高到预定值时,得到的样品是粒度很小的硼碳氮纳米晶体;反之,当以较慢的速度0.01~10℃/min把热压釜的温度升高到预定值时,就可以在溶剂热环境中得到粒度达到微米级或微米级以上的硼碳氮晶体材料。
本发明的方法是一种调控氮化碳材料物相的溶剂热恒压合成方法,与现有的方法相比,本发明的重大改进如下:一方面可以对反应体系的温度和压力相对独立地分别进行调控,而且可以根据需要控制那些对压力敏感的溶剂热反应过程的速度和方向,实现了超硬材料的选择性合成。另一方面,利用本发明的方法还可以防止在反应完成后的降温过程中出现的物相逆转现象。与前面的选相原位合成方法相比,该方法能使合成硼碳氮的反应过程在更高的温度和压力下进行,这对于更有效地控制产品物相和结晶质量以及扩展这种方法的应用范围是十分有利的。正是该方法具有上述优势,利用它可以使在阈值温度以下生成的产物物相与阈值温度以上生成的产物物相相同,从而保证了产物的高物相纯度。第三,能使反应过程可控性更强,而且很容易放大制备规模,实现硼碳氮材料在相对温和条件下的低成本大批量合成,因此具有重要的现实意义;此外,该方法又是综合了化学反应热力学、动力学、高压物理以及无机合成等多个学科的有关理论后发展而来的,它对相关学科的基础研究也有很高的应用价值。
本发明的方法不仅适用于氮化碳材料的合成,而且适用于其他结构和功能材料的可控合成,尤其是从那些多相共存的体系中有选择地合成某些具有特殊性质的物相时,该方法更是具有独特的优越性。
利用本发明的方法,我们已经成功地控制了氮化碳等材料的物相和结晶过程,得到了具有较高结晶质量的氮化碳材料;同时,该方法可以大幅度调控溶剂热反应速度,根据实际需要制备超硬纳米材料或者生长更大尺寸的硼碳氮晶体材料。这些超硬材料在精密机械加工、国防工业、石油钻探和开采以及我们的日常生活中都有着十分重要的应用价值。
下面结合附图说明和实施例对本发明作进一步的阐述。
四、附图说明
图1实施例1中制备的氮化碳的红外吸收光谱图,图中位于1345cm-1处的吸收峰归属为C-N键,1555cm-1归属为C=N键,2142cm-1归属为C≡N键。
图2实施例9中制备的氮化碳的X-射线衍射(XRD)谱图,图中标有“*”的为石墨型氮化碳,标有
Figure A20081000167500051
的为β型氮化碳。
图3实施例10中制备的氮化碳的TEM微观形貌图,图中(a)为明场形貌图,(b)为暗场形貌图。
图4实施例10中制备的氮化碳的选区电子衍射图,图中衍射环可以归属于类立方氮化碳,晶面指数依次为(111)、(200)、(211)、(310)。
图5实施例16中制备的氮化碳的TEM微观形貌图
图6实施例16中制备的氮化碳的选区电子衍射图,图中衍射环是电子束沿着石墨型氮化碳的[112]晶带轴入射得到的。
五、具体实施方式
实施例1:首先在苯中加入金属钠片,静置24小时后蒸馏,除去其中的水和氧。然后在氮气保护下,称取化学计量比的叠氮化钠(NaN3)和三氯代嗪(C3N3Cl3)放入热压釜中,再加入8ml经过干燥处理的苯后密封。在热压釜上施加40MPa的压力,再控制热压釜的温度以0.01℃/分钟的速度升高到220℃,恒温恒压反应8小时后自然冷却至室温。
反应结束后,首先将苯抽滤掉,然后依次用丙酮、乙醇、稀盐酸洗涤产物,除去其中的有机副产物及其它杂质,再用去离子水反复洗涤产物,直到滤液呈中性。在真空中加热产物到60℃进行干燥,就可以得到石墨型氮化碳(g-C3N4),其红外吸收光谱见附图1。
实施例2:如实施例1所述,所不同的是反应温度提高到260℃。
实施例3:如实施例1所述,所不同的是热压釜的反应温度提高到300℃,三氯代嗪用三甲胺替代,叠氮化钠用三氯化氮替代。
实施例4:如实施例1所述,所不同的是压力提高到80MPa。
实施例5:如实施例1所述,所不同的是压力提高到120MPa。
实施例6:如实施例1所述,所不同的是反应压力提高到80MPa,温度提高到260℃,反应时间增加到12小时。
实施例7:如实施例1所述,所不同的是反应压力提高到80MPa,温度提高到300℃,反应时间增加到24小时。
实施例8:如实施例1所述,所不同的是反应压力提高到120MPa,温度提高到260℃,反应时间增加到36小时。
实施例9:如实施例1所述,所不同的是反应压力提高到120MPa,温度提高到300℃,反应时间增加到48小时。所得样品的X-射线衍射(XRD)谱图见附图2。
实施例10:如实施例1所述,所不同的是把苯换成N,N-二甲基甲酰胺(DMF),干燥剂钠片换成氢氧化钾。所得样品的微观形貌及多晶衍射图见附图3、4。
实施例11:如实施例1所述,所不同的是用金属钠替代叠氮化钠(NaN3),三氯代嗪用一甲胺替代。
实施例12:如实施例1所述,所不同的是用金属钾替代叠氮化钠(NaN3)。
实施例13:如实施例1所述,所不同的是把苯换成六氢吡啶。
实施例14:如实施例1所述,所不同的是把苯换成液氨,干燥钠片剂换成氢氧化钙。
实施例15:如实施例1所述,所不同的是把苯换成二甲基亚砜(DMSO),干燥剂钠片换成氢化钙。
实施例16:首先在苯中加入金属钾,静置48小时后蒸馏,除去其中的水和氧。在氦气保护下,称取化学计量比的叠氮化钠(NaN3)和四溴化碳(CBr4)放入热压釜,使叠氮化钠(NaN3)在苯溶液中的含量为6摩尔/升,再加入8ml经过干燥处理的苯后密封。在热压釜上施加160MPa的压力,再控制热压釜的温度以0.5℃/分钟的速度升到300℃,恒温恒压反应16小时后自然冷却至室温。
反应结束后,首先将苯抽滤掉,然后依次用丙酮、乙醇、稀盐酸除去产物中的有机副产物和其它杂质,最后用去离子水反复洗涤产物,直到滤液呈中性。在真空中加热产物到80℃进行干燥,得到的石墨型氮化碳(g-C3N4)的微观形貌图及选区电子衍射图见附图5、6。
实施例17:如实施例16所述,所不同的是干燥剂钾用金属锂替代,叠氮化钠(NaN3)用氨基钠替代,并使其在苯中的含量为8摩尔/升。
实施例18:如实施例16所述,所不同的是苯用甲苯替代,干燥剂钾用氧化钠替代,保护气体氦气用氖气替代。
实施例19:如实施例16所述,所不同的是苯用正戊烷替代,干燥剂钾用氯化钙替代,四溴化碳用乙二胺替代,叠氮化钠用叠氮化钠和三氯化氮的混合物(摩尔比3∶1)替代。
实施例20:如实施例16所述,所不同的是苯用吡啶替代,干燥剂钾用4A型分子筛替代,叠氮化钠(NaN3)用叠氮化钾(KN3)替代,并使其在苯中的含量为10摩尔/升。
实施例21:如实施例16所述,所不同的是苯用乙腈替代,干燥剂钾用活性氧化铝替代,叠氮化钠(NaN3)用氮化锂(Li3N)替代,并使其在苯中的含量为12摩尔/升。
实施例22:如实施例16所述,所不同的是苯用四氢吡咯替代,干燥剂钾用3A型分子筛替代,叠氮化钠(NaN3)用氮化锂(Li3N)和氯化铵(NH4Cl)的混合物(摩尔比3∶1)替代,并使其苯溶液的浓度为14摩尔/升。
实施例23:如实施例16所述,所不同的是把压力提高到180MPa,温度提高到350℃,反应时间增加到20小时。
实施例24:如实施例16所述,所不同的是先升温到220℃,然后给反应体系加上200MPa的压力。
实施例25:如实施例16所述,所不同的是先给反应体系加上60MPa的压力,然后升温到220℃后,压力提高到300MPa,继续恒温恒压反应。
实施例26:首先在苯中加入硫酸钙和硫酸钾,静置72小时后蒸馏,除去其中的水和氧。在四氯化碳中加入氧化锶,静置10小时进行干燥;在氩气保护下,称取化学计量比的氨基钠(NaNH2)放入热压釜中,然后配制16摩尔/升的四氯化碳的苯溶液,并取该溶液8ml移入热压釜后密封。在热压釜上施加1800MPa的压力,再控制反应温度以1℃/分钟的速度升高到800℃,恒温恒压反应24小时后自然冷却至室温。
反应结束后,首先将苯抽滤掉,然后依次用丙酮、乙醇、稀盐酸除去产物中的有机副产物及其它杂质,再用去离子水反复洗涤产物,直到滤液呈中性。在真空中加热产物到100℃进行干燥,就可以得到立方氮化碳的纳米晶。
实施例27:如实施例26所述,所不同的是苯用苯胺替代,干燥剂硫酸钙和硫酸钾用石蜡片替代,氨基钠(NaNH2)用氯化铵(NH4Cl)替代。
实施例28:如实施例26所述,所不同的是氨基钠(NaNH2)用叠氮化钾(KN3)替代。
实施例29:如实施例26所述,所不同的是氨基钠(NaNH2)用叠氮化钠(NaN3)替代。
实施例30:如实施例26所述,所不同的是碳源四氯化碳用二硫化碳替代,并使其苯溶液的浓度为18摩尔/升,干燥剂硫酸钙和硫酸钾用氯化镁替代。
实施例31:如实施例26所述,所不同的是碳源四氯化碳用二氯甲烷替代,并使其苯溶液的浓度为20摩尔/升,干燥剂硫酸钙和硫酸钾用氢氧化钾替代。
实施例32:如实施例26所述,所不同的是碳源四氯化碳用三氯甲烷替代。
实施例33:如实施例26所述,所不同的是苯用溴苯替代,干燥剂硫酸钙、硫酸钾以及氧化锶用钙片和镁片的混合物替代。
实施例34:首先在吡咯中加入石蜡片,静置40小时后蒸馏,除去其中的水和氧。在氖气保护下,称取化学计量比的金属钠、四溴化碳和氯化铵放入热压釜,加入8ml经过干燥处理的吡咯后密封。在热压釜上施加300MPa的压力,再控制热压釜的温度以1.5℃/分钟的速度升高到500℃,恒温恒压反应30小时后自然冷却至室温。
反应结束后,首先将吡咯抽滤掉,然后依次用丙酮、乙醇、稀盐酸除去产物中的有机副产物及其它杂质,再用去离子水反复洗涤产物,直到滤液呈中性。在真空中加热产物到120℃进行干燥,就可以得到氮化碳纳米晶。
实施例35:如实施例34所述,所不同的是溶剂吡咯用乙苯替代,干燥剂石蜡片用钠片和氧化钙替代。
实施例36:如实施例34所述,所不同的是碳源四溴化碳用二硫化碳替代,干燥剂石蜡片用碱石灰替代。
实施例37:如实施例34所述,所不同的是碳源四溴化碳用四氯化碳替代,氮源氯化铵用氮化锂和碳酸氢铵混合物(摩尔比3∶1)替代。
实施例38:如实施例34所述,所不同的是金属钠用金属钾替代,碳源四溴化碳用四氯化碳替代,氮源氯化铵用叠氮化钾替代。
实施例39:如实施例34所述,所不同的是碳源四溴化碳用二氯甲烷替代,氮源氯化铵用硝酸铵和尿素混合物(摩尔比1∶3)替代。
实施例40:如实施例34所述,所不同的是溶剂苯用甲基肼替代,碳源四溴化碳用三氯甲烷替代。

Claims (8)

1.一种调控氮化碳材料物相的溶剂热恒压合成方法,包括以下步骤,其中碳源液和氮源液的配制步骤不分先后:
(1)碳源液的配制
在保护气体中,把碳源溶入去除水和氧的有机溶剂中,浓度为0.005~18摩尔/升,快速搅拌后得到碳源的溶液或悬浊液;
(2)氮源液的配制
在保护气体中,边搅拌边将化学计量比的氮源溶入有机溶剂中,得到氮源的溶液或悬浊液;
(3)装釜
把上述碳源液和氮源液按化学计量比混合,搅拌均匀后装入热压釜中;用保护气体在混合溶液中鼓泡以排除其中的空气,然后把热压釜封装好;
(4)反应
在对热压釜加热之前,首先给它施加一个40~2000MPa的压力,接着控制热压釜的温度以0.01~60℃/分钟的速度加热到220~1000℃,恒温恒压反应8~480小时,然后自然冷却至室温;
(5)产品后处理
反应结束后,首先把溶剂抽滤掉,然后依次用丙酮、乙醇、稀盐酸洗涤,再用去离子水反复洗涤产物,直到滤液呈中性;上述产物在真空中加热到60~200℃干燥,得到粒度均匀的氮化碳材料。
2.如权利要求1所述的调控氮化碳材料物相的溶剂热恒压合成方法,其特征在于,所述的有机溶剂的预处理是:按照0.01~1.0克/毫升溶剂的用量在有机溶剂中加入干燥剂并静置10~72小时后蒸馏,除去溶剂中含有的水和氧。
3.如权利要求1或2所述的调控氮化碳材料物相的溶剂热恒压合成方法,其特征在于,所述的有机溶剂选自苯、烷基苯、卤代苯、烷烃及卤代烷、腈类、吡啶、吡咯、液氨、有机胺、酰胺类、四氢化萘、十氢化萘、二甲基亚砜、二硫化碳、四氢呋喃、六氢吡啶、氨基吡啶、肼类、离子液体溶剂中的一种或者多种。
4.如权利要求2所述的调控氮化碳材料物相的溶剂热恒压合成方法,其特征在于,所述的干燥剂选自碱金属、碱金属氧化物、碱金属氢化物、碱金属氢氧化物、碱金属硫酸盐、碱土金属、碱土金属氢化物、碱土金属卤化物、碱土金属氧化物、碱土金属硫酸盐、分子筛、活性氧化铝、五氧化二磷、氢化铝锂、石蜡片、碱石灰、金属溴化物、碳酸钾或硅胶中的一种或者多种。
5.如权利要求1所述的调控氮化碳材料物相的溶剂热恒压合成方法,其特征在于,所述的保护气体选自氮气、氦气、氖气或氩气。
6.如权利要求1所述的调控氮化碳材料物相的溶剂热恒压合成方法,其特征在于,所述步骤(1)中使用的碳源从碳的卤化物、卤代烷、碳的硫化物、碳的氧化物、碳酸盐、卤代嗪或有机胺中选取一种或者多种。
7.如权利要求1所述的调控氮化碳材料物相的溶剂热恒压合成方法,其特征在于,所述步骤(2)中使用的氮源从金属氮化物、叠氮化物、氨及铵盐、三卤化氮、有机胺、氨基钠、氨基酯类、肼类或肼类配合物中选取一种或者多种。
8.如权利要求1所述的调控氮化碳材料物相的溶剂热恒压合成方法,其特征在于,所述步骤(4)中,当把热压釜的温度以较快的速度20~60℃/min升高到预定值时,得到的样品是粒度很小的氮化碳纳米晶体;当以较慢的速度0.01~10℃/min把热压釜的温度升高到预定值时,得到粒度达到微米级或微米级以上的氮化碳晶体材料。
CN200810001675A 2006-01-04 2006-01-04 一种调控氮化碳材料物相的溶剂热恒压合成方法 Expired - Fee Related CN100588609C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810001675A CN100588609C (zh) 2006-01-04 2006-01-04 一种调控氮化碳材料物相的溶剂热恒压合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810001675A CN100588609C (zh) 2006-01-04 2006-01-04 一种调控氮化碳材料物相的溶剂热恒压合成方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100421010A Division CN100430314C (zh) 2006-01-04 2006-01-04 一种调控硼碳氮材料物相的溶剂热恒压合成方法

Publications (2)

Publication Number Publication Date
CN101254905A true CN101254905A (zh) 2008-09-03
CN100588609C CN100588609C (zh) 2010-02-10

Family

ID=39890080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810001675A Expired - Fee Related CN100588609C (zh) 2006-01-04 2006-01-04 一种调控氮化碳材料物相的溶剂热恒压合成方法

Country Status (1)

Country Link
CN (1) CN100588609C (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153055A (zh) * 2010-12-02 2011-08-17 北京化工大学 批量石墨型氮化碳的溶剂热制备方法
CN102218339A (zh) * 2011-04-01 2011-10-19 中国科学院苏州纳米技术与纳米仿生研究所 石墨相碳氮化合物粉体、其制备方法及应用
CN102247877A (zh) * 2011-05-18 2011-11-23 重庆工商大学 可见光催化剂的制备方法
CN102344847A (zh) * 2011-09-06 2012-02-08 山东源根石油化工有限公司 一种氮化碳固体微粒及含有该氮化碳固体微粒的柴油发动机油组合物
CN103601187A (zh) * 2013-11-29 2014-02-26 沈阳化工大学 一种碳化氮粉体的制备方法
CN103737688A (zh) * 2014-01-24 2014-04-23 福建农林大学 一种固载石墨相氮化碳功能性竹材及其制备方法
CN108598506A (zh) * 2016-07-29 2018-09-28 杭州富阳伟文环保科技有限公司 一种复合纳米材料及其应用
CN114572943A (zh) * 2022-02-09 2022-06-03 大连理工大学 一种氮氧化物直接合成碳氮化合物的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153055A (zh) * 2010-12-02 2011-08-17 北京化工大学 批量石墨型氮化碳的溶剂热制备方法
CN102218339A (zh) * 2011-04-01 2011-10-19 中国科学院苏州纳米技术与纳米仿生研究所 石墨相碳氮化合物粉体、其制备方法及应用
CN102218339B (zh) * 2011-04-01 2015-12-09 中国科学院苏州纳米技术与纳米仿生研究所 石墨相碳氮化合物粉体、其制备方法及应用
CN102247877B (zh) * 2011-05-18 2013-07-03 重庆工商大学 可见光催化剂的制备方法
CN102247877A (zh) * 2011-05-18 2011-11-23 重庆工商大学 可见光催化剂的制备方法
CN102344847A (zh) * 2011-09-06 2012-02-08 山东源根石油化工有限公司 一种氮化碳固体微粒及含有该氮化碳固体微粒的柴油发动机油组合物
CN102344847B (zh) * 2011-09-06 2012-09-05 山东源根石油化工有限公司 一种氮化碳固体微粒及含有该氮化碳固体微粒的柴油发动机油组合物
CN103601187A (zh) * 2013-11-29 2014-02-26 沈阳化工大学 一种碳化氮粉体的制备方法
CN103601187B (zh) * 2013-11-29 2016-01-20 沈阳化工大学 一种碳化氮粉体的制备方法
CN103737688A (zh) * 2014-01-24 2014-04-23 福建农林大学 一种固载石墨相氮化碳功能性竹材及其制备方法
CN103737688B (zh) * 2014-01-24 2015-08-12 福建农林大学 一种固载石墨相氮化碳功能性竹材及其制备方法
CN108598506A (zh) * 2016-07-29 2018-09-28 杭州富阳伟文环保科技有限公司 一种复合纳米材料及其应用
CN108598506B (zh) * 2016-07-29 2020-07-21 杭州富阳伟文环保科技有限公司 一种复合纳米材料的应用
CN114572943A (zh) * 2022-02-09 2022-06-03 大连理工大学 一种氮氧化物直接合成碳氮化合物的方法
CN114572943B (zh) * 2022-02-09 2023-05-09 大连理工大学 一种氮氧化物直接合成碳氮化合物的方法

Also Published As

Publication number Publication date
CN100588609C (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
CN100588609C (zh) 一种调控氮化碳材料物相的溶剂热恒压合成方法
CN109603875B (zh) 氮化碳材料及其制备方法和应用
CN100430314C (zh) 一种调控硼碳氮材料物相的溶剂热恒压合成方法
Wang et al. Polyol-mediated preparation of Bi2S3 nanorods
CN103265546B (zh) 一种无模板法制备氮化碳纳米纤维的方法
CN109603876A (zh) 氮化碳材料及其制备方法和应用
CN103449403A (zh) 氮掺杂多壁碳纳米管的制备方法
CN100560480C (zh) 一种可控制备硼碳氮材料的水热恒压合成方法
CN107961808B (zh) 一种可见光催化剂的制备方法与应用
CN109248695A (zh) 一种氧空位介导的Bi基层状固氮光催化剂及其制备方法
CN111019149B (zh) Cof-5一维棒状晶体材料及其制备方法
CN109894126A (zh) 一种三维结构的卤氧化铋固氮光催化剂的制备方法
CN105254575A (zh) 一种磺胺嘧啶的合成方法
CN108298573B (zh) 一种无水氯化钇的制备方法
CN105271322B (zh) 一种束状三水碳酸镁晶体的制备方法
CN100430313C (zh) 一种可控制备硼碳氮材料的水热恒压合成方法
VishnuáKamath et al. Stabilization of α-nickel hydoxide in the presence of organic additives: chemical route to bulk synthesis
CN101428861B (zh) 一种高纯二氧化锰的制备方法
CN101143727A (zh) 一种锰钾矿型八面体分子筛的制备方法
CN101229916B (zh) 以聚四氟乙烯为添加剂燃烧合成氮化硅粉体的方法
CN103387215B (zh) 以钛酸四丁酯和淀粉分别为钛源和碳源制备TiCN粉体的方法
CN105271320A (zh) 一种形貌可控氧化镁纳米晶的制备方法
CN109824060A (zh) 一种富氨凹面普鲁士蓝材料及制备方法
CN103420422A (zh) 一种羟氧化铬的制备方法
CN103395755B (zh) 以钛酸四丁酯和酚醛树脂分别为钛源和碳源制备TiCN粉体的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100210

Termination date: 20110104