CN107961808B - 一种可见光催化剂的制备方法与应用 - Google Patents
一种可见光催化剂的制备方法与应用 Download PDFInfo
- Publication number
- CN107961808B CN107961808B CN201711259677.7A CN201711259677A CN107961808B CN 107961808 B CN107961808 B CN 107961808B CN 201711259677 A CN201711259677 A CN 201711259677A CN 107961808 B CN107961808 B CN 107961808B
- Authority
- CN
- China
- Prior art keywords
- visible light
- photocatalyst
- carbon nitride
- sulfur
- solid powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000011941 photocatalyst Substances 0.000 claims abstract description 41
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000007787 solid Substances 0.000 claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 18
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000002156 mixing Methods 0.000 claims abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 238000000227 grinding Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000012299 nitrogen atmosphere Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 229910052757 nitrogen Inorganic materials 0.000 claims description 18
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 abstract description 34
- 239000000126 substance Substances 0.000 abstract description 13
- 230000001699 photocatalysis Effects 0.000 abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 abstract description 11
- 239000011593 sulfur Substances 0.000 abstract description 11
- 239000012071 phase Substances 0.000 abstract description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 abstract description 7
- 239000002775 capsule Substances 0.000 abstract description 7
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 abstract description 6
- 229910000041 hydrogen chloride Inorganic materials 0.000 abstract description 6
- 238000006116 polymerization reaction Methods 0.000 abstract description 4
- 230000009615 deamination Effects 0.000 abstract description 2
- 238000006481 deamination reaction Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 239000007791 liquid phase Substances 0.000 abstract description 2
- 239000000155 melt Substances 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 239000002904 solvent Substances 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000005303 weighing Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 4
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical group CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 239000002135 nanosheet Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003421 catalytic decomposition reaction Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910018954 NaNH2 Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- -1 low density Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000012434 nucleophilic reagent Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- MBEGFNBBAVRKLK-UHFFFAOYSA-N sodium;iminomethylideneazanide Chemical compound [Na+].[NH-]C#N MBEGFNBBAVRKLK-UHFFFAOYSA-N 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/0605—Binary compounds of nitrogen with carbon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/01—Crystal-structural characteristics depicted by a TEM-image
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/20—Two-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
Abstract
一种可见光催化剂的制备方法,包括以下步骤:将三聚氰氯和硫单质S8混合并充分研磨,得到固体粉末;将获得的固体粉末置于马弗炉中,氮气气氛下热处理,自然冷却至室温后取出,获得制品。该光催化剂应用于可见光催化分解水制取氢气。硫单质S8在不同的温度下会以不同的相态存在,在常温下为固相,当温度升高至115.2℃以上就会融化为液相,在444.6℃时又会变为气相。当三聚氢氯与硫单质S8共热时,硫单质S8在115.2~444.6℃之间为液态,三聚氢氯相当于在硫溶剂中进行聚合。硫的存在同时又会加速三聚氢氯的聚合,促进脱氨基的作用过程。由本发明获得的氮化碳可见光催化剂为中空囊状结构的二维氮化碳,其光催化活性优异,且整个制备过程无需任何模板与后续处理,一步制备完成。
Description
技术领域
本发明涉及光催化剂,具体地说是一种可见光催化剂的制备方法与应用
背景技术
石墨相氮化碳光催化剂是一种新型的,具有类石墨相的,层状二维结构的聚合物半导体。不同于其他由过渡金属构成的二维材料,石墨相氮化碳具有化学构成简单、密度低、化学惰性、生物兼容性以及结构易于调控等特点。自首次发现这种聚合物半导体具有一定的光催化性能,人们围绕着优化氮化碳的化学结构以及调控形貌等方面展开了大量的研究工作,以提高其不足的光催化性能。迄今为止,一维纳米棒、二维纳米片、三维空心球、三维多级纳米球均被发展为新型的氮化碳光催化剂,光催化性能得到有效提高。然而,由于一维纳米棒的光催化性能不理想,而三维纳米球的制备又需借助模板剂,操作繁杂,故基于其层状结构特点的二维纳米片的开发成为人们研究的重点。研究发现,当将体相材料的维度降低至二维后,光激发产生的电子从体相迁移到表面的距离变短,面内电荷迁移速率得到提高,且由于暴露出足够大的比表面积,也会有更多的活性位点接触到更多的反应物,光催化性能可以得到更有效的提高。然而,目前对二维氮化碳光催化剂的开发工作仅局限于纳米片,其他类型的二维材料还没有报道。
固相合成法是合成氮化碳的常用方法,多选择含有三嗪结构的有机化合物为反应前驱物。常用的前驱物之一是含有三嗪结构的三聚氰氯,其结构中的碳氯键非常活泼,很容易与一些亲核试剂发生有机反应。然而,由于其自身在固相反应中易挥发、难聚合,目前在合成过程中,通过加入另一种氮源的方式来“帮助”三聚氰氯的聚合。例如,已成功使用LiN3、NaN3、CaCN2、NaNH2等为氮源,在低温或者高温高压的条件下,制备得到无定型/结晶的氮化碳。结果表明,氮源的加入可以有效的起到固定三聚氰氯,帮助聚合物生成的作用,在形成的氮化碳产物中,这些氮源主要为其结构提供桥连氮。然而,以此条件制得的样品多为团聚的体相或者堆积的空心球状,催化活性极低,无实用价值。
发明内容
本发明的目的在于提供一种具有二维中空囊状形貌的氮化碳可见光催化剂的制备方法与应用,该光催化剂活性优异,且整个制备过程无需任何模板与后续处理,一步制备完成。
为实现上述目的,本发明采用如下技术方案:
一种可见光催化剂,其化学式为C3N4,吸收可见光,光吸收带边在470nm。
上述可见光催化剂的制备方法包括以下步骤:
1、将三聚氰氯和硫单质S8按质量比3~5:10~30混合并充分研磨2~4小时,得到固体粉末;
2、将步骤(1)获得的固体粉末置于马弗炉中,氮气气氛下400~700℃热处理1~4小时,氮气流量保持为6L·min-1,自然冷却至室温后取出,获得制品并称重。
上述氮化碳可见光催化剂的应用为,该光催化剂应用于可见光催化分解水制取氢气。
鉴于在现有的固相合成法中,三聚氰氯仅能在桥氮的固定下制备得到团聚的体相或者堆积的空心球状的氮化碳、光催化性能低的问题,本发明采用硫单质S8取代桥氮,固定三聚氢氯调控制备特殊形貌的氮化碳。硫单质S8在不同的温度下会以不同的相态存在,在常温下为固相,当温度升高至115.2℃以上就会融化为液相,在444.6℃时又会变为气相。因此,当三聚氢氯与硫单质S8共热时,硫单质S8在115.2~444.6℃之间为液态,三聚氢氯相当于在硫溶剂中进行聚合,硫的存在同时又会加速三聚氢氯的聚合,促进脱氨基的作用过程。在这一双重作用下,由本发明获得的氮化碳可见光催化剂为中空囊状结构的二维氮化碳,其光催化活性优异,且整个制备过程无需任何模板与后续处理,一步制备完成。
本发明的显著优点在于:
1、本发明合成出的可见光催化剂,其囊状形貌具有二维结构,囊为空心状,囊壁薄且透明,比表面积得到大幅度提高,并提高了光吸收和转化率;
2、由本发明获得的光催化剂应用于光催化制取氢气,其光催化产氢速率相对于现有的光催化剂具有明显提高,且催化剂在光催化反应体系中可以方便地进行分离处理,具有很高的实用价值和广泛的应用前景。
3、本发明提供的新型的氮化碳可见光催化剂,其优点在于原料价格低廉,能耗低,操作简单易行,催化剂稳定、无毒、易于回收、可循环利用,符合实际生产需要,有利于大规模的推广。
附图说明
图1为本发明实施例2所得光催化剂与现有的氮化碳光催化剂的X-射线粉末衍射光谱对比图。
图2为本发明实施例2所得光催化剂与现有的氮化碳光催化剂的红外光谱对比图。
图3为本发明实施例2所得的光催化剂的扫描电镜图与透射电镜图。
图4为本发明实施例2所得光催化剂与现有的氮化碳光催化剂的氮气吸脱附曲线对比图。
图5为本发明实施例2所得的光催化剂与现有的氮化碳光催化剂进行可见光催化分解水制取氢气的性能比较图。
图6为本发明实施例2所得的光催化剂的可见光催化分解水制取氢的循环反应图。
具体实施方式
以下是本发明的几个实施例,进一步说明本发明。
实施例1
将三聚氰氯和硫单质S8按质量比3:15混合并充分研磨3个小时后得到固体粉末,所得固体粉末要求三聚氰氯与硫单质S8混合均匀,粒度60目以上为佳;将固体粉末置于马弗炉中,氮气气氛下450℃处理3小时,氮气流量保持为6L·min-1,自然冷却至室温后取出,获得制品并称重。
实施例2
将三聚氰氯和硫单质S8按质量比4:15混合并充分研磨3个小时后得到固体粉末,所得固体粉末要求三聚氰氯与硫单质S8混合均匀,粒度60目以上为佳;将固体粉末置于马弗炉中,氮气气氛下550℃处理4小时,氮气流量保持为6L·min-1,自然冷却至室温后取出,获得制品并称重。
实施例3
将三聚氰氯和硫单质S8按质量比4:10混合并充分研磨3个小时后得到固体粉末,所得固体粉末要求三聚氰氯与硫单质S8混合均匀,粒度60目以上为佳;将固体粉末置于马弗炉中,氮气气氛下450℃处理3小时,氮气流量保持为6L·min-1,自然冷却至室温后取出,获得制品并称重。
实施例4
将三聚氰氯和硫单质S8按质量比4:25混合并充分研磨3个小时后得到固体粉末,所得固体粉末要求三聚氰氯与硫单质S8混合均匀,粒度60目以上为佳;将固体粉末置于马弗炉中,氮气气氛下450℃处理3小时,氮气流量保持为6L·min-1,自然冷却至室温后取出,获得制品并称重。
以下用上述实施例2为代表并结合附图对本发明进一步阐述。
图1为实施例2所得光催化剂与现有的氮化碳光催化剂的X-射线粉末衍射光谱对比图。图中g-C3N4为现有的氮化碳光催化剂,S-CN为由本发明获得的制品。图中g-C3N4有两个明显的晶体衍射峰,分别位于13°和27.5°,归属于氮化碳结构中的(100)和(002)晶面衍射。S-CN的特征衍射峰的位置和强度均发生了明显的变化。其中,(100)面的衍射峰从13.0°偏移到13.6°,表明平面内七嗪环的周期性排列距离从6.813nm增大到7.032nm。同时,(002)晶面的衍射峰也发生了变化。衍射角从27.4°负移到23.0°,表明层间距从0.325nm增大到0.385nm,增幅达到0.06nm。并且,该衍射峰的强度弱化至基本消失,充分证明了S-CN层状结构变薄。
图2为本发明实施例2所得光催化剂与现有的氮化碳光催化剂的红外光谱对比图。图中,g-C3N4为现有的氮化碳光催化剂,S-CN为由本发明获得的制品。其中,1200-1600cm-1间的吸收带主要由七嗪环结构中C-N和C=N伸缩振动引起的,而指纹区810cm-1的吸收则对应于七嗪环的呼吸振动。3200-3400cm-1处的宽吸收峰则与催化剂表面吸附的H2O分子及残留的未聚合的N-H有关。通过比对,本发明提供的催化剂与现有催化剂的红外振动峰的位置基本吻合,多出的2180cm-1处的红外峰归属于结构中存在的未聚合完全的C≡N或者N=C=N,这与氮化碳化学结构的连续性受到影响有关,在其它二维氮化碳材料中均有体现。
图3为实施例2所得光催化剂的扫描电镜图与透射电镜图。其中,图a-d为扫描电镜图,图e-f为投射电镜图。从扫描电镜图可以看出,由本发明所获得的制品表现出大量鱼鳞状片层结构,四周略有卷曲,中心凹陷。从透射电镜可以看出由本发明所获得的制品的形貌表现为二维结构,囊状,中空,囊壁薄而透明。
图4为本发明实施例2所得光催化剂与现有的氮化碳光催化剂的氮气吸脱附曲线对比图。图中,g-C3N4为现有的氮化碳光催化剂,S-CN为由本发明获得的制品。测试结果表明,S-CN样品的比表面积为160m2·g-1,对比现有氮化碳的比表面积(6.7m2·g-1),提高了将近24倍。
图5为本发明实施例2所得的光催化剂与现有的氮化碳光催化剂进行可见光催化分解水制取氢气的性能比较图。图中g-C3N4为现有的氮化碳光催化剂,S-CN为由本发明获得的制品。由图可见,在波长为420nm的可见光照射下,20mg的g-C3N4样品的产氢性能为6μmol·h-1,等量S-CN的性能为44μmol·h-1,提高了将近8倍。
图6为本发明实施例2所得的光催化剂的可见光催化分解水制取氢的循环测试图。通过循环测试结果表明,在4轮循环后,样品的活性稳定性良好。
另外,对于实施例1、3、4,也可得出与上述实施例2相近似的效果。
Claims (2)
1.一种可见光催化剂的制备方法,其特征在于具有以下步骤:(1)、将三聚氰氯和硫单质S8按质量比3~5:10~30混合并充分研磨2~4小时,得到固体粉末;(2)、将步骤(1)获得的固体粉末置于马弗炉中,氮气气氛下400~700℃热处理1~4小时,氮气流量保持为6L·min-1,自然冷却至室温后取出,获得制品。
2.一种如权利要求1所述可见光催化剂的制备方法制备所得的可见光催化剂的应用,其特征在于:该光催化剂应用于可见光催化分解水制取氢气。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711259677.7A CN107961808B (zh) | 2017-12-04 | 2017-12-04 | 一种可见光催化剂的制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711259677.7A CN107961808B (zh) | 2017-12-04 | 2017-12-04 | 一种可见光催化剂的制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107961808A CN107961808A (zh) | 2018-04-27 |
CN107961808B true CN107961808B (zh) | 2020-01-07 |
Family
ID=61999324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711259677.7A Expired - Fee Related CN107961808B (zh) | 2017-12-04 | 2017-12-04 | 一种可见光催化剂的制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107961808B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201808905D0 (en) | 2018-05-31 | 2018-07-18 | Cambridge Entpr Ltd | Photocatalyst and photocatalytic methods |
CN109734060B (zh) * | 2019-02-18 | 2020-12-25 | 东南大学 | 氮化碳纳米材料及其制备方法和应用 |
CN111330603A (zh) * | 2020-03-25 | 2020-06-26 | 深圳先进技术研究院 | 一种新型高效光催化材料及其应用 |
CN114685801B (zh) * | 2022-03-08 | 2022-12-13 | 清华大学 | 一种贵金属回收有机聚合物及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103539090A (zh) * | 2013-10-30 | 2014-01-29 | 吉林大学 | 一种高取向排列的氮化碳纳米棒阵列及其制备方法 |
CN104415786A (zh) * | 2013-09-04 | 2015-03-18 | 安徽大学 | 微波加热快速制备类石墨结构氮化碳材料 |
CN106582761A (zh) * | 2016-11-14 | 2017-04-26 | 江苏科技大学 | 一种氮化碳空心球光催化剂及其制备方法及应用 |
-
2017
- 2017-12-04 CN CN201711259677.7A patent/CN107961808B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104415786A (zh) * | 2013-09-04 | 2015-03-18 | 安徽大学 | 微波加热快速制备类石墨结构氮化碳材料 |
CN103539090A (zh) * | 2013-10-30 | 2014-01-29 | 吉林大学 | 一种高取向排列的氮化碳纳米棒阵列及其制备方法 |
CN106582761A (zh) * | 2016-11-14 | 2017-04-26 | 江苏科技大学 | 一种氮化碳空心球光催化剂及其制备方法及应用 |
Non-Patent Citations (2)
Title |
---|
"Graphitic carbon nitride: Effects of various precursors on the structural, morphological and electrochemical sensing properties";Hui Lin Lee et al;《Applied Materials Today》;20170930;第8卷;第425-427页,supplementary information * |
"The sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance";Fang He et al;《Chem. Commun.》;20151231;第51卷;第150-152页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107961808A (zh) | 2018-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107961808B (zh) | 一种可见光催化剂的制备方法与应用 | |
Thomas et al. | Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts | |
CN103861632A (zh) | 一种硫掺杂的多孔氮化碳光催化材料的制备方法 | |
CN109985654B (zh) | 一种碱金属离子修饰的氮化碳催化剂及其制备方法和应用 | |
CN111115649B (zh) | 一种bcn纳米片的制备方法、由其制备得到的bcn纳米片及其用途 | |
CN108786878A (zh) | 氧硫双掺杂的石墨相氮化碳的制备方法 | |
CN105268463A (zh) | 一种氮掺杂碳/氮化碳光催化剂材料及其一步合成方法 | |
KR101781412B1 (ko) | 암모니아 탈수소용 촉매, 이의 제조 방법 및 이를 이용하여 암모니아로부터 수소를 생산하는 방법 | |
CN105381812B (zh) | 一种制备具有介孔结构的复合半导体材料的方法 | |
CN108408697A (zh) | 一种富氨基类石墨氮化碳及其制备方法 | |
CN111889127B (zh) | 一种原位生长制备β-Bi2O3/g-C3N4纳米复合光催化剂的方法 | |
CN107486231A (zh) | 一种石墨相氮化碳胶体光催化剂的制备方法 | |
CN111151275B (zh) | MoS2/Mo2C复合物、MoS2/Mo2C/CdS复合材料及其制备方法和应用 | |
CN110560120A (zh) | 一种多孔氮化碳材料的制备方法及多孔氮化碳材料及其用途 | |
CN106669764A (zh) | 一种软模板法制备掺杂氮化碳纳米材料的方法 | |
CN107364845A (zh) | 一种制备氮掺杂石墨烯的方法 | |
JP4767206B2 (ja) | 窒素含有炭素多孔体およびその製法 | |
Gu et al. | Crown ether-based covalent organic frameworks for CO 2 fixation | |
CN111439732B (zh) | 一种具有良好可见光响应的c6n7氮化碳材料及其制备方法与应用 | |
CN115805091B (zh) | 一种铜-银双单原子对光催化剂的制备方法 | |
CN111762764B (zh) | 一种以笼型聚倍半硅氧烷为模板制备的氮化碳材料及其制备方法与应用 | |
CN113398968B (zh) | 一种MOF衍生的TiO2/多孔g-C3N4复合光催化剂及其制备方法和应用 | |
CN1803597A (zh) | 一种调控硼碳氮材料物相的溶剂热恒压合成方法 | |
US8716171B2 (en) | Method of manufacturing a porous gallium (III) oxide photocatalyst for preparation of hydrocarbons | |
CN111153390B (zh) | 介孔类石墨相氮化碳材料及其制备方法和用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200107 Termination date: 20211204 |
|
CF01 | Termination of patent right due to non-payment of annual fee |