CN101203741B - 传感器、多通道传感器、感测设备和感测方法 - Google Patents

传感器、多通道传感器、感测设备和感测方法 Download PDF

Info

Publication number
CN101203741B
CN101203741B CN200680021054XA CN200680021054A CN101203741B CN 101203741 B CN101203741 B CN 101203741B CN 200680021054X A CN200680021054X A CN 200680021054XA CN 200680021054 A CN200680021054 A CN 200680021054A CN 101203741 B CN101203741 B CN 101203741B
Authority
CN
China
Prior art keywords
sensor
reverberator
light
sample
measuring light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200680021054XA
Other languages
English (en)
Other versions
CN101203741A (zh
Inventor
纳谷昌之
谷武晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006149713A external-priority patent/JP2007024870A/ja
Priority claimed from JP2006149712A external-priority patent/JP2007024869A/ja
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of CN101203741A publication Critical patent/CN101203741A/zh
Application granted granted Critical
Publication of CN101203741B publication Critical patent/CN101203741B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0085Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with both a detector and a source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7773Reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7776Index
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7779Measurement method of reaction-produced change in sensor interferometric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7789Cavity or resonator

Abstract

一种结构简单的具有高检测灵敏度的新颖传感器。该传感器(S1)包括按照下面列出的顺序从测量光(L1)的输入侧开始排列的下列组成部分:具有半透射和半反射属性的第一反射器(10);半透明体(20);和具有完全反射属性或者半透射和半反射属性的第二反射器(30)。第一反射器(10)和/或第二反射器与试样接触,并且第一反射器和/或第二反射器的平均复折射系数依试样而变化。由这些组成部分产生吸收具有特定波长的光的吸收属性,测量光(L1)的属性由包括吸收属性在内的光学属性改变,输出光(L2)从第一反射器(10)和/或第二反射器(30)输出,并且检测输出光(L2)按照所述光学属性改变的物理属性。

Description

传感器、多通道传感器、感测设备和感测方法
技术领域
本发明涉及一种传感器,将测量光输入到该传感器中并且在由试样改变了测量光的物理属性之后将其作为输出光从传感器中输出并加以检测。本发明还涉及使用所述传感器的一种多通道传感器、一种感测设备和一种感测方法。
背景技术
作为用于生物分子分析之类用途的传感器之一,提出了一种利用具有特定波长的反射光的光强度由表面等离子共振衰减这一现象的传感器,并且例如在日本未审查专利公开第6(1994)-167443号中公开了本质上由棱柱形介质块和形成在该块上并且与试样接触的金属膜构成的表面等离子传感器。在该传感器中,全反射发生在介质块与金属膜之间的交界面上。在测试试样时,将测量光照射在传感器上,从而在表面等离子共振的作用下发生全反射衰减,并且测量在交界面上全反射的反射光的强度,以检测全反射衰减。通过这种方式,进行试样的折射系数或密度的测量、试样的鉴定等。
前面介绍的等离子传感器非常昂贵,因为它需要棱柱形的介质块。此外,它还有很多结构上的约束,从而缩小传感器的尺寸或者同时分析多个试样是很困难的。因此,提出了利用具有特定波长的反射光的光强度受局部等离子共振衰减这一现象的不同类型的传感器,并且例如在日本未审查专利公开第2004-232027号或由Takayuki Okamoto和IchirouYamaguchi所著的非专利文献《Local plasmon sensor with gold colloidmonolayers deposited upon glass substrates》(OPTICS LETTERS,第25卷,第6期,第372-374页,2000年3月15日)中公开了在基板表面上具有用于有效引发如前所述的局部等离子共振的显微金属浮雕结构的局部等离子传感器。
与表面等离子传感器相比,前面介绍的局部等离子传感器具有较为简单的结构,并且较为便宜且结构约束较少,因为不需要棱柱形的介质块。不过,局部等离子传感器的检测灵敏度没有表面等离子传感器理想,以致精确分析比较困难。
发明内容
本发明是鉴于前面介绍的环境而开发的,并且本发明的目的是提供一种结构简单的、检测灵敏度比表面等离子传感器高的新颖的传感器。本发明的另一个目的是提供使用该传感器的感测设备和感测方法。
本发明的传感器是这样一种传感器,测量光输入到该传感器中并且在测量光的物理属性由试样改变之后从该传感器中输出作为输出光,并且对输出光加以检测,该传感器包括按照下面列出的顺序从测量光的输入侧开始排列的下列组成部分:
具有半透射和半反射属性的第一反射器;
半透明体;和
具有完全反射属性或者半透射和半反射属性的第二反射器,其中:
第一反射器和/或第二反射器与试样接触,并且第一反射器和/或第二反射器的平均复折射系数依试样而变化;
依照第一反射器的平均复折射系数、第二反射器的平均复折射系数以及半透明体的平均复折射系数和厚度,产生吸收具有特定波长的光的吸收属性;
测量光的属性由包括吸收属性在内的光学属性改变,
输出光从第一反射器和/或第二反射器输出;和
检测输出光按照所述光学属性改变的物理属性。
这里使用的讨论对象“半透射和半反射属性”的意思是具有半透明性和反射性,并且可以具有任何透射率和反射系数值。
最好,与试样接触的第一反射器和/或第二反射器具有小于测量光波长的浮雕结构。
这里使用的讨论对象“小于输入光波长的浮雕结构”的意思是,凸出部分和下沉部分(“下沉部分”包括沿着厚度方向穿入反射器的空间)的平均大小(“大小”指的是最宽尺寸)和平均间距小于测量光的波长。
在按照优选实施方式的传感器中,与试样接触的第一反射器和/或第二反射器是由形成在半透明体具有图案的表面上的金属制成的金属图案层构成的。
在这一实施方式中,可以给出测量光的属性由吸收属性和局部等离子共振来改变的传感器。
在按照另一种优选实施方式的传感器中,与试样接触的第一反射器和/或第二反射器是由具有多个固定在半透明体表面上的金属颗粒的金属颗粒层构成的。
在这一实施方式中,可以给出测量光的属性由吸收属性和金属颗粒层上的局部等离子共振来改变的传感器。
在按照另一种优选实施方式的传感器中,可以采用这样的构造:
第一反射器与试样接触,并且第一反射器的平均复折射系数依试样而变化;
半透明体由具有多个小孔的半透明多孔体构成,各个小孔具有充分小于测量光波长的小孔直径并且在第一反射器侧面上的表面上开口;和
第一反射器由沿着半透明体的表面轮廓形成的具有多个小孔的金属层构成。
在按照再另一种优选实施方式的传感器中,可以采用这样的构造:
第一反射器与试样接触,并且第一反射器的平均复折射系数依试样而变化;
半透明体由具有多个小孔的半透明多孔体构成,各个小孔具有充分小于测量光波长的小孔直径并且在第一反射器侧面上的表面上开口;
第一反射器由沿着半透明体的表面轮廓形成的具有多个小孔的金属层构成;和
部分地填充在半透明体的多个小孔中的各个小孔内的金属。
在这一实施方式中,可以给出这样的传感器:在该传感器中,测量光的属性由吸收属性和发生在下列至少一个上的局部等离子共振来改变:第一反射器、第二反射器和部分地被填充在半透明体的多个小孔中的各个小孔内的金属。
吸收属性由光学干涉效应产生。因此,前面介绍的实施方式可以给出测量光的属性由吸收属性和局部等离子共振来改变的传感器。这样的传感器本身是新颖的,并且包含在本发明之内。
本发明的第一种多通道传感器是这样一种传感器:测量光输入到该传感器中并且在测量光的物理属性由多个试样改变之后从该传感器中输出作为输出光,并且对输出光加以检测,以实现多个试样的同时分析,其中:
该多通道传感器包括一个或多个本发明的任何一种传感器,这些传感器分为多个传感器区域,各个传感器区域与多个试样中的各个试样接触;和
针对各个传感器区域检测按照光学属性变化的物理属性。
本发明的第二种多通道传感器是这样一种传感器:测量光输入到该传感器中并且在测量光的物理属性由多个试样改变之后从该传感器中输出作为输出光,并且对输出光加以检测,以实现多个试样的同时分析,其中:
该多通道传感器包括多个本发明的任何一种传感器,和
针对各个传感器检测按照光学属性变化的物理属性。
本发明的具有试样池的传感器是这样的传感器,该传感器包括:
附加在可由试样填充的试样池上的本发明的任何一种传感器,
其中,所述传感器固定在试样池上,使得传感器的第一反射器和/或第二反射器与试样池中的试样接触。
本发明的感测设备是这样一种设备,该设备包括:
本发明的任何一种传感器或多通道传感器;
测量光照射构件,用于将测量光照射在传感器或多通道传感器上;和
检测构件,用于检测输出光的物理属性。
最好,将检测构件构成为检测下列至少一项:输出光的光强度、输出光光强度的变化、由传感器吸收的光的吸收峰值波长和由传感器吸收的光的吸收峰值波长的偏移量。
本发明的感测设备可以分析试样的折射系数和/或密度。此外,可以通过分析试样的折射系数来认定试样。
本发明的感测方法是使用本发明的任何一种传感器或多通道传感器的感测方法,该方法包括步骤:
在将试样与传感器接触之前,在传感器S或多通道传感器MS要与试样接触的侧面上固定专门与特定物质相结合的粘着物质;
将测量光照射在传感器或多通道传感器上;和
检测输出光的物理属性,以分析试样中是否存在特定物质和/或该特定物质的量。
在本发明的传感器中,采用了这样的构造,按照下面列出的顺序从测量光的输入侧开始下列组成部分:具有半透射和半反射属性的第一反射器;半透明体;和具有完全反射属性或半透射和半反射属性的第二反射器。
在这样的结构中,透射穿过第一反射器并且进入到半透明体中的光在第一反射器和第二反射器之间反复进行反射,导致多路径反射(共振)有效发生。从而,有效地发生了多路径反射干涉。在本发明的传感器中,多路径干涉条件按照第一反射器的平均复折射系数、第二反射器的平均复折射系数以及半透明体的平均复折射系数和厚度而变化。因此,按照这些因素产生用于吸收具有特定波长的光的吸收属性,从第一反射器和/或第二反射器中输出物理属性按照吸收属性而与测量光不同的输出光。
在本发明的传感器中,采用这样的构造:第一反射器和/或第二反射器与试样接触,并且第一反射器和/或第二反射器的平均复折射系数依试样而变化。在这样的结构中,多路径干涉条件(因此吸收属性)由试样改变。因此,可以通过检测输出光按照吸收属性变化的物理属性来进行试样分析。
在本发明的传感器中,采用了这样的构造:由两个不同的反射器将半透明体夹在中间,这与表面等离子传感器比较起来要简单得多,同时成本更低、结构约束更少。
在本发明的传感器中,会有效地发生多路径干涉,并且具有特定波长的光会遭到强烈吸收。因此,与传统的局部等离子传感器相比,本发明的传感器具有更高的检测灵敏度,并且能够实现高度精确的分析。
附图说明
附图1A是按照本发明的第一实施方式的传感器的立体图。
附图1B是附图1A中所示的传感器沿着厚度方向的横截面图。
附图1C是图解说明附图1A中所示的传感器的输出光的实例频谱的曲线图。
附图2A是按照本发明的第二实施方式的传感器沿着厚度方向的横截面图。
附图2B是图解说明附图2A中所示的传感器的输出光的实例频谱的曲线图。
附图3A是按照本发明的第三实施方式的传感器沿着厚度方向的横截面图。
附图3B是附图3A中所示的传感器的顶视图。
附图4是按照本发明的第四实施方式的传感器的立体图。
附图5A到5C是图解说明附图4中所示的传感器的制造工艺的示意图。
附图6是按照本发明的第五实施方式的传感器的立体图。
附图7A是按照本发明的实施方式的多通道传感器的整体平面图。
附图7B是图解说明本发明的多通道传感器的设计变化的例子的示意图。
附图7C是图解说明本发明的多通道传感器的设计变化的另一种例子的示意图。
附图7D是图解说明本发明的多通道传感器的设计变化的再另一种例子的示意图。
附图8A是按照本发明的实施方式的具有试样池的传感器的示意性横截面图,图解说明它的结构。
附图8B是图解说明具有试样池的传感器的设计变化的例子的示意图。
附图9A是按照本发明的第一实施方式的感测设备的框图,图解说明它的结构。
附图9B是按照本发明的第二实施方式的感测设备的框图,图解说明它的结构。
附图9C是按照本发明的第三实施方式的感测设备的框图,图解说明它的结构。
附图10A是按照本发明的第四实施方式的感测设备的框图,图解说明它的结构。
附图10B是按照本发明的第五实施方式的感测设备的框图,图解说明它的结构。
附图10C是按照本发明的第六实施方式的感测设备的框图,图解说明它的结构。
附图11是图解说明实例1和实例2的仿真结果的曲线图。
具体实施方式
[传感器的第一实施方式]
下文中,将参照附图1A、1B、1C介绍按照本发明第一实施方式的传感器。附图1A是立体图,附图1B是厚度方向上的横截面图(沿着附图1中的线A-A截取),附图1C是图解说明传感器输出光的示例光谱的曲线图。
如附图1A、1B中所示,本实施方式的传感器S1具有这样的装置结构:下列组成部分是按照下面列出的顺序从测量光L1的输入侧(附图1B中的上侧)开始排列的:具有半透射和半反射属性的第一反射器10;半透明体20;和具有完全反射属性的第二反射器30。可以使用单一波长光也可以使用广谱光作为测量光L1,测量光是按照要检测的物理属性选取的。
半透明体20是由半透明平面基板构成的,第一反射器10是由设置在半透明体20一个表面上的具有形成为规则网格图案的薄金属线11的金属图案层构成的,第二反射器30是由设置在半透明体20的另一个表面上的整体金属层构成的。
对半透明体20的材料没有具体的限制,可以使用玻璃、半透明陶瓷(比如氧化铝)和半透明树脂(比如丙烯酸树脂、碳酸盐树脂)之类的材料。
可以为第一反射器10和第二反射器30使用任何反射金属,包括Au、Ag、Cu、Al、Pt、Ni、Ti、这些金属的合金等等。第一反射器10和第二反射器30可以包括两种或多种不同的金属。
第二反射器30(是整体金属层)可以例如由金属汽相沉积之类的工艺来形成。第一反射器10可以例如通过首先由金属汽相沉积之类的工艺形成整体金属层、然后在该金属层上进行公知的光刻方法来形成。
虽然第一反射器10是由反射金属制成的,但是它具有多个图案空间,这些图案空间是半透明的空空间,从而该第一反射器具有半透射和半反射属性。将第一反射器10的薄金属线11的线宽度和间距设计得小于测量光L1的波长。结果,它具有了小于测量光L1的波长的棱柱结构。由于称为电磁网眼屏蔽效应的效应,具有这种棱柱结构的第一反射器10对于光起到半透射和半反射薄膜的作用。
在按照本实施方式的传感器S1中,第一反射器10和第二反射器30各个都是依照与其接触的试样改变其复折射系数的感测体。这样,可以通过使试样与第一反射器10和/或第二反射器30接触来进行试样的分析。
具体来说,第一反射器10具有由薄金属线11和图案空间12构成的小于测量光L1波长的浮雕结构,从而由试样造成的反射器10复折射系数的变化会比较明显。这是因为,我们认为,第一反射器10的浮雕结构有效地引发了测量光L1之类的振荡。因此,最好,通过使试样至少与第一反射器10的侧面相接触来进行试样的分析。
对薄金属线11的间距没有具体的限制,只要它小于测量光L1的波长即可。如果使用可见光作为测量光L1,该间距最好例如小于或等于200nm。从灵敏度的角度来讲,薄金属线11的间距越窄越好。
对薄金属线11的线宽度没有具体限制,但是从灵敏度的角度来讲,该宽度越小越好。最好,薄金属线11的线宽度小于或等于在金属中振荡的电子的平均自由程。更加具体地讲,最好小于或等于50nm,并且更好地是小于或等于30nm。
薄金属线11的较小的间距和线宽度会导致表面积相对于单一薄金属线11的比率较大。结果,薄金属线11的表面特性更有可能在反射器10的总体特性中得到反映,从而可以获得高的灵敏度。更加具体地讲,薄金属线11的较小的间距和线宽度会导致由不同试样引起的第一反射器10的介电常数的变化较大,这会造成第一反射器10的平均复折射系数(有效复折射系数)的变化较大,从而可以获得高的灵敏度。
如附图1B中所示,当测量光L1入射在传感器S1上时,按照第一反射器10的透射率和反射率,一部分光在第一反射器10的表面(未示出)上遭到反射,而另一部分光透射穿过第一反射器10并且进入半透明体20。进入到半透明体20中的光在第一反射器10和第二反射器30之间反复发生反射。就是说,传感器S1具有在第一反射器10与第二反射器30之间发生多路径反射的共振结构。
在这样的装置中,会发生多路径反射干涉,并且会产生选择性地吸收具有特定波长的光的吸收属性。多路径干涉条件取决于第一反射器10的平均复折射系数、第二反射器30的平均复折射系数以及半透明体20的平均复折射系数和厚度。因此,依照这些因素吸收了具有特定波长的光,并且输出了物理属性按照该吸收属性不同于测量光L1的输出光L2。本实施方式的传感器S1是仅仅从第一反射器10输出输出光L2的反射型传感器,因为第二反射器30具有完全反射的属性。
这里做出这样的假设:第一反射器10的平均复折射系数为n1-ik1、半透明体20的平均复折射系数为n2、第二反射器30的平均复折射系数为n3-ik3并且半透明体20的厚度为d。(其中,k1、k2是消光系数,-ik1和-ik3代表虚部,并且在本实施方式中半透明体20的复折射系数的虚部为零)。
本发明的发明人已经发现,当测量光L1基本上为法向入射光时,由多路径干涉吸收的光的峰值波长(吸收峰值波长)λ在很大程度上取决于半透明体20的平均复折射系数n2和厚度d,并且本质上由后面给出的公式表达。就是说,本发明的发明人已经发现,吸收峰值波长λ出现在由下面给出的公式表达的波长附近,该吸收峰值波长依照第一反射器10的平均复折射系数n1-ik1、第二反射器30的平均复折射系数n3-ik3和半透明体20的平均复折射系数n2和厚度d在由下面给出的公式表达的波长周围变化。
n2d≈(m+1)/2×λ
λ≈(m+1)×2n2d
其中,m是任意整数值(0,±1,±2之类)。
尤其是,如果反射器10、半透明体20或第二反射器30中的至少任何一个是由复介电常数虚部不为零的光吸收体构成的,则会获得尖锐的吸收高峰,就是说,可以产生很强的吸收特定波长光的吸收属性。在本实施方式中,皆为金属层的第一反射器10和第二反射器30是复介电常数虚部不为零的光吸收体。
对半透明体20的厚度d没有具体的限制。不过,最好该厚度d例如不大于300nm,在这种情况下,在可见光波长范围之内仅仅出现单独一个因多路径干涉造成的吸收高峰波长并且有助于它的检测。此外,半透明体20的厚度d最好不小于100nm,在这种情况下,会有效地发生多路径反射并且在可见光范围内会出现因多路径干涉造成的吸收高峰波长并且有助于它的检测。
最好,传感器S1具有这样的装置结构:将光阻抗匹配成使多路径反射次数(锐度)最大。这样的结构可以产生尖锐的吸收高峰,并且能够实现更为精确的分析。
当试样与第一反射器10和/或第二反射器30接触(最好与第一反射器10接触)时,与试样接触的反射器的平均复折射系数(有效复折射系数)通过反射器和试样之间的相互作用而改变,从而多路径干涉条件得到了改变。就是说,因多路径干涉造成的系数属性发生了改变。
附图1C中示出了通过照射白光作为测量光L1并且使不同试样A和B与第一反射器10接触而获得的反射光频谱的例子(输出光频谱的例子)。附图1C图解说明通过改变试样使吸收高峰波长λ从λ1变化到λ2。
在传感器S1中,可以通过检测按照吸收属性变化的输出光L2的物理属性来进行试样分析。按照吸收属性变化的输出光L2物理属性包括输出光L2的光强度或其变化量、由传感器S1吸收的光的吸收波长或其偏移量等等。稍后将介绍感测设备的结构的具体实例。
本实施方式的传感器S1可以分析试样的折射系数和/或密度。也可以通过分析试样的折射系数来鉴定该试样。此外,通过在使试样与反射器接触之前在要与试样接触的反射器(第一反射器10和/或第二反射器)上固着专门与特定物质相组合的粘着物质,并且将测量光L1照射在传感器S1上和检测输出光L2,还可以分析试样中是否存在这种特定物质和/或该特定物质的量。特定物质与粘着物质的组合可以包括抗原和抗体的组合(其中任何一个都可以是粘着物质)等等,并且本实施方式还可以进行抗原和抗体反应之类的时间进程分析。
按照本实施方式的传感器S1是以前面介绍的方式构成的。
就是说,按照本实施方式的传感器S1具有包括以下面列出的顺序从测量光L1的输入端开始安排的下列部分的装置结构:具有半透射和半反射属性的第一反射器10;半透明体20;和具有完全反射属性的第二反射器30。
在这样的结构中,透射穿过第一反射器10并且进入半透明体20中的光在第一反射器10和第二反射器30之间反复反射,造成多路径反射(共振)有效发生。由此多路径反射干涉得到有效引发。在按照本实施方式的传感器S1中,多路径干涉条件会按照第一反射器10的平均复折射系数、第二反射器30的平均复折射系数和半透明体20的平均复折射系数及厚度发生变化。因此,按照这些因素产生了吸收特定波长光的吸收属性,并且从第一反射器10输出了物理属性按照吸收属性不同于测量光L1的输出光L2。
在按照本实施方式的传感器S1中,第一反射器10和/或第二反射器30要与试样接触,并且反射器的平均复折射系数会因试样而改变。在这样的结构中,多路径干涉条件会因试样改变,由此使吸收属性发生变化。这样,可以通过检测输出光L2的按照吸收属性改变的物理属性来进行试样的分析。
按照本实施方式的传感器S1具有这样的装置结构:由两个反射器10、30将半透明体20夹在中间,这种结构比表面等离子传感器简单得多,同时成本更为低廉且结构上的约束更少。
在按照本实施方式的传感器S1中,会有效地发生多路径干涉并且会产生吸收特定波长光的强吸收属性。这样,它具有比传统局部等离子传感器更高的检测灵敏度,并且能够实现更高精度的分析。
此外,按照本实施方式的传感器S1可以促成局部等离子共振在第一反射器10的由金属图案层构成的表面上有效发生。
局部等离子共振是这样的现象:由与光电场共振的金属中的自由电子的振荡诱发电场。我们认为,尤其是在具有浮雕结构的金属层中,借助与光的电场共振的突出部分的自由电子的振荡,会在突出部分周围诱发强电场,从而造成局部等离子共振有效发生。在本实施方式中,第一反射器10具有小于测量光L1的波长的浮雕结构,从而局部等离子共振会有效发生。
对于局部等离子共振发生时的波长,测量光L1的散射和吸收明显增高,并且具有这一波长的反射光的强度显著降低。造成等离子共振的光波长(共振高峰波长)以及测量光L1的散射和吸收的程度取决于放在传感器S1表面上的试样等的折射系数。
本实施方式可以提供这样的传感器S1:测量光L1的属性由因前面介绍的光学干涉效应和第一反射器10上的局部等离子共振造成的吸收属性改变。在这样传感器中,可以通过检测测量光L2按照因光学干涉效应造成的吸收属性变化的物理属性1和测量光L2按照局部等离子共振变化的物理属性2二者来进行试样的分析。此外,可以通过检测物理属性1和物理属性2之间的相互关系来分析试样。
在正常情况下,由多路径干涉造成的吸收高峰和由局部等离子共振造成的吸收高峰是出现在不同波长上的。这样,按照本实施方式的传感器S1能够通过检测由多路径干涉和局部等离子共振各自造成的物理变化来实现更为精确的分析。在附图1C中,忽略了由局部等离子共振造成的吸收高峰。由多路径干涉造成的吸收高峰和由局部等离子共振造成的吸收高峰有时可能彼此重叠。
就第一反射器10和第二反射器30的材料而言,优选的是金属,因为它也能够实现基于局部等离子共振的感测,但是也可以使用非金属反射材料。
在本实施方式中,以具有规则网格图案的第一反射器10为例进行了介绍。但是第一反射器10可以具有任何图案,包括随意的图案。但是从灵敏度的角度而言,高结构规则性是优选的,因为较高的结构规则性会提供较高的平面内均匀度以及比较统一的属性。
[传感器的第二实施方式]
下面,将参照附图2A和2B介绍按照本发明的第二实施方式的传感器。附图2A是与第一实施方式的附图1B相应的横截面图。附图2B表示输出光的实例频谱。在本实施方式中,为与第一实施方式相同的组成部分给予了相同的附图标记并且不再进一步做详细介绍。
如附图2A中所示,与第一实施方式一样,按照本实施方式的传感器S2具有包括以下面列出的顺序从测量光L1的输入端开始排列的下列组成部分的装置结构:第一反射器10;半透明体20;和第二反射器30。本实施方式与第一实施方式的不同之处在于,第二反射器30是由和第一反射器10一样的具有形成为规则网格图案的薄金属线31的金属图案层构成的,并且第二反射器30具有半透射和半反射属性,而在第一实施方式中,第二反射器是由整体金属层构成的,并且具有完全反射的属性(第二反射器30的立体图与附图1A中的第一反射器10一样)。
在按照本实施方式的传感器S2中,第一反射器10和第二反射器30各个都是随着与其接触的试样改变其复折射系数的感测体。这样,可以通过使试样与第一反射器10和/或第二反射器30接触来进行试样的分析。在本实施方式中,第一反射器10和第二反射器30各个都具有小于测量光L1的波长的浮雕结构。这样,使试样与任何一个反射器接触都可以导致由试样造成反射器的平均复折射系数发生高灵敏度的变化。
而且在本实施方式中,和第一实施方式中一样,在第一反射器10和第二反射器30之间会有效地发生多路径反射(共振)。从而会有效地发生多路径反射干涉,并且产生吸收具有特定波长的光的吸收属性。当使试样与第一反射器10和/或第二反射器30接触时,与试样接触的反射器的平均复折射系数(有效复折射系数)会发生改变。就是说,多路径干涉条件会随着试样改变,因此吸收属性也会随着试样改变。这样,当第二反射器30是半透射和半反射的时,可以通过检测输出光L2按照吸收属性变化的物理属性来进行试样的分析。
而在第二反射器30具有完全反射属性的第一实施方式中,仅仅给出了反射型传感器,在第二反射器30具有半透射和半反射属性的本实施方式中,可以给出下列任何一种类型的传感器:仅仅从第一反射器10输出输出光L2的反射型传感器,仅仅从第二反射器30输出输出光L2的透射型传感器,或者按照第一反射器10的平均复折射系数、第二反射器30的平均复折射系数和半透明体20的平均复折射系数和厚度从第一反射器10和第二反射器30两者输出输出光L2的半透射和半反射型传感器。
在反射型传感器或半透射和半反射型传感器中,从第一反射器10输出的输出光L2(反射光)的实例频谱与第一实施方式中所示的频谱相同。附图2B表示从透射型传感器或半透射和半反射型传感器中的第二反射器30输出的输出光L2(透射光)的实例频谱。附图2B表示吸收频谱,并且图解说明随着试样的改变而从λ1变化到λ2的吸收高峰波长λ。
在按照本实施方式的传感器S2中,第一反射器10和第二反射器30各个都是由金属图案层构成的,从而可以造成局部等离子共振在第一反射器10和/或第二反射器30的表面上有效地发生。由此,本实施方式可以提供测量光L1的属性由因为前面介绍的光学干涉效应而产生的吸收属性和在第一反射器10和/或第二反射器30上的局部等离子共振而改变的传感器。在这样的传感器中,可以通过检测测量光L2按照因光学干涉效应而产生的吸收属性变化的物理属性1和测量光L2按照局部等离子共振变化的物理属性2两者来进行试样的分析。此外,可以通过检测物理属性1和物理属性2之间的相互关系来分析试样。
按照本实施方式的传感器S2是按照前面介绍的方式构成的。就是说,本实施方式的基本结构与第一实施方式相同,除了第二反射器30具有半透射和半反射属性。因此,本实施方式可以提供与第一实施方式类似的优异效果。在本实施方式中,是针对第一反射器10和第二反射器30具有相同的图案的情况来进行介绍的,但是它们也可以具有不同的图案。
[传感器的第三实施方式]
在下文中,将参照附图3A和3B介绍按照本发明的第三实施方式的传感器。附图3A是与第一实施方式的附图1A相应的立体图。附图3是传感器的顶视图。在本实施方式中,为与第一实施方式相同的组成部分给予了相同的附图标记并且将不对它们做进一步的详细介绍。
如附图3A中所示,按照本实施方式的传感器S3具有包括以下面列出的顺序从测量光L1的输入端开始安排的下列组成部分的装置结构:具有半透射和半反射属性的第一反射器10;半透明体20;和与第一实施方式中一样具有完全反射属性的第二反射器30。
本实施方式与第一实施方式的不同之处在于,第一反射器10是由具有多个规则排列成矩阵形式并且固着在半透明体20的表面上的金属颗粒13的金属颗粒层构成的,这些金属颗粒具有基本相同的直径,而在第一实施方式中,第一反射器10是图案化的金属层。对金属颗粒的材料没有具体的限制,并且可以使用和第一实施方式中介绍的金属一样的金属。
前面介绍的第一反射器10可以例如通过借助旋转涂敷将其中散布有金属颗粒13的溶液施加在半透明体的表面上并且进行烘干来形成。最好,所述溶液包含诸如树脂、蛋白质之类的粘结剂,以便通过该粘结剂将金属颗粒13固着在半透明体20的表面上。当使用蛋白质作为粘结剂时,可以利用蛋白质的粘结反应来将金属颗粒13固着在半透明体20的表面上。
虽然第一反射器10是由反射金属制成的,但是它具有多个颗粒空隙14,这些颗粒空隙是透明的空白空隙,从而使得它具有半透射和半反射属性。金属颗粒13的直径和间距被设计得小于测量光L1的波长。结果,它具有小于测量光L1的波长的浮雕结构。而且在本实施方式中,由于称为电磁网眼屏蔽效应的效应,第一反射器10对于光起到半透射和半反射薄膜的作用。
而且在按照本实施方式的传感器3中,第一反射器10和第二反射器30各个都是按照与其接触的试样改变其复折射系数的感测体。这样,可以通过使试样与第一反射器10和/或第二反射器30接触来进行试样的分析。
具体来说,第一反射器10具有由金属颗粒13和颗粒空间14构成的小于测量光L1的波长的浮雕结构,从而由试样造成的反射器10的复折射系数变化会因第一实施方式中介绍过的同样的原因而比较明显。因此,最好试样的分析是通过至少使试样与第一反射器10的侧面接触来进行的。
对金属颗粒13的间距没有具体的限制,只要小于测量光L1的波长即可。如果使用可见光作为测量光L1,则该间距最好例如小于或等于200nm。从灵敏度的角度出发,金属颗粒的间距越窄越好。
对金属颗粒13的直径没有具体的限制,但是从灵敏度的角度出发,直径越小越好。最好,金属颗粒13的直径小于或等于金属中振荡的电子的平均自由程。更加具体地讲,最好小于或等于50nm,并且更好的是小于或等于30nm。
和第一实施方式的金属薄线11一样,较小的金属颗粒13的间距和直径相对于单独一个金属颗粒13会造成较大比例的表面积。结果,金属颗粒13的表面特性很有可能在反射器10的总体特性中得到反映,从而可以获得高灵敏度。
在本实施方式中,和第一实施方式中一样,在第一反射器10和第二反射器30之间重复进行光反射,造成多路径反射(共振)有效地发生。这会造成多路径反射干涉有效地发生,并且产生吸收具有特定波长的光的吸收属性。而且在本实施方式中,第一反射器10和/或第二反射器30的平均复折射系数(有效复折射系数)随着试样变化。就是说,多路径干涉条件(因此系数属性)随着试样变化。这样,试样的分析可以按照与第一实施方式相同的方式进行。
按照本实施方式的传感器S3可以在由金属颗粒层构成的第一反射器10的表面上造成局部等离子共振有效地发生。由此,本实施方式可以提供和第一实施方式一样的测量光L1的属性由因前面介绍的光学干涉效应和第一反射器10上的局部等离子共振造成的吸收属性而改变的传感器。在这一传感器中,试样的分析可以通过检测测量光L2按照因光学干涉效应造成的吸收属性变化的物理属性1和测量光L2按照局部等离子共振变化的物理属性2二者来进行。此外,可以通过检测物理属性1和物理属性2之间的相互关系来分析试样。
按照本实施方式的传感器S3是按照前述方式构成的。
就是说,本实施方式的基本结构与第一实施方式相同,只是第一反射器10是由金属颗粒层构成的。因此,本实施方式可以提供与第一实施方式类似的有益效果。
在本实施方式中,是以第一反射器10由具有多个规则排列成矩阵的直径基本相同的金属颗粒13的金属层构成并且固着在半透明体20的表面上为例来进行说明的。但是金属颗粒13也可以具有不同的直径,它们也可以排列成任何图案,包括随机图案。此外,在所进行的说明中,第二反射器30是由整体金属层构成的。但是第二反射器也可以是由和第一反射器10一样的金属颗粒层构成的。在这种情况下,第二反射器30具有半透射和半反射属性,并且试样的分析可以按照与第二实施方式相同的方式来进行。
[传感器的第四实施方式]
下文中,将参照附图4和5A到5C介绍按照本发明的第四实施方式的传感器。附图4是传感器的立体图。附图5A到5C是图解说明它的制造工艺的图。在本实施方式中,为与第一实施方式相同的组成部分给予了相同的附图标记并且将不对它们做进一步的详细介绍。
如附图4中所示,按照本实施方式的传感器4具有包括以下面列出的顺序从测量光L1的输入端开始安排的下列组成部分的装置结构:具有半透射和半反射属性的第一反射器10;半透明体20;和与第一实施方式中一样具有完全反射属性的第二反射器30。
与第一实施方式不同,在本实施方式中,半透明体20是由通过对附图5B中所示的可阳极氧化的金属体(Al)的一部分进行阳极氧化而获得的金属氧化物体(Al2O3)41构成的,而第二反射器30是由附图5B中所示的可阳极氧化的金属体40的未阳极氧化部分(Al)42构成的。第二反射器30具有完全反射属性。
半透明体20是其中形成有多个从第一反射器10一侧朝向第二反射器30一侧延伸的小孔的半透明多孔体。这些多个小孔在第一反射器10的表面上开放并且在第二反射器30一侧闭合。在半透明体20中,直径和间距都小于测量光L1的波长的多个小孔21是基本上规则地排列的。
阳极氧化是通过将可阳极氧化的金属体40与阴极一起以金属体40作为阳极浸泡在电解质溶液中并且在阳极和阴极之间施加电压来实现的。对可阳极氧化的金属体40的几何形状没有具体的限制,但是最好是平板状之类的形状。此外,金属体40可以包括底座,在该底座上,以层之类的形式形成可阳极氧化的金属。对电解质溶液没有具体的限制,最好是包含从由硫酸、磷酸、铬酸、草酸、氨基磺酸、苯磺酸、氨磺酸之类酸构成的组中选取的一种或多种酸的酸性电解质溶液。
如附图5A和5B中所示,在对可阳极氧化的金属体40进行阳极氧化时,氧化反应沿着基本上垂直于表面40s的方向从表面40s开始进行,并且形成金属氧化物体(Al2O3)。由阳极氧化形成的金属氧化物体41具有包括在从上方观看时基本上为六边形形状的没有任何间隙地排布的多个细柱体41a的结构。从表面40s沿着深度方向基本上为直线地延伸的各个小孔21形成在各个柱体41a的近似中心处,并且各个柱体41a的底部具有圆形表面。在例如《Material Technology》(第15卷,第10期,第34页,1997)中介绍了由阳极氧化形成的金属氧化物体的结构。
在使用草酸作为电解质溶液时的阳极氧化条件的优选实例包括:电解质溶液浓度为0.5M;溶液温度为14到16摄氏度;并且施加电压为40±0.5V。在这些条件下形成的小孔21具有例如5到200nm的小孔直径,且间距为10到400nm。
在本实施方式中,第一反射器10是由通过金属汽相沉积之类的工艺沿着半透明体20的表面轮廓形成的金属层构成的。由于在半透明体20的小孔21的开口区域上没有形成金属,因此第一反射器10具有基本上为六边形的金属体15,这些金属体15各自具有处于其中心附近的小孔16,从上方观看时,这些金属体15是没有任何间隙地排布的。第一反射器10的小孔16形成为与半透明体20的小孔21相同的图案,从而具有直径和间距都小于测量光L1的波长的这些小孔16基本上是规则地排列的。
第一反射器10是由反射性金属制成的,但是具有多个小孔16,这些小孔是半透明的空空间,从而它具有半透射和半反射属性。第一反射器10是由基本上为六边形的金属体15构成的,这些金属体15各自具有处于其中心附近的小孔16,从上方观看时,这些金属体15是没有任何间隙地基本上是规则地排布的,从而它具有小于测量光L1的波长的浮雕结构。而且在本实施方式中,第一反射器10因为称为电磁网眼屏蔽效应的效应而对于光起到半透射和半反射薄膜的作用。
在按照本实施方式的传感器4中,第一反射器10和第二反射器30各自都是按照与其接触的试样改变其复折射系数的感测体。这样,试样的分析可以通过使试样与第一反射器10和/或第二反射器30接触来进行。
具体来说,第一反射器10具有由从上方看时基本上为六边形的金属体15和小孔16构成的小于测量光L1的波长的浮雕结构,从而由试样造成的反射器10的复折射系数的变化会出于与第一实施方式中介绍的同样原因而比较明显。由此,最好试样的分析是通过使试样至少与第一反射器10的侧面相接触来进行的。
对金属体15的间距(小孔16的间距)没有具体的限制,只要它小于测量光L1的波长即可。如果使用可见光作为测量光L1,则该间距最好例如小于或等于200nm。从灵敏度的角度出发,金属体15的间距越小越好。
对相邻小孔16之间的距离(相邻小孔16之间的金属体15的宽度W)没有具体的限制,但是从灵敏度的角度出发,该距离越小越好。宽度W与第一实施方式的薄金属线的宽度以及第三实施方式的金属颗粒13的直径相当。最好,宽度W小于或等于在金属中振荡的电子的平均自由路径。更加具体地讲,最好小于或等于50nm,更好的是小于或等于30nm。
和第一实施方式的薄金属线11一样,金属体15的间距和宽度W越小,金属体15的表面特征就越有可能反映在反射器10的总体特征中,从而可以获得高灵敏度。
在本实施方式中,和第一实施方式中一样,光反射在第一反射器10与第二反射器30之间反复发生,导致多路径反射(振荡)有效地发生。这造成多路径反射干涉有效地发生,并且产生了吸收具有特定波长的光的吸收属性。而且在本实施方式中,第一反射器10和/或第二反射器30的平均复折射系数(有效复折射系数)依试样变化。就是说,多路径干涉条件(因此吸收属性)会依试样而变化。这样,试样的分析可以是以和第一实施方式中一样的方式进行的。
按照本实施方式的传感器S4是按照前面介绍的方式构成的。
就是说,本实施方式的基本结构与第一实施方式相同,只是半透明体是由具有多个开口于第一反射器10的侧面表面上的小孔21的半透明多孔体构成的,并且第一反射器是由沿着半透明多孔体的表面轮廓具有多个小孔16的金属层构成的。因此,本实施方式可以给出与第一实施方式类似的有益效果。
按照本实施方式的传感器S4是很可取的,因为它是通过阳极氧化产生的。可以很容易地通过阳极氧化产生半透明体20的小孔21与第一反射器10的小孔16基本上规则排列的传感器S4。不过,这些小孔也可以是随机排列的。
在本实施方式中,仅仅介绍了Al作为用于形成半透明体20的可阳极氧化的金属体40的主要成分,但是实际上可以使用任何材料,只要它是可阳极氧化的并且结果得到的金属氧化物具有半透明性。例如,除了Al之外,可以使用Ti、Ta、Hf、Zr、Si、In、Zn之类的材料。可以阳极氧化的金属体40可以包括两种或更多种可阳极氧化金属。
在本发明中,是以第二反射器具有完全反射属性为例做出的介绍。另外,可以通过对可阳极氧化的金属体40的整个部分进行阳极氧化或者对可阳极氧化的金属体40的一部分进行阳极氧化并且除掉未经阳极氧化的部分42以及邻近部分来产生具有从中穿行的小孔21的半透明体20。如果第二反射器30是沿着具有从中穿行的小孔21的半透明体20的表面轮廓形成的,则可以获得具有小孔以及与第一反射器10类似的半透射和半反射属性的第二反射器30。从而分析可以按照与第二实施方式相同的方式来进行。
[传感器的第五实施方式]
在下文中,将参照附图6介绍按照本发明的第五实施方式的传感器。附图6是传感器的立体图。在本实施方式中,为与第四实施方式相同的组成部分给予相同的附图标记并且这里不再对它们做进一步的详细介绍。
按照本实施方式的传感器S5的基本机构与按照第四实施方式的传感器S4的基本结构相同,只是形成在半透明体20中的多个小孔21中的各个小孔在底部具有金属22。
例如,在通过金属汽相沉积形成第一反射器10的时候,可以通过形成第一反射器10,在使金属也同时汽相沉积在小孔中的条件下,使与形成第一反射器10的金属相同的金属22填充在各个小孔21的底部上。
另外,填充在半透明体20的各个小孔21底部上的金属22(可以通过首先按照前面介绍的方式同时进行第一反射器10的形成与金属22的沉积,然后除掉第一反射器10并且使用不同的金属通过金属汽相沉积再次形成第一反射器10),来由不同于第一反射器10的金属提供。
金属22的沉积可以按照与第一反射器10的形成相同的方式进行的,从而可以使用与第一实施方式中介绍的用于形成第一反射器10的金属相同的金属。就是说,可以使用任何金属作为金属22,包括Au、Ag、Cu、Al、Pt、Ni、Ti、这些金属的合金等等。金属22可以包括前面介绍的两种或更多种不同的金属。
在本实施方式中,和第四实施方式中一样,会在第一反射器10与第二反射器30之间有效地发生多路径反射(共振)。从而会有效地发生多路径反射干涉,并且产生吸收具有特定波长的光的吸收属性。而且在本实施方式中,第一反射器10和/或第二反射器30的平均复折射系数(有效复折射系数)依试样变化。就是说,多路径干涉条件(因此吸收属性)会依试样变化。这样,试样的分析可以按照与第四实施方式相同的方式进行。
此外,在本实施方式,可以在第一反射器10、第二反射器30和局部填充在半透明体20的多个小孔21中的各个小孔内的金属22的表面中的至少一个表面上引发局部等离子共振。尤其是,本发明的发明人发现,可以在局部填充在半透明体20的多个小孔中的各个小孔内的金属22的表面上有效地引发局部等离子共振。
和第一实施方式一样,本实施方式可以提供借助因前面介绍的光学干涉效应造成的吸收属性和局部等离子共振改变测量光L1的属性的传感器。在这样的传感器中,试样的分析可以通过检测测量光L2依照因光学干涉效应造成的吸收属性而改变的物理属性1和测量光L2依照局部等离子共振而改变的物理属性2二者来进行。此外,可以通过检测物理属性1和物理属性2之间的相互关系来分析试样。
[设计变化]
将会意识到,本发明并不局限于前面介绍的实施方式,并且可以进行各种不同的设计变化,而不会超出本发明的思想。
可以对第一反射器10和第二反射器30以及它们的组合的结构任意进行设计变化。例如,可以通过以各种不同的方式将第一到第四实施方式组合起来而形成第一反射器10和第二反射器30来产生按照本发明的传感器。
[多通道传感器]
下文中,将参照附图7A到7D介绍按照本发明的实施方式的多通道传感器。附图7A是多通道传感器的整体平面图。
按照本实施方式的多通道传感器MS是由传感器S构成的,传感器S是按照前面介绍的实施方式的传感器S1到S5中的任何一种传感器。此外,传感器S的表面分成了多个传感器区域R,各个传感器区域将会与多个试样中的一个试样相接触。在本实施方式中,多个传感器区域R在传感器S的表面上排布成二维矩阵。最好,相邻的传感器区域R由防水树脂之类的材料制成的间隔材料P分开。在按照本实施方式的多通道传感器MS中,由各个传感器区域R检测输出光L2依照吸收属性变化的物理属性,以实现多个试样的同时分析。
传感器S上的传感器区域R的形状和排列方式并不局限于前面介绍的那样。传感器区域R可以具有任何形状或者排列图样。例如,传感器区域R可以如附图7B中所示那样一维地排布。
在本实施方式中,介绍的是多通道传感器MS由单独一个传感器S构成。但是多通道传感器MS也可以如附图7C中所示那样由多个传感器S形成。附图7C中所示的多通道传感器MS是由多个带状传感器S构成的,在这些带状传感器S上,一维地排列着传感器区域R(象附图7B中所示那样),多通道传感器MS是沿着基本上平行于第一反射器10表面(此表面是光输出表面)的方向安置的,并且多个传感器S由单独一个承载部件H承载。针对多个传感器S的排列图案和承载结构可以是任意设计的。
在使用多个传感器S形成多通道传感器MS时,可以采用这样的构造:使各个试样与各个传感器S接触,来由各个传感器S测量输出光L2依照吸收属性变化的物理属性,而不在各个传感器S上提供多个传感器区域R,如附图7D所示。这样的结构还可以进行试样的同时分析。在附图7D中所示的多通道传感器MS中,传感器S可以按照可在市场上得到的微池(microwell)取样板的标准来安排。在这种情况下,可以将多通道传感器MS的所有顶端(附图7D中的右边缘)同时浸入填充有试样的微池取样板的多个池中,并且同时对它们进行分析。
[具有试样池的传感器的实施方式]
在下文中,将参照附图8A和8B介绍按照本发明的实施方式的具有试样池的传感器的结构。附图8A是与附图1B相应的示意性横截面图(省略了传感器的阴影)。
传感器S是按照前面介绍的实施方式的传感器S1到S5中的任何一种,并且具有下列按照所列出的顺序从测量光L1的输入侧开始排列的组成部分:具有半透射和半反射属性的第一反射器10;半透明体20;和具有完全反射属性或半透射和半反射属性的第二反射器30。
传感器S表现为反射型传感器S,其中在第二反射器具有完全反射属性时,输出光L2从第一反射器10输出。当第二反射器具有半透射和半反射属性时,传感器S表现为下列任何一种:输出光L2仅从第一反射器10输出的反射型传感器;输出光L2仅从第二反射器30输出的透射型传感器;和输出光L2从第一反射器10和第二反射器30二者输出的半透射和半反射型传感器。按照本实施方式的具有试样池C1的传感器可以按照前面介绍的任何一种传感器类型进行操作。
具有试样池C1的传感器是固定在试样池50中从而第一反射器10和第二反射器30都与试样池50内的试样X接触的传感器S(忽略了固定结构)。传感器S可以是永久性地或可拆卸地固定在试样池50中的。
试样池50包括由不透明材料(比如金属之类的材料)制成的作为主要组成部分的池体51,池体51能够将试样X装容在其中。池体51具有装配在其中的半透明窗口52和53。半透明窗口52和53设置在池体51分别与第一反射器10和第二反射器30相对的部分上。
在具有试样池C1的传感器中,从试样池50的外部通过窗口52将测量光L1输入到第一反射器10上。当它表现为反射型传感器时,反射光作为输出光L2通过半透明窗口52输出到试样池50的外部并且得到检测。当它表现为透射型传感器时,透射光作为输出光L2通过半透明窗口53输出到试样池50的外部并且得到检测。当它表现为半透射和半反射型传感器时,反射光和/或透射光作为输出光L2通过半透明窗口52和/或半透明窗口53输出到试样池50的外部并且得到检测。
在本实施方式中,传感器S是固定在试样池50中的,从而使得第一反射器10和第二反射器30与试样池50内的试样X接触,从而第一反射器10和第二反射器30的平均复折射系数依试样X变化,从而试样X可以得到分析。
在本实施方式中,可以通过在将试样X填充到试样池50中之前,在第一反射器10和/或第二反射器30上固定专门与特定物质相结合的粘着物质,来进行试样中是否存在特定物质和/或特定物质的量的分析。特定物质和粘着物质的组合的例子可以包括抗原体和抗体(任何一个可以作为粘着物质)的组合等等,并且本实施方式可以很容易地进行抗原体-抗体反应的时程分析。
使用具有带有试样池C1的传感器的形式的传感器S使得生物分析之类的分析能够轻松地得到有效且精确地进行。
在本实施方式中,进行了在池体51与第一反射器10和第二反射器30相对的部分分别固定着半透明窗口52和53的结构性描述。但是,对于输出光L2从第一反射器10输出的反射型传感器或半透射和半反射型传感器而言,可以采用设置有至少半透明窗口52的结构。此外,对于输出光L2从第二反射器30输出的透射型传感器或半透射和半反射型传感器而言,可以采用设置有至少半透明窗口53的构造。
此外,对于输出光L2从第一反射器10输出的反射型传感器或半透射和半反射型传感器而言,可以采用这样的构造:将传感器S固定在试样池50上,以致只有第二反射器30与试样池50内的试样X接触,并且检测作为输出光L2的反射光,如附图8B中所示。
这样的结构不需要使测量光L1和输出光L2穿过试样X就能够实现试样分析,从而可以避免试样X对分析结果的影响并且可以得到更加精确的试样分析。例如,如果试样X的液体温度之类发生变化,则接触试样X的传感器S的折射系数可能会发生轻微变化,虽然不会很大,并且可能影响到测量精度。在附图8B所示的结构中,第一反射器10没有与试样X接触,从而避免了第一反射器10的折射系数因温度变化之类的原因发生变化并且可以得到精确的分析结果。
[感测设备]
现在将参照附图9A到9C和10A到10C介绍按照本发明的第一到第六实施方式的感测设备。这里,将以使用反射型传感器或半透射和半反射型传感器并且检测反射光的反射型感测设备为例进行介绍。
附图9A到9C中所示的各个感测设备A1到A3是由下列部分构成的:传感器S,该传感器是按照前面介绍的实施方式的传感器S1到S5中的任何一种;测量光照射构件60,用于将测量光L1照射到传感器S上;和检测构件70,用于检测作为输出光L2的反射光的物理属性。这里,测量光照射构件60与检测构件的组合是彼此不同的。为附图9A到9C中相同的组成部分给予了相同的附图标记。
在感测设备A1中,测量光照射构件60是由广谱光源61构成的,比如卤素灯、氙灯或氪灯,并且检测构件70是由分光仪71和数据处理单元72构成的。根据需要为测量光照射构件60配备了准直透镜和/或光导光学器件(包括聚光透镜)。
感测设备A1通过由测量光照射构件60将作为测量光L1的广谱光照射在传感器S上、获得作为输出光L2的反射光的频谱并且检测由传感器S吸收的光的吸收峰值波长λ或者吸收峰值波长λ离开参照值的偏移量(频谱和吸收峰值波长λ参见附图1C)来进行试样分析。
在感测设备A2中,测量光照射构件60是由单一波长光源62构成的,比如激光器或者发光二极管,并且检测构件70是由光强度检测器73和数据处理单元72构成的。而且在感测设备A2中,根据需要为测量光照射构件60配备了准直透镜和/或光导光学器件(包括聚光透镜)。
感测设备A2通过由测量光照射构件60将作为测量光L1的单一波长光照射在传感器S上并且获得作为输出光L2的反射光的光强度来进行试样分析。测量光L1可以具有任意波长。在关注任意波长的光时,附图1C表明该波长的光强度依照试样变化。就是说,附图1C表明试样分析可以通过检测具有任意波长的测量光L1所对应的输出光L2的光强度来进行。
在感测设备A2中,可以采用这样的构造:测量光照射构件60由广谱光源61(而不是单一波长光源62)和能够从光源61的输出光中仅仅选取出特定波长光之类的波长分布可变构件(比如分光仪)构成。而且在这种情况下,感测设备A2可以按照与前面介绍的方式相同的方式进行试样分析。
在感测设备A3中,测量光照射构件60是由广谱光源61和能够从光源61的输出光中选取出特定波长的光并且随着时间改变所要选取的特定波长光的波长的波长分布可变构件63构成的,并且检测构件70是由光强度检测器73和数据处理单元72构成的。数据处理单元72接收由波长分布可变构件63选取的具有特定波长的光的波长数据以及由光强度检测器73获得的光强度数据来进行数据处理。而且在感测设备A3中,根据需要为测量光照射构件60配备了准直透镜和/或光导光学器件(包括聚光透镜)。
感测设备A3通过由测量光照射构件60将单一波长光照射在传感器S上作为测量光L1且随着时间的变化改变照射在传感器S上的单一波长光的波长、测量作为输出光L2的反射光的光强度随时间的变化以获得类似于附图1C中所示的频谱并且检测由传感器S吸收的光的吸收峰值波长λ或吸收峰值波长λ离开参考值的偏移量来进行试样分析。
如前所述,试样分析可以通过由检测构件70检测下列至少一个来进行:输出光L2的光强度及其变化、由传感器S吸收的光的吸收峰值波长及其偏移量。
附图10A到10C中示出的各个感测设备A4到A6由下列部分构成:按照前面介绍的实施方式的多通道传感器MS;测量光照射构件60,用于将测量光L1同时照射在多通道传感器MS的整个表面上;和检测构件70,用于检测作为输出光L2的反射光相对于各个试样的物理属性。这里,测量光照射构件60与检测构件的组合是彼此不同的。为附图10A到10C中相同的组成部分给予了相同的附图标记。
在感测设备A4中,测量光照射构件60是由广谱光源61构成的,比如卤素灯、氙灯或氪灯,并且检测构件70是由成像分光仪74和数据处理单元75构成的。根据需要为测量光照射构件60配备了包括用于准直输出光的准直透镜在内的光导光学器件等。
感测设备A4通过由测量光照射构件60将同时照射在多通道传感器MS的整个表面上的广谱光作为测量光L1、检测同时从多个传感器区域R上反射回来的反射光(输出光L2)的频谱、并且针对各个传感器区域R检测由多通道传感器MS吸收的光的吸收峰值波长λ或者针对各个传感器区域R检测吸收峰值波长λ离开参照值的偏移量(频谱和吸收峰值波长λ参见附图1C)来进行多个试样的同时分析。
在感测设备A5中,测量光照射构件60是由单一波长光源62构成的,比如激光器或者发光二极管,并且检测构件70是由用于检测光强度分布的光强度检测器(比如图像传感器)76和数据处理单元75构成的。而且在感测设备A5中,根据需要为测量光照射构件60配备了包括用于准直输出光的准直透镜在内的光导光学器件等。
感测设备A5通过由测量光照射构件60将作为测量光L1的单一波长光照射在多通道传感器MS的整个表面上并且检测从多个传感器区域R上反射回来的反射光(输出光L2)的光强度来进行多个试样的同时分析。测量光L1可以具有任意波长。在关注任意波长的光时,附图1C表明该波长的光强度依照试样变化。就是说,附图1C表明试样分析可以通过检测具有任意波长的测量光L1所对应的输出光L2的光强度来进行。
在感测设备A5中,可以采用这样的构造:测量光照射构件60由广谱光源61(而不是单一波长光源62)和能够从光源61的输出光中仅仅选取出特定波长光之类的波长分布可变构件(比如分光仪)构成。而且在这种情况下,感测设备A5可以按照与前面介绍的方式相同的方式进行多个试样的同时分析。
在感测设备A6中,测量光照射构件60是由广谱光源61和能够从光源61的输出光中选取出特定波长的光并且随着时间改变所要选取的特定波长光的波长的波长分布可变构件63构成的,并且检测构件70是由用于检测光强度分布的光强度检测器(比如图像传感器)76和数据处理单元75构成的。数据处理单元75接收由波长分布可变构件63选取的具有特定波长的光的波长数据以及由光强度检测器76获得的光强度数据来进行数据处理。而且在感测设备A6中,根据需要为测量光照射构件60配备了包括用于准直输出光的准直透镜在内的光导光学器件等。
感测设备A6通过由测量光照射构件60将单一波长光照射在多通道传感器MS的整个表面上作为测量光L1且随着时间的变化改变照射在多通道传感器MS上的单一波长光的波长、针对各个传感器区域R测量从多个传感器区域R反射回来的反射光(输出光L2)的光强度分布随时间的变化以获得类似于附图1C中所示的频谱并且针对各个传感器区域R检测由多通道传感器MS吸收的光的吸收峰值波长λ或吸收峰值波长λ离开参考值的偏移量来进行多个试样的同时分析。
如前所述,多个试样的同时分析可以通过由检测构件70检测下列至少一项来进行:输出光L2的光强度及其变化、由多通道传感器MS吸收的光的吸收峰值波长及其偏移量。
在前面介绍的实施方式中,是参照测量光L1在多通道传感器MS上的照射和从多通道传感器MS中输出的输出光L2的检测为同时进行的实例情况进行的介绍。不过,也可以采用这样一种构造:使测量光L1进行扫描并且相继照射在多个传感器区域R的表面上,并且相继检测输出光L2。至于光扫描构件,可以使用一个或多个可移动反射镜,比如多角镜、电动镜之类。
已经介绍了,在多通道传感器MS由多个传感器S构成时,可以采用这样的构造:可以使各个试样接触各个传感器S,而不用在各个传感器S上提供多个传感器区域R。在这样的结构中,可以通过将检测构件70构成为针对各个传感器S进行检测,来按照与前面介绍的方式相同的方式进行多个试样的同时分析。
感测设备A1到A6可以分析试样的折射系数和/或强度。还可以通过分析试样的折射系数来认定试样。此外,传感器S或多通道传感器MS还可以通过在使试样与其接触之前,将专门与特定物质相结合的粘着物质固定在传感器S或多通道传感器MS要与试样接触的侧面上并且在传感器S或多通道传感器MS上照射测量光L1且检测输出光L2来分析在试样中是否存在特定物质和/或特定物质的量。
最好,在反射型的感测设备A1到A6中,将检测构件70构成为仅仅接收和检测非镜面反射分量,比如散射光之类。镜面反射分量具有过高的光强度,以致于不能正确检测出实质的属性。这样,通过检测较弱的光,比如散射光之类的光,可以进行更加精确的分析。出于同样的原因,在反射型的感测设备A1到A6中,最好将测量光照射构件60放在使得测量光L1相对于传感器或多通道传感器的光输入表面以非法向的角度照射在传感器S或多通道传感器MS上的位置上。
所做出的介绍是参照仅为反射型的感测设备进行的。在使用透射型或半透射和半反射型传感器S或多通道传感器MS的透射型感测设备的情况下,仅仅需要将检测构件70移动到第二反射器30的侧面上之类的改变来使得检测构件70能够检测所透射的光。
[实例]
下文中,将介绍本发明的实例。
(实例1和2)
对于按照第四实施方式的各个传感器S4(实例1),和按照第五实施方式的传感器S5(实例2),使用基于FD-TD方法电磁场分析仿真软件对反射光频谱进行了仿真。计算是基于小孔21中充满了水的假设进行的。
在计算过程中使用了下列条件。
<计算的条件>
第一反射器10:Au(厚度为20nm)
半透明体20:Al2O3(厚度为200nm),小孔21的间距:100nm,小孔21的小孔直径:50nm
第二反射器30:Al
金属22:Au(厚度为20nm),填充在实例2的传感器中的小孔21内
测量光L1:白光(正入射)
物质的复折射系数会依照输入光的波长而不同。在考虑了小孔21的孔径比和其中填充的物质(实例1是水,实例2是水和Au)的前提下,计算半透明体20的平均复折射系数。考虑小孔21的孔径比,计算第一反射器10的平均复折射系数。第二反射器30的平均复折射系数等于Al的平均复折射系数,因为第二反射器没有小孔。
附图11中示出了结果。
在没有在小孔21中填充金属的实例1中,并且在小孔21中填充了金属22的实例2中,在400到500nm和850到950nm的范围内观察到了因多路径干涉造成的吸收高峰。在小孔21中填充了金属22的实例2的传感器中,除了因多路径干涉造成的吸收高峰之外,还在700nm附近观察到了因局部等离子共振造成的吸收高峰。
本发明的发明人已经证实,可以通过改变填充在小孔21中的试样来改变频谱,并且试样分析可以使用实例1和实例2的传感器来进行。
<工业实用性>
本发明的传感器可以很好地用作生物传感器等。

Claims (30)

1.一种传感器,测量光输入到该传感器中并且在测量光的物理属性由试样改变之后从该传感器中输出作为输出光,并且对输出光加以检测,该传感器包括按照下面列出的顺序从测量光的输入侧开始排列的下列组成部分:
具有半透射和半反射属性的第一反射器;
半透明体;和
具有完全反射属性或者半透射和半反射属性的第二反射器,
其中:
第一反射器、半透明体和第二反射器被构造为使得在第一反射器和第二反射器之间出现测量光的多路径干涉;
第一反射器和/或第二反射器与试样接触,并且第一反射器和/或第二反射器的平均复折射系数依试样而变化;
依照第一反射器的平均复折射系数、第二反射器的平均复折射系数以及半透明体的平均复折射系数和厚度,产生吸收具有特定波长的光的吸收属性;
测量光的属性由包括吸收属性在内的光学属性改变,
输出光从第一反射器和/或第二反射器输出;和
检测输出光按照所述光学属性改变的物理属性。
2.按照权利要求1所述的传感器,其中与试样接触的第一反射器和/或第二反射器具有小于测量光波长的浮雕结构。
3.按照权利要求2所述的传感器,其中与试样接触的第一反射器和/或第二反射器是由形成在半透明体具有图案的表面上的金属制成的金属图案层构成的。
4.按照权利要求3所述的传感器,其中测量光的属性是由吸收属性和金属图案层上的局部等离子共振改变的。
5.按照权利要求2所述的传感器,其中与试样接触的第一反射器和/或第二反射器是由具有多个固定在半透明体表面上的金属颗粒的金属颗粒层构成的。
6.按照权利要求5所述的传感器,其中测量光的属性是由吸收属性和金属颗粒层上的局部等离子共振改变的。
7.按照权利要求2所述的传感器,
其中:
第一反射器与试样接触,并且第一反射器的平均复折射系数依试样而变化;
半透明体由具有多个小孔的半透明多孔体构成,各个小孔具有充分小于测量光波长的小孔直径并且在第一反射器侧面上的表面上开口;和
第一反射器由沿着半透明体的表面轮廓形成的具有多个小孔的金属层构成。
8.按照权利要求2所述的传感器,
其中:
第一反射器与试样接触,并且第一反射器的平均复折射系数依试样而变化;
半透明体由具有多个小孔的半透明多孔体构成,各个小孔具有充分小于测量光波长的小孔直径并且在第一反射器侧面上的表面上开口;
第一反射器由沿着半透明体的表面轮廓形成的具有多个小孔的金属层构成;和
部分地填充在半透明体的多个小孔中的各个小孔内的金属。
9.按照权利要求8所述的传感器,其中测量光的属性由吸收属性和发生在下列至少一个上的局部等离子共振改变:第一反射器、第二反射器和部分地填充在半透明体的多个小孔中的各个小孔内的金属。
10.按照权利要求7所述的传感器,其中半透明体是由通过对可阳极氧化的金属体的一部分进行阳极氧化而获得的金属氧化物体构成的,第二反射器是由所述可阳极氧化的金属体的未阳极氧化部分构成的,并且第一反射器是由形成在半透明体上的金属层构成的。
11.按照权利要求8所述的传感器,其中半透明体是由通过对可阳极氧化的金属体的一部分进行阳极氧化而获得的金属氧化物体构成的,第二反射器是由所述可阳极氧化的金属体的未阳极氧化部分构成的,并且第一反射器是由形成在半透明体上的金属层构成的。
12.按照权利要求1所述的传感器,其中半透明体的厚度被设置为在第一反射器和第二反射器之间出现测量光的多路径干涉。
13.一种多通道传感器,测量光输入到该传感器中并且在测量光的物理属性由多个试样改变之后从该传感器中输出作为输出光,并且对输出光加以检测,以实现多个试样的同时分析,
其中:
该多通道传感器包括一个或多个权利要求1所述的传感器,这些传感器分为多个传感器区域,各个传感器区域与多个试样中的各个试样接触;和
针对各个传感器区域检测按照光学属性变化的物理属性。
14.一种多通道传感器,测量光输入到该传感器中并且在测量光的物理属性由多个试样改变之后从该传感器中输出作为输出光,并且对输出光加以检测,以实现多个试样的同时分析,
其中:
该多通道传感器包括多个权利要求1所述的传感器,和
针对各个传感器检测按照光学属性变化的物理属性。
15.一种具有试样池的传感器,该传感器包括加在可由试样填充的试样池上的权利要求1所述的传感器,
其中,所述传感器固定在试样池上,使得传感器的第一反射器和/或第二反射器与试样池中的试样接触。
16.一种感测设备,包括:
权利要求1所述的传感器;
测量光照射构件,用于将测量光照射在传感器上;和
检测构件,用于检测输出光的物理属性。
17.一种感测设备,包括:
权利要求13所述的多通道传感器;
测量光照射构件,用于将测量光照射在多通道传感器上;和
检测构件,用于检测输出光的物理属性。
18.一种感测设备,包括:
权利要求14所述的多通道传感器;
测量光照射构件,用于将测量光照射在多通道传感器上;和
检测构件,用于检测输出光的物理属性。
19.按照权利要求16所述的感测设备,其中检测构件检测下列至少一项:输出光的光强度、输出光光强度的变化、由传感器吸收的光的吸收峰值波长和由传感器吸收的光的吸收峰值波长的偏移量。
20.按照权利要求17所述的感测设备,其中检测构件检测下列至少一项:输出光的光强度、输出光光强度的变化、由传感器吸收的光的吸收峰值波长和由传感器吸收的光的吸收峰值波长的偏移量。
21.按照权利要求18所述的感测设备,其中检测构件检测下列至少一项:输出光的光强度、输出光光强度的变化、由传感器吸收的光的吸收峰值波长和由传感器吸收的光的吸收峰值波长的偏移量。
22.按照权利要求18所述的感测设备,其中:
传感器至少从第一反射器输出输出光;和
检测构件仅仅接收输出光的非镜面反射分量并且检测物理属性。
23.按照权利要求16所述的感测设备,其中测量光照射构件放在使得测量光相对于传感器的光输入面成非法向的角度照射在传感器上的位置上。
24.按照权利要求18所述的感测设备,其中测量光照射构件放在使得测量光相对于传感器的光输入面成非法向的角度照射在传感器上的位置上。
25.按照权利要求16所述的感测设备,其中该设备分析试样的折射系数和/或密度。
26.按照权利要求18所述的感测设备,其中该设备分析试样的折射系数和/或密度。
27.按照权利要求16所述的感测设备,其中该设备通过分析试样的折射系数来认定试样。
28.一种使用权利要求1所述的传感器的感测方法,该方法包括步骤:
在将试样与传感器接触之前,在传感器要与试样接触的侧面上固定专门与特定物质相结合的粘着物质;
将测量光照射在传感器上以使得在第一反射器和第二反射器之间出现测量光的多路径干涉;和
检测输出光的物理属性,以分析试样中是否存在特定物质和/或该特定物质的量。
29.一种使用权利要求13所述的多通道传感器的感测方法,该方法包括步骤:
在将试样与多通道传感器接触之前,在多通道传感器要与试样接触的侧面上固定专门与特定物质相结合的粘着物质;
将测量光照射在多通道传感器上以使得在第一反射器和第二反射器之间出现测量光的多路径干涉;和
检测输出光的物理属性,以分析试样中是否存在特定物质和/或该特定物质的量。
30.一种使用权利要求14所述的多通道传感器的感测方法,该方法包括步骤:
在将试样与多通道传感器接触之前,在多通道传感器要与试样接触的侧面上固定专门与特定物质相结合的粘着物质;
将测量光照射在多通道传感器上以使得在第一反射器和第二反射器之间出现测量光的多路径干涉;和
检测输出光的物理属性,以分析试样中是否存在特定物质和/或该特定物质的量。
CN200680021054XA 2005-06-14 2006-06-14 传感器、多通道传感器、感测设备和感测方法 Expired - Fee Related CN101203741B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2005173976 2005-06-14
JP173976/2005 2005-06-14
JP2005173752 2005-06-14
JP173752/2005 2005-06-14
JP149712/2006 2006-05-30
JP149713/2006 2006-05-30
JP2006149713A JP2007024870A (ja) 2005-06-14 2006-05-30 センサ、センシング装置、及びセンシング方法
JP2006149712A JP2007024869A (ja) 2005-06-14 2006-05-30 マルチチャンネルセンサ、センシング装置、及びセンシング方法
PCT/JP2006/312371 WO2006135097A1 (en) 2005-06-14 2006-06-14 Sensor, multichannel sensor, sensing apparatus, and sensing method

Publications (2)

Publication Number Publication Date
CN101203741A CN101203741A (zh) 2008-06-18
CN101203741B true CN101203741B (zh) 2012-01-18

Family

ID=37532440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680021054XA Expired - Fee Related CN101203741B (zh) 2005-06-14 2006-06-14 传感器、多通道传感器、感测设备和感测方法

Country Status (4)

Country Link
US (2) US7643156B2 (zh)
EP (1) EP1891414A4 (zh)
CN (1) CN101203741B (zh)
WO (1) WO2006135097A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024868A (ja) * 2005-06-15 2007-02-01 Fujifilm Corp 流体分析デバイス及び流体分析装置
WO2007037520A1 (en) * 2005-09-30 2007-04-05 Fujifilm Corporation Sensing system
US8045141B2 (en) * 2006-05-12 2011-10-25 Canon Kabushiki Kaisha Detecting element, detecting device and detecting method
JP2008014933A (ja) * 2006-06-08 2008-01-24 Fujifilm Corp ラマン分光用デバイス、及びラマン分光装置
JP2008002943A (ja) * 2006-06-22 2008-01-10 Fujifilm Corp センサ、センシング装置、及びセンシング方法
JP5397577B2 (ja) * 2007-03-05 2014-01-22 オムロン株式会社 表面プラズモン共鳴センサ及び当該センサ用チップ
US20080280374A1 (en) * 2007-05-08 2008-11-13 General Electric Company Methods and systems for detecting biological and chemical materials on a submicron structured substrate
JP5069497B2 (ja) * 2007-05-24 2012-11-07 富士フイルム株式会社 質量分析用デバイス及びそれを用いた質量分析装置
JP4597175B2 (ja) * 2007-09-21 2010-12-15 株式会社日立ハイテクノロジーズ 標的物質を検出するための分析装置、又は分析方法、若しくはこれら分析装置及び分析方法に用いるデバイス
JP5288772B2 (ja) * 2007-11-02 2013-09-11 キヤノン株式会社 化学センサ素子、センシング装置およびセンシング方法
JP2009222483A (ja) * 2008-03-14 2009-10-01 Fujifilm Corp 検査チップ作製方法および被検体検出方法
KR101572848B1 (ko) * 2009-01-09 2015-12-01 삼성전자 주식회사 플랫폼의 복제 방지 방법 및 시스템
CN101620063B (zh) * 2009-05-27 2012-05-16 南京航空航天大学 串联分布式棱镜spr传感器系统
US20110085170A1 (en) * 2009-10-07 2011-04-14 Ta-Jen Yen Resonance frequency-modulated surface plasma resonance detector
BR112012029474A2 (pt) 2010-05-19 2017-01-24 Sharp Kk método de inspeção de matriz
US8472026B2 (en) * 2010-06-22 2013-06-25 Chian Chiu Li Compact surface plasmon resonance apparatus and method
JP5614278B2 (ja) * 2010-12-24 2014-10-29 セイコーエプソン株式会社 センサーチップ、センサーチップの製造方法、検出装置
CN102082956A (zh) * 2010-12-28 2011-06-01 天津大学 一种提高图像传感器灵敏度的方法
JP2014169955A (ja) 2013-03-05 2014-09-18 Seiko Epson Corp 分析装置、分析方法、これらに用いる光学素子および電子機器、並びに光学素子の設計方法
JP6365817B2 (ja) 2014-02-17 2018-08-01 セイコーエプソン株式会社 分析装置、及び電子機器
WO2015161449A1 (zh) * 2014-04-22 2015-10-29 王帅 一种检测曲面触摸界面上对象位置的系统及方法
JP2015215178A (ja) 2014-05-08 2015-12-03 セイコーエプソン株式会社 電場増強素子、分析装置及び電子機器
US10197793B2 (en) * 2016-05-12 2019-02-05 The Chinese University Of Hong Kong Light modulator using total internal reflection at an interface with a tunable conductive layer
CN111489718B (zh) * 2020-05-21 2021-10-22 北京小米移动软件有限公司 终端设备及环境光检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1364233A (zh) * 1999-05-17 2002-08-14 佛罗里达国际大学董事会 具有高角度分辨率和快响应时间的表面等离子体共振检测

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979184A (en) 1975-05-27 1976-09-07 General Electric Company Diagnostic device for visually detecting presence of biological particles
BR9001349A (pt) * 1989-03-22 1991-04-02 Alcan Int Ltd Estrutura de interferencia otica,estrutura capaz de ser convertida em uma estrutura de interferencia otica,processo para producao de uma estrutura de interferencia otica,dispositivo de interferencia otica,indicador de cozimento paraum recipiente de alimento util em microondas e montagem de um recipiente de alimento util em microondas
US5218426A (en) * 1991-07-01 1993-06-08 The United States Of America As Represented By The Secretary Of Commerce Highly accurate in-situ determination of the refractivity of an ambient atmosphere
JPH06167443A (ja) 1992-10-23 1994-06-14 Olympus Optical Co Ltd 表面プラズモン共鳴を利用した測定装置
US5422714A (en) * 1993-06-07 1995-06-06 Corning Incorporated Device for comparing the refractive indices of an optical immersion liquid and a reference glass
JPH0815133A (ja) * 1994-06-29 1996-01-19 Hitachi Ltd 分析素子
JP3452837B2 (ja) * 1999-06-14 2003-10-06 理化学研究所 局在プラズモン共鳴センサー
JP2001242072A (ja) * 2000-03-02 2001-09-07 Kanagawa Acad Of Sci & Technol 光吸収応答型sprセンサーおよびその測定方法と装置
JP2002221485A (ja) 2000-11-22 2002-08-09 Minolta Co Ltd マイクロチップ
DE10127153A1 (de) 2001-05-25 2002-11-28 Brose Fahrzeugteile Kraftfahrzeugsitz
JP4231701B2 (ja) * 2002-01-08 2009-03-04 富士フイルム株式会社 プラズモン共鳴デバイス
US7399445B2 (en) 2002-01-11 2008-07-15 Canon Kabushiki Kaisha Chemical sensor
JP3897703B2 (ja) 2002-01-11 2007-03-28 キヤノン株式会社 センサ装置およびそれを用いた検査方法
JP4121762B2 (ja) 2002-03-28 2008-07-23 オリンパス株式会社 蛍光検出用支持体
US6839140B1 (en) * 2002-07-03 2005-01-04 Los Gatos Research Cavity-enhanced liquid absorption spectroscopy
JP4245931B2 (ja) 2003-01-30 2009-04-02 富士フイルム株式会社 微細構造体およびその作製方法並びにセンサ
EP1445601A3 (en) * 2003-01-30 2004-09-22 Fuji Photo Film Co., Ltd. Localized surface plasmon sensor chips, processes for producing the same, and sensors using the same
JP2005069893A (ja) * 2003-08-25 2005-03-17 Shimadzu Corp 表面プラズモン共鳴装置及びそれを用いた分析装置
US7420682B2 (en) * 2003-09-30 2008-09-02 Arizona Board Of Regents On Behalf Of The University Of Arizona Sensor device for interference and plasmon-waveguide/interference spectroscopy
CN100516835C (zh) * 2004-03-31 2009-07-22 欧姆龙株式会社 局域等离子共振传感器和检查装置
US7187446B2 (en) * 2004-07-26 2007-03-06 Fuji Photo Film Co., Ltd. Measuring apparatus
JP2007024868A (ja) * 2005-06-15 2007-02-01 Fujifilm Corp 流体分析デバイス及び流体分析装置
US7586602B2 (en) * 2006-07-24 2009-09-08 General Electric Company Method and apparatus for improved signal to noise ratio in Raman signal detection for MEMS based spectrometers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1364233A (zh) * 1999-05-17 2002-08-14 佛罗里达国际大学董事会 具有高角度分辨率和快响应时间的表面等离子体共振检测

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JP特开2003-268592A 2003.09.25
JP特开2003-270132A 2003.09.25
JP特开2004-232027A 2004.08.19
JP特开2005-69893A 2005.03.17
JP特开平8-15133A 1996.01.19

Also Published As

Publication number Publication date
CN101203741A (zh) 2008-06-18
WO2006135097A1 (en) 2006-12-21
EP1891414A4 (en) 2010-04-21
US20070263221A1 (en) 2007-11-15
EP1891414A1 (en) 2008-02-27
US20090213384A1 (en) 2009-08-27
US7643156B2 (en) 2010-01-05

Similar Documents

Publication Publication Date Title
CN101203741B (zh) 传感器、多通道传感器、感测设备和感测方法
US8023115B2 (en) Sensor, sensing system and sensing method
CN101467028B (zh) 分光装置和拉曼分光系统
CN104568849B (zh) 三维亚波长金属腔体结构光谱多带光完美吸收等离激元传感器及其制备方法与用途
US7110181B2 (en) Method for generating electromagnetic field distributions
CN103376244B (zh) 表面等离子体共振芯片及应用该芯片的传感器
EP2208053A2 (en) Microelectronic optical evanescent field sensor
CN104914072B (zh) 一种多孔硅光子晶体生物芯片的检测方法
JP2007024870A (ja) センサ、センシング装置、及びセンシング方法
CN103454253B (zh) 基于表面等离子体共振的有机磷检测方法
Steiner et al. Surface plasmon resonance within ion implanted silver clusters
CN101278189B (zh) 传感系统
CN1987425A (zh) 表面电浆共振感测系统及方法
CN106198459B (zh) 基于纳米表面等离子共振传感器的生物分析传感装置
US20070014017A1 (en) Method for generating electromagnetic field distributions
JP2007024869A (ja) マルチチャンネルセンサ、センシング装置、及びセンシング方法
JP2008008631A (ja) センサ、センシング装置、及びセンシング方法
Zhou et al. Effect of spectral power distribution on the resolution enhancement in surface plasmon resonance
JP2007101242A (ja) センシング装置
Wang et al. Simulation study of extraordinary optical transmission induced by sub-wavelength nanopore arrays towards label-free biochemical analysis
TW200837345A (en) Planar surface plasma resonance sensor
WO2010032157A1 (en) Wire-grid sensor with continuously controllable height of detection volume
Lin et al. Multianalyte detection using fiber optic particle plasmon resonance sensor based on plasmonic light scattering interrogation
Will et al. Integrated planar low-cost sensor for reflection interference spectroscopy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120118

Termination date: 20130614