CN101220484A - 一种电解水用析氢阴极材料及其制备方法 - Google Patents

一种电解水用析氢阴极材料及其制备方法 Download PDF

Info

Publication number
CN101220484A
CN101220484A CNA2007101575010A CN200710157501A CN101220484A CN 101220484 A CN101220484 A CN 101220484A CN A2007101575010 A CNA2007101575010 A CN A2007101575010A CN 200710157501 A CN200710157501 A CN 200710157501A CN 101220484 A CN101220484 A CN 101220484A
Authority
CN
China
Prior art keywords
hydrogen evolution
cathode material
electrolysis
electrolyzing water
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101575010A
Other languages
English (en)
Inventor
韩庆
刘奎仁
陈建设
魏绪钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CNA2007101575010A priority Critical patent/CN101220484A/zh
Publication of CN101220484A publication Critical patent/CN101220484A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种电解水用析氢阴极材料及其制备方法。要点是在Ni基体上通过熔盐电解形成La基储氢合金,熔盐电解质体系选用Na3AlF6-La2O3,质量比Na3AlF6∶La2O3=85~95∶15~5,电解温度为970-1000℃,电解时间1-2h;之后在常温,电流密度为10-30mA·cm-2,时间为20min-1h条件下对La基储氢合金进行水溶液电沉积获得析氢阴极材料。在水溶液中加入硫脲为硫源,并添加LaCl3或CoCl2电解质,组成水溶液镀液。根据添加电解质不同,水溶液电沉积获得析氢阴极材料有LaNix/Ni-S、LaNix/Ni-S(La)或LaNix/Ni-S-Co。本发明的析氢阴极材料具有过电位低、电极稳定性强的特点,可以极大地提高其使用寿命。

Description

一种电解水用析氢阴极材料及其制备方法
技术领域
本发明涉及电解水用析氢阴极材料及其制备方法。具体涉及在Ni基体上通过熔盐电解获得La基储氢合金,之后在水溶液中电沉积Ni基合金,制取电解水用析氢阴极材料,有:LaNix/Ni-S、LaNix/Ni-S(La)或LaNix/Ni-S-Co。
背景技术
电解水制氢是一种能够直接获得高纯氢气的制备方法。据报道,2002年全球氢气年产量约为4100万t,而采用电解水方法获得的氢气不超过5%。究其原因,主要是电解过程中阴、阳极过电位过高,约占槽电压的1/3,导致成本大大增加,约为天然气转化法的2倍。一般而言,电解水工业广泛使用铁和镀镍阴极,当电流密度为150mA·cm-2时,其析氢过电位分别为0.38V和0.48V,电能消耗很大。
镍合金电极具有良好的电化学性能受到了广泛关注。综观数十年来的研究成果,镍合金电极主要有两个发展方向。一是提高电极的真实表面积,降低真实电流密度,达到降低析氢过电位的目的。Raney Ni合金是典型代表。与铁电极相比,当电流密度为150mA·cm-2时,RaneyNi合金电极的析氢过电位可降低150-200mV左右。另一个研究方向是提高电极本身的电化学活性。较常用的方法是通过电沉积获得高活性的二元或多元镍合金电极材料,另外还可以通过复合镀的方法向镀层中添加某些能够提高电极活性的颗粒。目前已开发出Ni-Mo、Ni-Zn-P、Ni+Ti等活性较高的镍合金析氢阴极,当电流密度为150mA·cm-2时,这些电极的析氢过电位均可比铁电极下降200-250mV左右。需要指出的是,尽管上述镍合金电极可以在数千小时连续电解条件下保持稳定,但在停止通电或间歇电解时电极活性会不断衰退(电极中的催化组分不断溶出所致),若出现逆电流则衰退更快,故而严重限制了此类高活性析氢阴极的实际应用。此问题目前尚未出现有效的解决办法。
发明内容
本发明的目的是为了克服现有技术存在的缺点,提供一种电解水用的新型析氢阴极材料,有:LaNix/Ni-S、LaNix/Ni-S(La)或LaNix/Ni-S-Co,以及该材料的制备方法。其析氢材料具有过电性低、催化活性稳定等特点。
本发明所提供的析氢阴极材料其组成是以Ni材为基体,通过熔盐电解形成一层La基储氢合金,之后在水溶液中电沉积,在La基储氢合金层外附着一层Ni基合金。
上述的Ni基体,选取有镍丝,直径为3-4mm或镍片,厚度为2-5mm。
熔盐电解是通过热扩散进行结合形成La基储氢合金层LaNix,其厚度为20-30μm。在La基储氢合金层外附着一层Ni基合金是Ni-S、Ni-S(La)或Ni-S-Co。
本发明的制备方法是:在熔盐电解质体系中以石墨为阳极,Ni基体为阴极,电解温度为970-1000℃,阴极电流密度为50-400mA·cm-2,电解时间为1-2h条件下,在Ni基体上通过熔盐电解获取La基储氢合金层;之后,在常温,电流密度为10-30mA·cm-2,时间为20min-1h,pH值为4-6条件下,对La基储氢合金进行水溶液电沉积,获取析氢阴极材料。
在Ni基体上通过熔盐电解获取La基储氢合金过程中,选用Na3AlF6-La2O3为熔盐电解质体系。其质量比Na3AlF6∶La2O3=85~95∶15~5。
对Ni基体在进行熔盐电解前,要做表面清洗处理,先用砂纸打磨后,用稀盐酸浸泡30min再用丙酮除油。
Ni基体,选取有镍丝,直径为3-4mm,或镍片,厚度为2-5mm。
对La基储氢合金进行水溶液电沉积过程中,要在水溶液中加入硫脲为硫源,并添加LaCl3或CoCl2电解质,组成水溶液镀液。
水溶液镀液组成为:NiSO4·7H2O:150-250g/l,NiCl2:20-80g/l,H3BO3:10-40g/l,硫脲:50-150g/l,LaCl3:1-5g/l,CoCl2:10-30g/l。
本发明与已知技术比较,其明显的特点和积极效果是:所得析氢阴极材料的析氢过电位低,70~80mV,电极稳定性强。从实施例中的对比实验数据,可以看出本发明的析氢阴极材料较已知技术的析氢阴极材料有显著的进步。
附图说明:
图1是LaNix/Ni-S合金镀层与Ni-S合金镀层室温下的极化曲线(30mass%NaOH溶液);
图2是LaNix/Ni-S(La)合金镀层与Ni-S合金镀层室温下的极化曲线(30mass%NaOH溶液)。
具体实施方式
实施例1
熔盐电解实验采用Na3AlF6-La2O3电解质体系,质量配比为Na3AlF6∶La2O3=85∶15,以石墨为阳极、镍丝φ3mm为阴极,电解温度为970℃,阴极电流密度为200mA·cm-2,电解时间为1h条件下,在Ni基体上通过熔盐电解获取La基储氢合金层厚度为25μm。
水溶液电沉积合金电极的镀液成分如表1所示,在常温,阴极电流密度10mA·cm-2,电沉积时间为20min条件下,对La基储氢合金进行水溶液电沉积。所获析氢阴极材料为LaNix/Ni-S。
表1镀液组成
    镀液组成及电镀条件     具体数值
    NiSO4·7H2ONiCl2H3BO3硫脲pH值     150g/l20g/l10g/l50g/l6
间歇电解实验选择NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2,每10h停电一次,停电时间为30s,总电解时间为80h,观察析氢过电位随时间的变化。
实验结果:
熔盐电解实验所得LaNix储氢合金层厚度约25μm,合金层中镧的质量比为40.35%。
LaNix/Ni-S合金镀层与Ni-S合金镀层室温下的极化曲线(30mass%NaOH溶液)如图1所示。
表2由稳态极化曲线得出的电化学参数
    b/mV·dec-1     i0/mA     η150/mV
  LaNix/Ni-S镀层Ni-S镀层     115126     18.113.7     163197
注:b-Tafel斜率;i0-交换电流密度;η150-HER过电位。
可以看出,与传统的Ni-S合金阴极相比,LaNix/Ni-S合金镀层的电化学活性大为提高,其中交换电流密度(i0)提高40%。
恒电流电解实验表明,当NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2时,该复合电极的析氢过电位仅为80mV。与传统的Ni-S合金析氢阴极(析氢过电位为90-100mV)相比,可降低阴极电耗近20%。
循环伏安测试结果(电位范围-1.3~0V,扫描速度10mV·s-1)表明,经过阳极过程后,LaNix/Ni-S合金电极的析氢过电位未发生变化,而Ni-S电极则明显增大,其原因在于LaNix/Ni-S合金中的储氢合金层可实现大量储氢,在阳极过程中这些吸附氢的放电反应替代了电极组分的溶出,即经过循环扫描之后电极的结构未被破坏,故而可以保证电极活性的长效稳定。
间歇电解实验表明,Ni-S合金电极的析氢过电位有所增大(由95mV增至120mV),而LaNix/Ni-S合金电极的析氢过电位未发生变化(始终稳定在70-80mV)。说明该电极具有很高的电化学稳定性。
实施例2
熔盐电解实验采用Na3AlF6-La2O3电解质体系,质量配比为Na3AlF6∶La2O3=95∶5,以石墨为阳极、镍丝φ4mm为阴极,电解温度为1000℃,阴极电流密度为150mA·cm-2,电解时间为2h条件下,在Ni基体上通过熔盐电解获取La基储氢合金层厚度为25μm。
水溶液电沉积合金电极的镀液成分如表3所示,在常温,阴极电流密度20mA·cm-2,电沉积时间为30min条件下,对La基储氢合金进行水溶液电沉积,所获析氢阴极材料为LaNix/Ni-S(La)。
表3镀液组成
    镀液组成及电镀条件     具体数值
    NiSO4·7H2ONiCl2H3BO3硫脲LaCl3pH值     250g/l80g/l40g/l150g/l5g/l4
间歇电解实验选择NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2,每10h停电一次,停电时间为30s,总电解时间为80h,观察析氢过电位随时间的变化。
实验结果:
熔盐电解实验所得LaNix储氢合金层厚度约25μm,合金层中镧的质量比为42.44%。LaNix/Ni-S(La)合金镀层与Ni-S合金镀层室温下的极化曲线(30mass%NaOH溶液)如图2所示
表4由稳态极化曲线得出的电化学参数
   b/mV·dec-1     i0/mA    η150/mV
 LaNix/Ni-S(La)镀层Ni-S镀层    110126     20.113.7     141197
注:b-Tafel斜率;i0-交换电流密度;η150-HER过电位。
可以看出,与传统的Ni-S合金阴极相比,LaNix/Ni-S(La)合金镀层的电化学活性大为提高,其中交换电流密度(i0)提高50%。
恒电流电解实验表明,当NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2时,该复合电极的析氢过电位仅为75mV。与传统的Ni-S合金析氢阴极(析氢过电位为90-100mV)相比,可降低阴极电耗20%。
循环伏安测试结果(电位范围-1.3~0V,扫描速度10mV·s-1)表明,经过阳极过程后,LaNix/Ni-S(La)合金电极的析氢过电位未发生变化,而Ni-S电极则明显增大,其原因在于LaNix/Ni-S(La)合金中的储氢合金层可实现大量储氢,在阳极过程中这些吸附氢的放电反应替代了电极组分的溶出,即经过循环扫描之后电极的结构未被破坏,故而可以保证电极活性的长效稳定。
间歇电解实验表明,Ni-S合金电极的析氢过电位有所增大(由95mV增至120mV),而LaNix/Ni-S(La)合金电极的析氢过电位未发生变化(始终稳定在75mV左右)。说明该电极具有很高的电化学稳定性。
实施例3
熔盐电解实验采用Na3AlF6-La2O3电解质体系,质量配比为Na3AlF6∶La2O3=92∶8,以石墨为阳极、镍丝φ4mm为阴极,电解温度为1000℃,阴极电流密度为400mA·cm-2,电解时间为2h条件下,在Ni基体上通过熔盐电解获取La基储氢合金层厚度为30μm。
水溶液电沉积合金电极的镀液成分如表5所示,在常温,阴极电流密度30mA·cm-2,电沉积时间为30min条件下,对La基储氢合金进行水溶液电沉积,所获析氢阴极材料为LaNix/Ni-S-Co。
表5镀液组成
    镀液组成及电镀条件     具体数值
    NiSO4·7H2ONiCl2H3BO3硫脲CoCl2pH值     200g/l50g/l30g/l80g/l10g/l4
间歇电解实验选择NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2,每10h停电一次,停电时间为30s,总电解时间为80h,观察析氢过电位随时间的变化。
实验结果:
熔盐电解实验所得LaNix储氢合金层厚度约30μm,合金层中镧的质量比为43.74%。
恒电流电解实验表明,当NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2时,LaNix/Ni-S-Co电极的析氢过电位仅为70mV。
间歇电解实验表明,Ni-S合金电极的析氢过电位有所增大(由95mV增至120mV),而LaNix/Ni-S-Co合金电极的析氢过电位未发生变化(始终稳定在70mV左右)。说明该电极具有很高的电化学稳定性。
实施例4
熔盐电解实验采用Na3AlF6-La2O3电解质体系,质量配比为Na3AlF6∶La2O3=90∶10,以石墨为阳极、镍片厚2mm为阴极,电解温度为1000℃,阴极电流密度为50mA·cm-2,电解时间为2h条件下,在Ni基体上通过熔盐电解获取La基储氢合金层厚度为30μm。
水溶液电沉积合金电极的镀液成分如表6所示,在常温,阴极电流密度10mA·cm-2,电沉积时间为1h条件下,对La基储氢合金进行水溶液电沉积,所获析氢阴极材料为LaNix/Ni-S-Co。
表6镀液组成
    镀液组成及电镀条件     具体数值
    NiSO4·7H2ONiCl2H3BO3硫脲CoCl2pH值     150g/l70g/l25g/l80g/l30g/l5
间歇电解实验选择NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2,每10h停电一次,停电时间为30s,总电解时间为80h,观察析氢过电位随时间的变化。
实验结果:
熔盐电解实验所得LaNix储氢合金层厚度约30μm,合金层中镧的质量比为41.67%。
恒电流电解实验表明,当NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2时,LaNix/Ni-S-Co电极的析氢过电位为85mV。
间歇电解实验表明,Ni-S合金电极的析氢过电位有所增大(由95mV增至120mV),而LaNix/Ni-S-Co合金电极的析氢过电位未发生变化(始终稳定在85mV左右)。说明该电极具有很高的电化学稳定性。
实施例5
其它工艺条件与例4相同,其中不同之处在水溶液电沉积镀液中CoCl2电解质的加入量为20g/l,最终经过电沉积所获得析氢阴极材料为LaNix/Ni-S-Co。
实施例6
熔盐电解实验采用Na3AlF6-La2O3电解质体系,质量配比为Na3AlF6∶La2O3=90∶10,以石墨为阳极、镍片厚5mm为阴极,电解温度为980℃,阴极电流密度为250mA·cm-2,电解时间为1.5h条件下,在Ni基体上通过熔盐电解获取La基储氢合金层厚度为25μm。
水溶液电沉积合金电极的镀液成分如表7所示,在常温,阴极电流密度30mA·cm-2,电沉积时间为40min条件下,对La基储氢合金进行水溶液电沉积,所获析氢阴极材料为LaNix/Ni-S(La)。
表7镀液组成
    镀液组成及电镀条件     具体数值
    NiSO4·7H2ONiCl2H3BO3硫脲LaCl3pH值     150g/l50g/l30g/l60g/l3g/l5
间歇电解实验选择NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2,每10h停电一次,停电时间为30s,总电解时间为80h,观察析氢过电位随时间的变化。
实验结果:
熔盐电解实验所得LaNix储氢合金层厚度约25μm,合金层中镧的质量比为41.59%。
恒电流电解实验表明,当NaOH溶液浓度为30mass%、电解温度为80℃、电流密度为150mA·cm-2时,LaNix/Ni-S(La)电极的析氢过电位为80mV。
间歇电解实验表明,Ni-S合金电极的析氢过电位有所增大(由95mV增至120mV),而LaNix/Ni-S(La)合金电极的析氢过电位未发生变化(始终稳定在80mV左右)。说明该电极具有很高的电化学稳定性。
实施例7
其它工艺条件与例6相同,其中不同之处在水溶液电沉积镀液中LaCl3的加入量为1g/l。最终所获析氢阴极材料为LaNix/Ni-S(La)。

Claims (10)

1.一种电解水用析氢阴极材料,其特征在于:其组成是以Ni材为基体,通过熔盐电解的方法获得La基储氢合金,在La基储氢合金层外附着一层Ni基合金。
2.根据权利要求1所述的电解水用析氢阴极材料,其特征在于:所述的Ni材基体,选用镍丝,直径为3-4mm,或镍片,厚度为2-5mm。
3.根据权利要求1所述电解水用析氢阴极材料,其特征在于:La基储氢合金层为20-30μm。
4.根据权利要求1所述的电解水用析氢阴极材料,其特征在于:在La基储氢合金层外附着一层Ni基合金是Ni-S、Ni-S(La)或Ni-S-Co。
5.一种电解水用析氢阴极材料的制备方法,其特征在于:在熔盐电解质体系中,以石墨为阳极,Ni基体为阴极,电解温度为970-1000℃,阴极电流密度为50-400mA·cm-2,电解时间为1-2h条件下,在Ni基体上通过熔盐电解获取La基储氢合金层;之后,在常温,电流密度为10mA·cm-2-30mA·cm-2,时间为20min-1h,pH值为4-6条件下,对La基储氢合金进行水溶液电沉积,获得析氢阴极材料。
6.根据权利要求5所述的电解水用析氢阴极材料的制备方法,其特征在于:在Ni基体上通过熔盐电解获取La基储氢合金过程中,选用Na3AlF6-La2O3为熔盐电解质体系。
7.根据权利要求6所述的电解水用析氢阴极材料的制备方法,其特征在于:所述的Na3AlF6-La2O3熔盐电解质体系的质量比Na3AlF6∶La2O3=85~95∶15~5。
8.根据权利要求5或6所述的电解水用析氢阴极材料的制备方法,其特征在于:所述的Ni基体,选用镍丝,直径为3-4mm,镍片,厚度为2mm。
9.根据权利要求5所述的电解水用析氢阴极材料的制备方法,其特征在于:对La基储氢合金进行水溶液电沉积过程中,要在水溶液中加入硫脲为硫源,并添加LaCl3或CoCl2电解质,组成水溶液镀液。
10.根据权利要求9所述的电解水用析氢阴极材料的制备方法,其特征在于:所述的水溶液镀液组成为:NiSO4·7H2O:150-250g/l,NiCl2:20-80g/l,H3BO3:10-40g/l,硫脲:50-150g/l,LaCl3:1-5g/l,CoCl2:10-30g/l。
CNA2007101575010A 2007-10-17 2007-10-17 一种电解水用析氢阴极材料及其制备方法 Pending CN101220484A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007101575010A CN101220484A (zh) 2007-10-17 2007-10-17 一种电解水用析氢阴极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007101575010A CN101220484A (zh) 2007-10-17 2007-10-17 一种电解水用析氢阴极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN101220484A true CN101220484A (zh) 2008-07-16

Family

ID=39630548

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101575010A Pending CN101220484A (zh) 2007-10-17 2007-10-17 一种电解水用析氢阴极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101220484A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838829A (zh) * 2009-03-20 2010-09-22 宇宙股份有限公司 形成黑灰色涂层的电流沉积方法和带有该涂层的金属零件
CN102560529A (zh) * 2012-03-05 2012-07-11 广州华秦机械设备有限公司 水电解设备的阴极板制作方法
CN105350015A (zh) * 2015-10-28 2016-02-24 派新(上海)能源技术有限公司 一种具有微孔储氢层的复合析氢阴极及其制备方法
CN106544535A (zh) * 2016-12-10 2017-03-29 包头稀土研究院 一种含有钇、镍元素储氢合金的制备方法
CN110373682A (zh) * 2019-07-17 2019-10-25 西安建筑科技大学 一种Ti-Mn基多孔析氢阴极材料、制备方法及应用
CN110373684A (zh) * 2019-07-17 2019-10-25 西安建筑科技大学 一种V-Ti-Ni基多孔析氢阴极材料、制备方法及应用
CN110373683A (zh) * 2019-07-17 2019-10-25 西安建筑科技大学 一种Ti-Fe基多孔析氢阴极材料、制备方法及应用
CN112680744A (zh) * 2021-01-03 2021-04-20 杜先明 一种多孔镍基析氢电极复合材料

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838829B (zh) * 2009-03-20 2014-05-07 宇宙股份有限公司 形成黑灰色涂层的电流沉积方法和带有该涂层的金属零件
CN101838829A (zh) * 2009-03-20 2010-09-22 宇宙股份有限公司 形成黑灰色涂层的电流沉积方法和带有该涂层的金属零件
CN102560529A (zh) * 2012-03-05 2012-07-11 广州华秦机械设备有限公司 水电解设备的阴极板制作方法
CN102560529B (zh) * 2012-03-05 2014-09-10 广州华秦机械设备有限公司 水电解设备的阴极板制作方法
CN105350015A (zh) * 2015-10-28 2016-02-24 派新(上海)能源技术有限公司 一种具有微孔储氢层的复合析氢阴极及其制备方法
CN106544535B (zh) * 2016-12-10 2021-04-23 包头稀土研究院 一种含有钇、镍元素储氢合金的制备方法
CN106544535A (zh) * 2016-12-10 2017-03-29 包头稀土研究院 一种含有钇、镍元素储氢合金的制备方法
CN110373682A (zh) * 2019-07-17 2019-10-25 西安建筑科技大学 一种Ti-Mn基多孔析氢阴极材料、制备方法及应用
CN110373683A (zh) * 2019-07-17 2019-10-25 西安建筑科技大学 一种Ti-Fe基多孔析氢阴极材料、制备方法及应用
CN110373684A (zh) * 2019-07-17 2019-10-25 西安建筑科技大学 一种V-Ti-Ni基多孔析氢阴极材料、制备方法及应用
CN110373684B (zh) * 2019-07-17 2021-06-11 西安建筑科技大学 一种V-Ti-Ni基多孔析氢阴极材料、制备方法及应用
CN110373683B (zh) * 2019-07-17 2021-06-15 西安建筑科技大学 一种Ti-Fe基多孔析氢阴极材料、制备方法及应用
CN110373682B (zh) * 2019-07-17 2021-06-22 西安建筑科技大学 一种Ti-Mn基多孔析氢阴极材料、制备方法及应用
CN112680744A (zh) * 2021-01-03 2021-04-20 杜先明 一种多孔镍基析氢电极复合材料
CN112680744B (zh) * 2021-01-03 2021-11-02 吉林大学 一种制备弱碱性美容水用阴极

Similar Documents

Publication Publication Date Title
CN101220484A (zh) 一种电解水用析氢阴极材料及其制备方法
Pletcher et al. A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production
CN103422116B (zh) 一种多孔镍基钌氧化物复合析氢电极的制备方法
CN102127776A (zh) 一种高析氢催化活性非晶镀层及其制备方法
CN102719846A (zh) 一种碱性水电解Ni基三维网状梯度合金析氢阴极
CN102787329A (zh) 一种高效Ni-Mo-P/Ni析氢电极制备方法
CN105483751A (zh) 一种高效Ni-S-Mo析氢电极及其制备方法
JPH0581677B2 (zh)
CN105154914B (zh) 一种碳纤维复合阳极材料的制备方法
CN105148920A (zh) 一种自支撑过渡金属-金属合金催化剂及其制备方法和应用
CN110284166A (zh) 一种制备泡沫镍钼合金的电沉积方法
CN108070878A (zh) 一种多孔Ni-S/TiO2复合析氢电极及其制备方法
Han et al. Study of amorphous Ni–S–Co alloy used as hydrogen evolution reaction cathode in alkaline medium
CN1844462A (zh) 具有梯度结构的镍-硫活性析氢阴极及其制备方法
CN106319558B (zh) 一种高效多孔的MoS2-Zn析氢电极及其制备方法
Maizelis et al. Formation of multilayer metal-hydroxide electrode with developed surface for alkaline water electrolysis
CN113249737B (zh) 一种用金属制氢的电池
CN111850599A (zh) 纳米晶镍钼合金多孔复合电极的制备方法
CN106702419B (zh) 一种Ni-S-W-C析氢电极及其制备方法
CN113174607B (zh) 一种多孔Ni-Co/石墨烯电极的电化学制备方法
Elias et al. A comparative study on the electrocatalytic activity of electrodeposited Ni-W and Ni-P alloy coatings
CN113130957B (zh) 采用分级多孔表面复合电极的热再生氨电池及制备方法
CN110665509B (zh) 一种枝晶形貌FeNi3相电催化剂粉末的制备方法及其应用
CN101717948B (zh) 氯碱工业用纳米结构镍钨磷活性阴极及其制备方法
CN102899684A (zh) 煤炭电解加氢液化阴极多孔负载型催化电极的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080716