CN101234748B - 一种构造聚合物有序微观结构的方法 - Google Patents

一种构造聚合物有序微观结构的方法 Download PDF

Info

Publication number
CN101234748B
CN101234748B CN2008100504027A CN200810050402A CN101234748B CN 101234748 B CN101234748 B CN 101234748B CN 2008100504027 A CN2008100504027 A CN 2008100504027A CN 200810050402 A CN200810050402 A CN 200810050402A CN 101234748 B CN101234748 B CN 101234748B
Authority
CN
China
Prior art keywords
polymer
ordered
pattern
sulfydryl
orderly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100504027A
Other languages
English (en)
Other versions
CN101234748A (zh
Inventor
杨柏
李伟
聂雅茹
张俊虎
朱迪夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN2008100504027A priority Critical patent/CN101234748B/zh
Publication of CN101234748A publication Critical patent/CN101234748A/zh
Application granted granted Critical
Publication of CN101234748B publication Critical patent/CN101234748B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及一种利用去润湿结合热退火过程构造聚合物有序微观网格结构的技术。包括硅橡胶(PDMS)模板的制备、金基底的制备、图案化自组装单层膜的制备、利用水汽冷凝构造水滴的有序图案、聚合物氯仿溶液在水滴图案表面的去润湿、聚合物有序微观网格结构的形成和转移六个步骤。通过此方法不但可以方便的控制得到多种形状多种尺寸的聚合物有序网格结构,还实现了最终有序形貌向其它任意基底的转移。本发明具有方便灵活,简单快捷的特点,所得网格结构也可以进一步作为复制铸模的模板使其图案直接复制到另一种材料的表面。这种技术可广泛地应用于聚合物材料的图案化,从而从工艺的角度为新型材料更高级功能的实现提供了一种有潜力的崭新选择。

Description

一种构造聚合物有序微观结构的方法
技术领域
本发明涉及一种利用去润湿结合热退火过程构造聚合物有序微观网格结构的技术,所得到的微观有序结构具有形貌可调、尺寸可控、可适用材料范围广泛的特点。
背景技术
近年来,有机聚合物材料由于其所具有的密度低,易于加工,可变形等独特的性质,使其在微电子工业、光学材料、表面涂料、物质分离、生物应用和传感器件等众多领域成为人们期待的其它传统材料的替代材料,并得到了前所未有的迅猛发展。而在许多聚合物材料的应用中,更高级功能的实现通常以其能否预先有序图案化为前提。在这样的背景下,应用聚合物材料本身具有的玻璃化转变、相分离和聚合物相溶性等特殊的物理化学性质控制聚合物表面的结构形貌,发展新颖的图案化加工工艺逐渐为科学家所广泛注意。尤其在最近几年中,应用粘性聚合物薄膜的各种表面扰动性构造有序结构的方法开始出现。人们发现这些通常会导致无序形貌的扰动可以通过精致的实验设计实现控制。研究者应用聚合物薄膜表面各向异性的表面褶皱、在电场诱导或表面化学图案诱导下共混/共聚聚合物材料的相分离行为、由电场或热场诱发的聚合物膜侧向调制的反稳定作用、以及聚合物本体薄膜或溶液薄膜的去润湿行为等物理现象都成功得到了聚合物材料的微观有序结构。可以预见聚合物材料的未来将决定于其加工工艺的发展,基于这种图案化策略而发展出的聚合物材料新型加工技术具有重要的意义和前景。
发明内容
本发明的目的是提供一种新型的构造聚合物微观有序图案化结构的加工方法;这种方法在适用材料范围广泛的同时,还可以在一定范围内对所得有序结构的形貌尺寸及形状特征实现精确地控制。
本发明的目的可以通过以下技术方案来实现:首先用由微接触印刷制备的图案化自组装单层膜诱导实现水汽的定域冷凝,然后利用聚合物的氯仿溶液在冷凝水滴表面的去润湿过程制备得到聚合物的有序多孔膜层,最后应用热退火过程将得到的多孔膜层进行加工使之转变为各种有序网格结构。
本发明所述的方法包括如下6个步骤:
步骤1.带有微观有序表面结构硅橡胶(PDMS)模板的制备:首先将液态的聚二甲基硅氧烷(PDMS)预聚体与对应的固化剂按质量比12∶1~8∶1的比例混合均匀,25~40℃真空脱气30~50分钟,然后灌进用有序图案化的光刻胶板和与其相距3~5毫米平整玻璃组合成的模具中,于60~75℃固化8~10小时;冷却后将固化好的PDMS膜层从模具上小心地揭下,切掉四边无图案的区域,则得到带有微观有序表面结构的PDMS模板;
有序图案化的光刻胶板是利用带有不同尺寸和不同图案形状的光掩板(光掩板可以根据需要任意设计,并商业化订制),通过光刻技术将光掩板上的图案复制到光刻胶板上而得到(表面图案化的光刻胶板的制备参见文献(A.Kumar,H.A.Biebuyck,G.M.Whitesides,Langmuir 1994,10,1498.)。
步骤2.金基底的制备:本专利中使用金基底来制备图案化的自组装单层膜,金基底为表面依次蒸镀有5~10nm铬层和50~100nm金层的玻璃载片;蒸镀前玻璃载片预先经过抛光处理,使用时裁成所需大小后,再用体积比为3∶7的H2O2(30%)和H2SO4(98%)混合溶液预先清洗;
步骤3.图案化自组装单层膜的制备:将烷基链长为8~20个碳的具有亲水性质的巯基小分子化合物的乙醇溶液均匀地涂于PDMS模板有图案的表面上,待乙醇自然挥发后,将此表面覆于步骤2制备的金基底表面并保持无压力接触10~15秒实现亲水性巯基化合物单分子层的印刷(亲水自组装膜);然后将印好的金基底放入烷基链长为8~20个碳的具有疏水性质的巯基小分子化合物的乙醇溶液中浸泡10~20分钟,使在金基底上生长与亲水性巯基化合物单分子层结构互补的疏水性巯基化合物单分子层(疏水自组装膜);最后取出金基底用无水乙醇冲洗,氮气吹干,即在金基底上制备得到图案化自组装膜;
具有亲水性质的巯基小分子化合物为8-巯基正辛酸、12-巯基正十二羧酸、16-巯基十六羧酸或20-巯基正二十羧酸;具有疏水性质的巯基小分子化合物为正辛硫醇、正十二硫醇、正十六硫醇或正二十硫醇。
自组装单层膜上亲疏水的图案可以由步骤1中制备的PDMS模板上的有序形貌实现任意调整。以HDT及MHA为例,其乙醇溶液配制的方法为:称取0.02毫摩尔的HDT或MHA于平底试管中,加入8~15毫升无水乙醇并通氮气15~20分钟,配制好的溶液应冷藏备用。
步骤4.利用水汽冷凝构造水滴的有序图案:首先将流速为6~10cm3·s-1的氮气通入80~90℃的热水中,而后将鼓出的湿润氮气流通过一个温度同样为80~90℃的冷凝瓶使其发生预冷凝达到湿度稳定的目的,最后将平稳的湿润氮气流吹到步骤3中在金基底上制备的图案化自组装单层膜上,冷凝时间为3~8秒,则在亲水区域形成水滴有序图案;
步骤5.聚合物氯仿溶液在水滴图案表面的去润湿:将聚合物(要求聚合物溶于氯仿且不溶于水,同时在比所用聚合物玻璃化转变温度(Tg)高50~80℃时不发生分解,如重均分子量为5000-107的线性非交联的聚苯乙烯,重均分子量为5000-107的聚甲基丙烯酸甲酯,重均分子量为6000的发光聚合物聚乙烯基咔唑等)溶于氯仿配制成4~30mg·mL-1的氯仿溶液,迅速将步骤4中得到的带有水滴有序图案的金基底浸入此溶液中,并以1~3cm·s-1的速度立即从溶液中提出,在氯仿挥发过程中溶液在水滴图案表面将发生去润湿,最后氯仿和水在室温下完全自然挥发后,则以水滴为模板形成聚合物的有序多孔膜层;
步骤6.聚合物有序微观网格结构的形成和转移:将步骤5中得到的聚合物多孔膜层在比所用聚合物的Tg高50~80℃的条件下热退火处理1~4小时,待此样品冷却至室温后即得到所用聚合物的有序微观网格结构(如图1所示);将样品于去离子水稀释的王水溶液(体积比1∶10)中浸泡4~6小时后,聚合物膜层下面的金基底被溶解掉,膜层从玻璃上脱离并浮于溶液表面,用另一基底小心的捞起并待水挥发完全后,就可以实现聚合物微观有序网格结构基底转移;转移所用基底的材质不受任何限制。
利用该方法可以得到图案结构和尺寸可控的多种聚合物微观有序结构,操作简单,并且在普通实验室的条件下就可以完成操作。
附图说明
图1:本发明所述构造聚合物微观有序结构的工艺流程示意图;
图2:水和氯仿完全挥发后得到的具有四方排列圆孔的聚合物有序多孔膜;
图3:结合热退火过程制备正方形有序网格结构,插图为局部放大图;
图4:结合热退火过程的聚合物结构原子力高度照片,左图为热退火前,右图为热退火后;
图5:结合热退火过程制备六边形有序网格结构,插图为所用自组装膜上亲疏水图案的示意图;
图6:结合热退火过程制备三角形有序网格结构,插图为所用自组装膜上亲疏水图案的示意图;
图7:结合热退火过程制备菱形有序网格结构,插图为所用自组装膜上亲疏水图案的示意图;
图8:结合热退火过程制备梯形和五边形混合的有序网格结构,插图为所用自组装膜上亲疏水图案的示意图;
图9:步骤5和步骤6的横截剖析示意图,H为浸涂溶液膜层的厚度;R为
水滴底面的半径;h′为水滴的高度;P为液滴模板和所得网格结构的周期;h为网格结构框的高度;w为网格结构框的宽度;
图10:不同实验条件下聚合物有序网格结构框的高度与宽度的乘积对聚合物氯仿溶液浓度的曲线,C为所用溶液的浓度;
图11:刻蚀基底上的金层后所得到漂浮在水面上的聚合物有序网络结构;
图12:转移到硅片上两次的聚合物有序网格结构;
图13:转移到曲面上的聚合物有序网格结构;
图14:结合复制铸模技术复制聚合物有序网格结构后的PDMS表面;
图15:应用发光聚合物聚乙烯基咔唑所得到的微观有序网格结构;
图16:应用聚甲基丙烯酸甲酯所得到的微观有序网格结构。
如图1所示,1为金基底,其表面镀有铬和金,2为亲水自装膜,3为与亲水自装膜结构互补的疏水自装膜,4为有序水滴图案,5为聚合物氯仿溶液,6为聚合物有序多孔膜,7为聚合物有序微观网格结构。
具体实施方式
下面结合实施例对本发明做进一步的阐述,而不是要以此对本发明进行限制。
实施例1:
首先,采用步骤1的方法,制备四方排列的PDMS模板,圆的直径为10微米,圆心距为14微米。
将玻璃载片经抛光处理,并裁成2.5厘米×7.5厘米的长方形后,再用体积比为3∶7的H2O2(30%)和H2SO4(98%)混合溶液预先清洗;然后在其上依次蒸镀8nm铬层和80nm金层,制成金基底(镀膜设备为真空镀膜机;镀膜的方法为真空镀膜法,其原理是在真空中加热金属,当其达到一定温度且蒸汽压强达到或超过周围气压时,被加热的金属原子从本体逸出形成蒸汽,在真空中以直线的形式向四面八方辐射,其平均自由程与残留气体的压强成反比。一般真空蒸发距离为200-400mm,故压强达10-3Pa即可,当然真空度越高越好,可以防止氧化及保障薄膜的纯度,另外可以减少金属原子和残余气体碰创所带来的能量损失,使薄膜致密牢固。如果在一定的位置上放好基片元件,蒸气分子撞击基片而凝聚在待镀元件表面上,就形成所需要的薄膜)。
将16-巯基十六羧酸(MHA)溶于乙醇,配成浓度为5毫克/毫升的溶液,然后将该溶液均匀地涂于PDMS模板四方排列有序结构图案的表面上,待乙醇自然挥发;然后将PDMS模板涂有MHA的表面与金基底保持无压力接触15秒实现金基底上MHA单分子层的印刷,其图案为呈四方排列的直径为10微米的亲水圆,圆心距离为14微米;而后在十六硫醇的乙醇溶液(浓度为5毫克/毫升)中浸泡12分钟,则在金基底上MHA以外的区域生长上HDT的单分子层;
在得到的自组装膜的表面上缓慢吹湿润的氮气流,水汽只于亲水的MHA区域冷凝形成液滴阵列;
将基底浸入浓度为8毫克/毫升的直链聚苯乙烯的氯仿溶液中,并以2cm·s-1的速度立即从溶液中提出。所用聚苯乙烯的重均分子量为2.8×105,其Tg为100℃。当水和氯仿完全挥发后,则在金基底上形成了聚苯乙烯的有序多孔膜,其圆孔复制了亲水圆的区域,周期则与基底的亲疏水图案完全相同,如图2。
实施例2:
1.聚苯乙烯有序多孔膜的制备如实施例1所述,
2.将聚苯乙烯有序多孔膜在150℃的烘箱中加热2小时,然后等待样品温度逐渐冷却到室温。此时圆孔在热退火过程中扩展,从而形成多边形网孔,并依圆孔的四方排列而转变为边长为13微米的有序正方形网格结构,如图3。
实施例3:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。但所用图案化自组装单层膜上的亲水圆的直径为8微米,圆心和圆心的距离为14微米,聚苯乙烯氯仿溶液的浓度为13毫克/毫升。
2.将聚苯乙烯有序多孔膜在150℃的烘箱中加热2小时,然后等待样品温度逐渐冷却到室温。此时圆孔在热退火过程中扩展,最终得到扩大的直径为10微米圆孔,而没有形成有序的边长为13微米的正方形网格结构,如图4,左图为在退火前的聚苯乙烯多孔膜,右图为经过退火后得到的扩大的圆孔的膜层,其下方的截面图表明了膜层的厚度。要在热退火过程中得到有序的正方形网格结构,亲水圆的直径必须大于相邻圆心间距离的三分之二。
实施例4:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。但所用图案化自组装单层膜上的亲水圆排列方式为六方排列,聚苯乙烯氯仿溶液的浓度为11毫克/毫升。
2.将聚苯乙烯有序多孔膜在150℃的烘箱中加热2小时,然后等待样品温度逐渐冷却到室温。此时圆孔在热退火过程中扩展,从而形成多边形网孔,并依圆孔的六方排列而转变为有序的边长为10微米正六边形网格结构,如图5。此例中原始自组装单层膜上图案的结构单元为六边形(圆的直径为9微米、圆心间的距离是14微米),如图5插图所示。
实施例5:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。但所用图案化自组装单层膜上的亲水圆排列方式为六方排列(圆的直径为9微米、圆心间的距离是14微米),且具有预先设计的特殊图案(每个圆四周有3个结构单元中心),如图6插图所示。聚苯乙烯氯仿溶液的浓度为11毫克/毫升。
2.将聚苯乙烯有序多孔膜在150℃的烘箱中加热2小时,然后等待样品温度逐渐冷却到室温。此时圆孔在热退火过程中扩展,从而形成多边形网孔,并依圆孔的排列而转变为有序的边长为20微米的三角形网格结构,如图6。
实施例6:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。但所用图案化自组装单层膜上的亲水圆排列方式为六方排列(圆的直径为9微米、圆心间的距离是14微米),且具有预先设计的特殊图案(此图案存在两种结构单元,一种为呈六边形排列的六个相邻圆之间的较大区域,另一种为呈三角形排列的三个相邻圆之间的较小的区域,图案中的每个圆的周围有这两种结构单元的中心各两个),如图7插图所示。聚苯乙烯氯仿溶液的浓度为11毫克/毫升。
2.将聚苯乙烯有序多孔膜在150℃的烘箱中加热2小时,然后等待样品温度逐渐冷却到室温。此时圆孔在热退火过程中扩展,从而形成多边形网孔,并依圆孔的排列而转变为有序菱形网格结构(边长为15微米,锐角为60°),如图7。
实施例7:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。但所用图案化自组装单层膜上的亲水圆排列方式为六方排列(圆的直径为9微米、圆心间的距离是14微米),且具有预先设计的图案缺陷(自组装单层膜上图案的结构单元有两种,一种为相邻有两个较大的区域和两个较小的区域,另一种相邻有一个较大区域和四个较小区域),如图8插图所示。聚苯乙烯氯仿溶液的浓度为11毫克/毫升。
2.将聚苯乙烯有序多孔膜在150℃的烘箱中加热2小时,然后等待样品温度逐渐冷却到室温。此时圆孔在热退火过程中扩展,从而形成多边形网孔,并依圆孔的排列而转变为有序梯形和五边形混合的网格结构(梯形的长边为24微米,短边为7微米,斜边为13微米;五边形的3条短边为7微米,2条长边为13微米),如图8。
利用这种技术所得到聚合物有序网格结构的种类不只限于实施例4-7所展示的内容,预先设计所用的自组装膜上的亲疏水图案可以很方便的改变最终图案的种类。
实施例8:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。但所用图案化自组装单层膜上的图案有六方排列,亲水圆的直径为10微米,圆心和圆心的距离为14微米;四方排列,亲水圆的直径为10微米,圆心和圆心的距离为14微米;四方排列,亲水圆的直径为12微米,圆心和圆心的距离为17微米等三种,所用聚苯乙烯氯仿溶液的浓度为在5.5到14毫克/毫升的范围内变化。
2.将得到的聚苯乙烯有序多孔膜在150℃的烘箱中加热2小时,待样品温度逐渐冷却到室温后,圆孔即在热退火过程中扩展转变成多边形网孔。步骤5和步骤6的详细分析表明聚合物溶液的浸涂过程、水和氯仿的挥发过程和热退火过程对基底上聚苯乙烯的量并没有影响,如图9所示。由物质守恒定律,经数学推导,可以得到各实验参数之间的关系应为:
wh = 0.55 CP ( H - 0.67 qR ) ρ polymer
wh为最终所得聚合物有序网格结构框的宽度和高度的乘积;C为所用溶液的浓度;ρpolymer为聚合物的密度;q为水滴盖住的区域和基底总面积的比值。
3.上面得到的方程可以在一定程度上指导实验条件的选择,分别应用三种不同的实验参数,在保持其他条件不变,只是聚合物氯仿溶液浓度逐渐改变时,可以看到wh和C呈与方程相符的正比例关系,如图10。
实施例9:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。
2.将聚苯乙烯有序多孔膜在150℃的烘箱中加热2小时,然后等待样品温度逐渐冷却到室温。此时有序多孔膜转变为有序网格结构。配制王水溶液(3HCl+HNO3)并用去离子水稀释10倍(体积比)。将带有有序网格结构的基底置于其中浸泡4小时后,聚合物膜层下面的金基底被溶解掉,膜层从玻璃上脱离并浮于溶液表面。由于聚合物和王水没有任何作用,膜层上的有序结构可以得到很好的保持,如图11。
实施例10:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。
2.漂浮在水面上带有有序网格结构的聚苯乙烯膜层的制备如实施例9所述。
3.将预先用体积比为3∶7的H2O2(30%)/H2SO4(98%)混合溶液清洗的硅基底置于膜层下,并小心的捞起,待水完全挥发后就可以实现聚合物有序网格结构从金基底到硅片基底的转移,重复一次捞起的过程可以得到双层的聚合物有序网格结构,如图12,同时重复的次数可以更多,并不只限于2次。
实施例11:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。
2.漂浮在水面上带有有序网格结构的聚苯乙烯膜层的制备如实施例9所述。
3.将预先用体积比为3∶7的H2O2(30%)/H2SO4(98%)混合溶液清洗的玻璃管置于膜层下,并小心的捞起,待水完全挥发后就可以实现聚合物有序网格结构从金基底到曲面基底的转移,如图13。除了硅片和玻璃曲面基底,如云母、石墨、金属和导电玻璃等其他任意常用基底都可以用来实现聚合物有序网格结构的转移,其材质不受任何限制。
实施例12:
1.聚苯乙烯有序多孔膜的制备如实施例1所述。
2.聚苯乙烯微观有序网格结构的制备如实施例2所述。
3.将PDMS预聚体与其相应固化剂按照10∶1的质量比混合均匀,真空排气后以1000转/分的速度旋涂于所得的有序网格结构上。在60℃下加热10小时固化。小心的将固化后的PDMS膜层从基底上取下,并用氯仿、丙酮、乙醇溶剂依次清洗。聚合物的微观有序网格结构被完整地复制到固化后的PDMS膜层上,同时PDMS膜层上的图案结构具有与所应用有序网格结构互补的特点,如图14。除了硅橡胶外,其它热固化或光固化的树脂及聚合物材料也可以用来复制微观有序网格结构从而实现图案的直接复制。
实施例13:
1.聚合物有序多孔膜的制备如实施例1所述,但将所用的聚苯乙烯更换成重均分子量为6000的发光聚合物聚乙烯基咔唑(PVK),其Tg为160℃,聚合物氯仿溶液的浓度为6毫克/毫升。
2.将聚乙烯基咔唑有序多孔膜在210℃的烘箱中加热1.5小时,然后等待样品温度逐渐冷却到室温。此时圆孔在热退火过程中逐渐扩展而形成有序的边长为14微米正方形网格结构,如图15。
实施例14:
1.聚合物有序多孔膜的制备如实施例1所述,但将所用的聚苯乙烯更换成重均分子量为1×106的聚甲基丙烯酸甲酯(PMMA),其Tg为90℃,聚合物氯仿溶液的浓度为10毫克/毫升。
2.将聚甲基丙烯酸甲酯有序多孔膜在140℃的烘箱中加热2小时,然后等待样品温度逐渐冷却到室温。此时圆孔在热退火过程中逐渐扩展而形成有序的边长为14微米正方形网格结构,如图16。本发明所述的方法不只适用于实施例2、13和14中所提到的聚合物,只要能溶于氯仿且不溶于水,在热退火过程中可以保持稳定的聚合物材料都可以应用本发明所述的方法构造得到有序网格结构的形貌。

Claims (6)

1.一种构造聚合物有序微观结构的方法,其步骤如下:
步骤1,首先将液态的聚二甲基硅氧烷预聚体与对应的固化剂按质量比12∶1~8∶1的比例混合均匀,25~40℃真空脱气30~50分钟,然后灌进用有序图案化的光刻胶板和与其相距3~5毫米平整玻璃组合成的模具中,于60~75℃固化8~10小时;冷却后将固化好的PDMS膜层从模具上小心地揭下,切掉四边无图案的区域,则得到带有微观有序表面结构的PDMS模板;
步骤2,由表面依次蒸镀有5~10nm铬层和50~100nm金层的玻璃载片为金基底来制备图案化的自组装单层膜;
步骤3,将烷基链长为8~20个碳的具有亲水性质的巯基小分子化合物的乙醇溶液均匀地涂于PDMS模板有图案的表面上,待乙醇自然挥发后,将此表面覆于步骤2制备的金基底表面并保持无压力接触10~15秒实现亲水性巯基化合物单分子层的印刷;然后将印好的金基底放入烷基链长为8~20个碳的具有疏水性质的巯基小分子化合物的乙醇溶液中浸泡10~20分钟,使在金基底上生长与亲水性巯基化合物单分子层结构互补的疏水性巯基化合物单分子层;最后取出金基底用无水乙醇冲洗,氮气吹干,即在金基底上制备得到图案化自组装膜;
步骤4,利用水汽冷凝构造水滴的有序图案,首先将流速为6~10cm3·s-1的氮气通入80~90℃的热水中,而后将鼓出的湿润氮气流通过一个温度同样为80~90℃的冷凝瓶使其发生预冷凝,最后将平稳的湿润氮气流吹到步骤3中在金基底上制备的图案化自组装单层膜上,冷凝时间为3~8秒,则在亲水性巯基化合物单分子层区域形成水滴有序图案;
步骤5,聚合物氯仿溶液在水滴图案表面的去润湿,先将溶于氯仿且不溶于水及在比其自身玻璃化转变温度高50~80℃时不发生分解的聚合物溶于氯仿配制成4~30mg·mL-1的聚合物氯仿溶液,然后迅速将步骤4中得到的带有水滴有序图案的金基底浸入聚合物氯仿溶液中,并以1~3cm·s-1的速度立即从聚合物氯仿溶液中提出,在氯仿挥发过程中溶液在水滴图案表面将发生去润湿,最后氯仿和水在室温下完全自然挥发后,则以水滴为模板形成聚合物的有序多孔膜层;
步骤6,聚合物有序微观网格结构的形成和转移:将步骤5中得到的聚合物多孔膜层在比所用聚合物的玻璃化转变温度高50~80℃的条件下热退火处理1~4小时,待此样品冷却至室温后即得到聚合物的有序微观网格结构,去除金基底后即得到聚合物微观有序结构。
2.如权利要求1所述的构造聚合物有序微观结构的方法,其特征在于:有序图案化的光刻胶板是利用带有不同尺寸和不同图案形状的光掩板,通过光刻技术将光掩板上的图案复制到光刻胶板上而得到。
3.如权利要求1所述的构造聚合物有序微观结构的方法,其特征在于:具有亲水性质的巯基小分子化合物为8-巯基正辛酸、12-巯基正十二羧酸、16-巯基十六羧酸或20-巯基正二十羧酸。
4.如权利要求1所述的构造聚合物有序微观结构的方法,其特征在于:具有疏水性质的巯基小分子化合物为正辛硫醇、正十二硫醇、正十六硫醇或正二十硫醇。
5.如权利要求1所述的构造聚合物有序微观结构的方法,其特征在于:称取0.02毫摩尔具有亲或疏水性质的巯基小分子化合物于平底试管中,加入8~15毫升无水乙醇并通氮气15~20分钟,即得该种巯基小分子化合物的乙醇溶液。
6.如权利要求1所述的构造聚合物有序微观结构的方法,其特征在于:聚合物为聚甲基丙烯酸甲酯、聚乙烯基咔唑或线性非交联的聚苯乙烯。
CN2008100504027A 2008-02-27 2008-02-27 一种构造聚合物有序微观结构的方法 Expired - Fee Related CN101234748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100504027A CN101234748B (zh) 2008-02-27 2008-02-27 一种构造聚合物有序微观结构的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100504027A CN101234748B (zh) 2008-02-27 2008-02-27 一种构造聚合物有序微观结构的方法

Publications (2)

Publication Number Publication Date
CN101234748A CN101234748A (zh) 2008-08-06
CN101234748B true CN101234748B (zh) 2010-06-16

Family

ID=39918691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100504027A Expired - Fee Related CN101234748B (zh) 2008-02-27 2008-02-27 一种构造聚合物有序微观结构的方法

Country Status (1)

Country Link
CN (1) CN101234748B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829793B2 (en) * 2011-10-04 2017-11-28 The University Of Western Ontario Fabrication of free standing membranes and use thereof for synthesis of nanoparticle patterns
CN102873795A (zh) * 2012-09-17 2013-01-16 无锡英普林纳米科技有限公司 凹坑阵列聚合物模板及其制备方法
CN104439272B (zh) * 2014-11-04 2016-05-18 天津大学 一种去润湿和模板法相结合制备有序排布金颗粒的方法
CN106750419B (zh) * 2016-12-02 2019-09-13 江南大学 一种采用室温反压印技术制备热塑性聚合物多级结构的方法
CN107233853B (zh) * 2017-06-18 2023-05-09 天津大学 试剂预定义的液滴阵列生成器及制作方法和液滴生成方法
CN107705996A (zh) * 2017-09-26 2018-02-16 北京大学 基于多孔海绵结构的可压缩超级电容器及其制备方法
CN109679128A (zh) * 2018-12-21 2019-04-26 浙江工业大学 一种实现材料表面超疏水性的二级微结构的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500549B1 (en) * 1998-10-13 2002-12-31 Gambro Ab Biocompatible polymer film
CN1401687A (zh) * 2002-10-08 2003-03-12 吉林大学 结构可控的无机纳米微粒/聚合物复合超薄膜的制备方法
CN1401685A (zh) * 2002-09-15 2003-03-12 中国科学院兰州化学物理研究所 图案化导电聚合物膜的制备方法
CN1820931A (zh) * 2001-02-21 2006-08-23 新日本理化株式会社 连续双轴拉伸聚丙烯多孔膜及其制备方法
CN1935629A (zh) * 2005-09-19 2007-03-28 建凖电机工业股份有限公司 聚酰亚胺薄膜的自我组装制造过程

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500549B1 (en) * 1998-10-13 2002-12-31 Gambro Ab Biocompatible polymer film
CN1820931A (zh) * 2001-02-21 2006-08-23 新日本理化株式会社 连续双轴拉伸聚丙烯多孔膜及其制备方法
CN1401685A (zh) * 2002-09-15 2003-03-12 中国科学院兰州化学物理研究所 图案化导电聚合物膜的制备方法
CN1401687A (zh) * 2002-10-08 2003-03-12 吉林大学 结构可控的无机纳米微粒/聚合物复合超薄膜的制备方法
CN1935629A (zh) * 2005-09-19 2007-03-28 建凖电机工业股份有限公司 聚酰亚胺薄膜的自我组装制造过程

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
庄可,肖珂,王国杰,江雷.热诱导金属/聚合物膜系图案化控制的研究.高等学校化学学报25 1.2004,25(1),157-158.
庄可,肖珂,王国杰,江雷.热诱导金属/聚合物膜系图案化控制的研究.高等学校化学学报25 1.2004,25(1),157-158. *
张俊虎,李晓,闫新,杨柏.二维胶体晶体有序微结构的构筑方法.2007年全国高分子学术论文报告会.2007,(2007),385. *

Also Published As

Publication number Publication date
CN101234748A (zh) 2008-08-06

Similar Documents

Publication Publication Date Title
CN101234748B (zh) 一种构造聚合物有序微观结构的方法
EP2294636B1 (en) A method for manufacturing a thermoelectric generator, a wearable thermoelectric generator and a garment comprising the same
Miller et al. Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method
CN109540354B (zh) 压力传感器及其制备方法
CN100451840C (zh) 一种构筑微米、亚微米结构表面的方法
CN102145875B (zh) 一种聚二甲基硅氧烷微纳流控芯片的制备方法
CN102123941A (zh) 细微结构体及其制造方法
JP5078073B2 (ja) 3次元構造が形成された樹脂フィルムの製造方法
Sánchez et al. Photoembossing of periodic relief structures using polymerization‐induced diffusion: a combinatorial study
UÇAR et al. Droplet condensation on polymer surfaces: A review
CN102199744A (zh) 一种具有微纳褶皱图案的薄膜制备方法
CN1597335A (zh) 以胶体晶体为墨水进行微接触印刷的方法
Yabu et al. Preparation of Highly Oriented Nano‐Pit Arrays by Thermal Shrinking of Honeycomb‐Patterned Polymer Films
JP5050205B2 (ja) 孔の孤立したハニカム構造体の製造方法
CN101320209A (zh) 一种表面导电聚合物图案的制备方法
KR101291727B1 (ko) 임프린트 레진의 제조방법 및 임프린팅 방법
WO2019184035A1 (zh) 一种可控图案化电学器件的制备方法
JP4910193B2 (ja) 周期的な構造が形成された樹脂フィルムの製造方法
Park et al. Thermoplastic polymer patterning without residual layer by advanced nanoimprinting schemes
JP4830104B2 (ja) パターン化ハニカム状多孔質体の製造方法
CN115373215A (zh) 一种采用光刻方法制备薄膜掩模版的方法及其应用
KR101218486B1 (ko) 폴리머 주형, 그 제조방법, 이를 이용한 미세유체 채널 및 그 제조방법
KR101468491B1 (ko) 나노와이어 그리드 구조 및 이의 형성방법
KR100983010B1 (ko) 잉크젯을 이용한 유기박막 태양전지 제조방법
CN112928197B (zh) 一种基于石墨烯和银的柔性复合薄膜及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100616

Termination date: 20170227

CF01 Termination of patent right due to non-payment of annual fee