WO2015161449A1 - 一种检测曲面触摸界面上对象位置的系统及方法 - Google Patents

一种检测曲面触摸界面上对象位置的系统及方法 Download PDF

Info

Publication number
WO2015161449A1
WO2015161449A1 PCT/CN2014/075964 CN2014075964W WO2015161449A1 WO 2015161449 A1 WO2015161449 A1 WO 2015161449A1 CN 2014075964 W CN2014075964 W CN 2014075964W WO 2015161449 A1 WO2015161449 A1 WO 2015161449A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electromagnetic signal
transmissive member
transmissive
detector
Prior art date
Application number
PCT/CN2014/075964
Other languages
English (en)
French (fr)
Inventor
王帅
Original Assignee
王帅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王帅 filed Critical 王帅
Priority to PCT/CN2014/075964 priority Critical patent/WO2015161449A1/zh
Publication of WO2015161449A1 publication Critical patent/WO2015161449A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means

Definitions

  • the present invention relates to the field of touch interface technologies, and in particular, to a system and method for detecting a position of an object on a curved touch interface, the curved touch interface utilizing the destroyed total reflection as
  • touch screens have been widely used in various fields such as mobile phones and computers.
  • touch screens are: resistive touch screens, capacitive touch screens, infrared touch screens, surface acoustic wave touch screens, optical image touch technologies, and the like.
  • the display surface of most displays is flat, and various technical touch screens are designed to match the display plane of the display, so that the touch surface of most touch screens is flat.
  • OLED Organic Electroluminescence Display
  • the invention provides a system and a method for detecting the position of an object on a curved touch interface, which can realize the detection of the position of the object on the curved touch interface.
  • the present invention provides a transmissive member, a transmitter, a detector, and a processor for detecting a position of an object on a curved touch interface;
  • the transmissive member includes at least one piece of touch curved body, wherein the touch curved body is a portion of the annular cylindrical surface, the angle of a portion of the annular cylindrical surface perpendicular to the axial center is greater than 0 degrees and less than 360 degrees;
  • the emitter is configured to send an electromagnetic signal to the transmissive member, the electromagnetic signal entering the transmissive member from a first side of the transmissive member;
  • the detector is configured to detect an electromagnetic signal transmitted by the transmitter through the transmitting member and emerging from the second side of the transmitting member;
  • the electromagnetic signal has at least one totally reflective transmission path in the transmissive member such that the detector detects the electromagnetic signal without a touch, wherein the total reflection
  • the transmission path refers to a propagation path of the electromagnetic signal entering the interior of the transmissive member from the first side through the total reflection on the first boundary surface and/or the second boundary surface of the transmissive member to the side corresponding to the first side surface, wherein
  • the first boundary surface is a touch surface of the transmissive member
  • the second boundary surface is a surface opposite to the touch surface; in the case of a touch, a portion of the path of the electromagnetic signal is changed without
  • the emitter and the detector satisfy: a detector detects a change in an electromagnetic signal when touched at any position on a touch surface of the transmissive member;
  • the processor is configured to determine a touch location according to a positioning signal sent by the transmitter and/or the detector.
  • the positioning signal includes: an intensity of an electromagnetic signal detected by the detector.
  • the transmissive member is a piece of touch curved body.
  • the transmissive member comprises: at least two touch curved surfaces with different radii, and the touch curved bodies are connected tangentially.
  • the transmissive member comprises: at least one piece of the touch curved surface body and at least one flat surface body, the tangent connection between the touch curved surface bodies, and the tangent connection between the touch curved surface body and the planar body.
  • the outer side of the first boundary surface and the outer side of the second boundary surface of the transmitting member are light-repellent materials with respect to the transmissive member.
  • the system further includes: an orientation device for orienting the electromagnetic signal.
  • the orientation device comprises: a prism, a lens, an optical sheet, an optical film.
  • the second side surface is a side surface corresponding to the first side surface.
  • a minimum incident angle of the incident angle of the electromagnetic signal transmitted by the transmitter is greater than a total reflection critical angle of the transmissive member, wherein the incident angle is an electromagnetic signal transmitted by the transmitter entering the transmissive member and then incident to the transmissive The incident angle of the first boundary surface of the piece and the incident angle of the second boundary surface.
  • the electromagnetic signal transmitted by the transmitter is all a fully reflective transmission path in the transmissive member.
  • the present invention provides a transmissive member, a plurality of transmitters, a plurality of detectors, and a processor for detecting an object position on a curved touch interface;
  • the transmissive member includes at least one piece of curved curved surface, wherein the curved curved body is a part of an annular cylindrical surface, and a portion of the annular cylindrical surface having an angle perpendicular to the axial center has an angle greater than 0 degrees and less than 360 degrees;
  • the plurality of emitters are configured to send an electromagnetic signal to the transmissive member, the electromagnetic signal entering the transmissive member from a first side of the transmissive member;
  • the detector is configured to detect an electromagnetic signal transmitted through the transmitting member and emitted from the second side of the transmitting member with the transmitter;
  • the electromagnetic signal has a path through the transmissive member from each of the plurality of emitters to a corresponding one of the plurality of detectors such that there is no
  • the corresponding detector detects the electromagnetic signal in the case of a touch
  • the path includes a transmission path of at least one total reflection in the transmissive member, and the total reflection transmission path refers to entering from the first side
  • the electromagnetic signal inside the transmissive member is totally reflected by the first boundary surface and/or the second boundary surface of the transmissive member to a propagation path of the corresponding side surface of the first side surface, wherein the first boundary surface is the transmissive member Touch surface, the second boundary surface is a surface opposite to the touch surface;
  • the path of a portion of the electromagnetic signal is changed in the presence of a user's touch
  • the detector detects a change in the electromagnetic signal when touched at any position
  • the processor is configured to determine a touch location according to a positioning signal sent by the transmitter and/or the detector.
  • system further includes:
  • the first set of emitters are located on a third side of the transmissive member, the first set of emitters for transmitting an electromagnetic signal to the transmissive member;
  • the first set of detectors are located on a fourth side of the transmissive member corresponding to the third side, the first set of detectors for detecting an electromagnetic signal transmitted by the transmitter through the transmissive member;
  • the electromagnetic signal has a path through the transmissive member from each of the first set of emitters to a corresponding one of the first set of detectors such that The corresponding detector detects the electromagnetic signal without a touch, the path including the transmission of at least one total reflection inside the transmissive member, in the case of a touch, a portion of the electromagnetic signal
  • the path is changed without the first set of emitters and the first set of detectors satisfying: the detector detects a change in the electromagnetic signal when touched at any position on the touch surface of the transmissive member;
  • the processor is configured to determine a touch location according to a positioning signal sent by the first group of transmitters and/or the first group of detectors.
  • the present invention provides a method of detecting an object position on a curved touch interface, the method comprising:
  • the transmissive member includes at least one piece of touch curved body, wherein the touch curved body is a part of an annular cylindrical surface, and a portion of the annular cylindrical surface is perpendicular to a cross section of the axial center
  • the angle range is greater than 0 degrees and less than 360 degrees;
  • the electromagnetic signal in the absence of a touch, has at least one total reflection transmission path in the transmissive member, such that the second side detects the electromagnetic signal without a touch, wherein
  • the total reflection transmission path refers to a propagation path of the electromagnetic signal entering the interior of the transmissive member from the first side through the total reflection on the first boundary surface and/or the second boundary surface of the transmissive member to the side corresponding to the first side surface,
  • the first boundary surface is a touch surface of the transmissive member
  • the second boundary surface is a surface opposite to the touch surface
  • the detection result includes: an intensity of the detected electromagnetic signal.
  • the transmissive member is a piece of touch curved body.
  • the transmissive member comprises: at least two touch curved surfaces with different radii, and the touch curved bodies are connected tangentially.
  • the transmissive member comprises: at least one piece of the touch curved surface body and at least one flat surface body, the tangent connection between the touch curved surface bodies, and the tangent connection between the touch curved surface body and the planar body.
  • the outer side of the first boundary surface and the outer side of the second boundary surface of the transmitting member are light-repellent materials with respect to the transmissive member.
  • the second side surface is a side surface corresponding to the first side surface.
  • a minimum incident angle of the electromagnetic signal entering the first side into the incident angle of the transmitting member is greater than a total reflection critical angle of the transmitting member, wherein the incident angle is the electromagnetic signal entering the transmission The incident angle of the first boundary surface incident on the transmission member and the incident angle of the second boundary surface.
  • the electromagnetic signal transmitted from the first side is all a total reflection transmission path in the transmissive member.
  • the system and method for detecting the position of an object on a curved touch interface provided by the embodiment of the invention can realize the detection of the position of the object on the curved touch interface.
  • FIG. 1 is a schematic structural diagram of a system for detecting an object position on a curved touch interface according to an embodiment of the present invention
  • FIG. 2 is a perspective view and a perspective view of a transmissive member according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing the transmission of an electromagnetic signal on a cross section of a transmissive member according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing the transmission of an electromagnetic signal in another cross section of a transmissive member according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an electromagnetic signal transmitted in a see-through member according to an embodiment of the present invention.
  • 6-A is a schematic diagram showing the transmission of electromagnetic signals when a transmitting member is not touched according to an embodiment of the present invention
  • 6-B is a schematic diagram of the transmission of electromagnetic signals when the transmissive member is touched according to an embodiment of the invention.
  • 6-C is a schematic diagram showing the transmission of electromagnetic signals when another transmissive member is touched according to an embodiment of the present invention.
  • 7-A is a schematic view showing the transmission of electromagnetic signals in a transmitting member according to an embodiment of the present invention.
  • 7-B is a schematic view showing an electromagnetic signal incident on a transmissive member according to an embodiment of the present invention.
  • FIG. 7-C is a side view and a perspective view of a transmissive member according to an embodiment of the present invention
  • FIG. 8-A is a side view of a transmissive member according to an embodiment of the present invention
  • FIG. 8-B is an electromagnetic signal in the transmissive member of FIG. 8-A according to an embodiment of the present invention. Schematic diagram of the transfer;
  • FIG. 8-C is a schematic diagram of electromagnetic signal transmission of the CDD′ C portion of FIG. 8-A according to an embodiment of the present invention
  • FIG. 8-D is a schematic diagram of electromagnetic signal transmission in the BCC B′ portion of FIG. 8-A according to an embodiment of the present invention.
  • FIG. 8-E is a schematic diagram of electromagnetic signal transmission in the ABA' B' portion of FIG. 8-A according to an embodiment of the present invention.
  • FIG. 8-F is a side view and a perspective view of a transmissive member based on FIG. 8-A according to an embodiment of the present invention.
  • FIG. 8-G is a side elevational view of a transmissive member based on FIG. 8-A according to an embodiment of the present invention.
  • 9-A is a side view of a transmissive member according to an embodiment of the present invention.
  • FIG. 9-B is a perspective view of the transmissive member of FIG. 9-A according to an embodiment of the present invention
  • FIG. 9-C is a schematic diagram of electromagnetic signal transmission in the transmissive member of FIG. 9-A according to an embodiment of the present invention. ;
  • 9-D is a schematic diagram of electromagnetic signal transmission of the EFP ⁇ ' portion of FIG. 9-A according to an embodiment of the present invention.
  • 9- ⁇ is a schematic diagram of electromagnetic signal transmission of the FGG' ⁇ ' portion of FIG. 9- ⁇ provided by an embodiment of the present invention.
  • FIG. 9-F is a schematic diagram of electromagnetic signal transmission of the GHH' G' portion of FIG. 9- ⁇ according to an embodiment of the present invention.
  • FIG. 9-G is a side elevational view of a transmissive member based on FIG. 9- ⁇ according to an embodiment of the present invention.
  • Figure 9 - is a side view of another transmissive member based on Figure 9 - ⁇ provided by an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for detecting an object position on a curved touch interface according to an embodiment of the invention. Detailed ways
  • the present invention provides a system for detecting the position of an object on a curved touch interface.
  • the system includes:
  • Transmissive member 3 transmitter 10, detector 20, processor 80;
  • the system includes a plurality of transmitters and a plurality of detectors, each transmitter corresponding to at least one detector, each detector corresponding to at least one transmitter.
  • the transmissive member includes at least one piece of curved curved surface, wherein the curved curved body is a part of an annular cylindrical surface, and a portion of the annular cylindrical surface having an angle perpendicular to the axial center has an angle greater than 0 degrees and less than 360 degrees; It is also within the scope of this description to make some changes on the basis of the touch surface body, including but not limited to the addition of rounded corners and chamfers.
  • the emitter is configured to send an electromagnetic signal to the transmissive member, the electromagnetic signal entering the transmissive member from a first side of the transmissive member;
  • the emitter may be located on a first side of the transmissive member.
  • the detector is configured to detect an electromagnetic signal transmitted by the transmitter through the transmitting member and emerging from the second side of the transmitting member;
  • the detector can be located on the second side of the transmissive member.
  • the electromagnetic signal has at least one totally reflective transmission path in the transmissive member such that the detector detects the electromagnetic signal without a touch, wherein, in the practice of the present invention
  • the total reflection transmission path means that the electromagnetic signal entering the inside of the transmissive member from the first side is totally reflected on the first boundary surface and/or the second boundary surface of the transmissive member to the side corresponding to the first side surface.
  • a portion of the path of the electromagnetic signal is changed without the emitter and the detector satisfying: a detector detects when touched at any position on the touch surface of the transmissive member Changes in electromagnetic signals;
  • the processor is configured to determine a touch location according to a positioning signal sent by the transmitter and/or the detector.
  • the same surface model as the touch surface can be established to calculate, or a planar model of the touch surface expansion can be established, and the touch position is calculated by corresponding to the touch surface.
  • the electromagnetic signal has at least one total reflection transmission path in the transmissive member, so that the detector can detect the electromagnetic signal.
  • the transmissive member is touched, a part of the transmission path of the electromagnetic signal is changed, and the energy of the electromagnetic signal detected by the detector is attenuated to determine the touch position.
  • a system and method for detecting an object position on a curved touch interface provided by an embodiment of the present invention can implement detection of an object position on a curved touch interface.
  • the electromagnetic signal is transmitted in the transmissive member by reflection (including total reflection), and has the following characteristics: the same electromagnetic signal has the same incident angle of each reflection on the large radius boundary surface, and the same electromagnetic signal is on the small radius boundary surface.
  • the incident angle of each reflection is the same, the incident angle of the same electromagnetic signal on the large radius boundary surface is less than or equal to the incident angle on the small radius boundary surface, and the large radius boundary surface is the boundary surface of the side of the transmission element having a large radius.
  • the small radius boundary surface is the boundary surface opposite to the large radius boundary surface.
  • the boundary surface refers to the surface of the transmissive member or the surface opposite to the touch surface.
  • the outer side of the first boundary surface and the outer side of the second boundary surface of the transmissive member are optically thinner with respect to the transmissive member.
  • the electromagnetic signal transmitted by the transmitter has at least one total reflection transmission path in the transmissive member passing through the transmissive member to the detector, and correspondingly, the electromagnetic signal transmitted by the transmitter needs to be avoided.
  • the path is detected by the detector.
  • the electromagnetic signals transmitted by the transmitter are all totally reflective transmission paths in the transmissive member.
  • the positioning signal includes: an intensity of an electromagnetic signal detected by the detector.
  • the processor is configured to: when the attenuation of the intensity of the electromagnetic signal sent by the same detector exceeds a preset threshold, determine that the path corresponding to the detector and/or the transmitter is touched, and according to the The position of the detector and/or the transmitter corresponding to the touched path determines the touch position.
  • the attenuation of the intensity of the electromagnetic signal sent by the same detector does not exceed the preset threshold, it is determined that the detector and/or the transmitter correspond to The path is not touched.
  • the transmissive member when the transmissive member is touched, a part of the electromagnetic signal that is detected by the detector without being touched cannot be detected by the detector, that is, in the case of a touch, compared to the case where the transmissive member is not touched.
  • the detected electromagnetic signal is reduced and the electromagnetic signal strength is reduced.
  • the electromagnetic signal transmission path from the transmitter 10 to the detector 20 forms a grid on the transmissive member 3.
  • FIG. 1 only indicates two electromagnetic signal transmission paths 50.
  • the detector detects a change in the electromagnetic signal.
  • the processor calculates the touch location by reconstructing a path in which the electromagnetic signal changes and by identifying intersections of the paths.
  • only one transmitter can be activated at the same time, for example, the first 10 microseconds only the first transmitter is activated, and the second 10 microseconds only Two transmitters are activated, and so on.
  • the transmissive member comprises: at least two touch curved faces having different radii, the touch curved bodies being tangentially connected.
  • the transmissive member comprises: at least one piece of touch curved surface body and at least one piece of planar body, the tangent connection between the touch curved surface bodies, and the tangential connection between the touch curved surface body and the planar body.
  • the transmissive member is a piece of curved surface.
  • the system further comprises: an orientation device for orienting the electromagnetic signal; the orientation device including but not limited to: a prism, a lens, an optical sheet, an optical film, and the like.
  • the second side is a side corresponding to the first side, wherein the first side and the second side may be an end surface around the transmitting member or a surrounding portion of the boundary surface of the transmitting member, respectively.
  • the boundary surface is a surface opposite to the touch surface or the touch surface.
  • a minimum incident angle of an incident angle of the electromagnetic signal transmitted by the transmitter is greater than a total reflection critical angle of the transmitting member, wherein the incident angle is an electromagnetic signal transmitted by the transmitter into the transmissive member The incident angle incident to the first boundary surface of the transmissive member and the incident angle of the second boundary surface.
  • the embodiment of the invention further provides a system for detecting the position of an object on a curved touch interface, the system comprising:
  • Transmissive member a plurality of transmitters, a plurality of detectors, a processor
  • the transmissive member includes at least one piece of curved curved surface, wherein the curved curved body is a part of an annular cylindrical surface, and a portion of the annular cylindrical surface having an angle perpendicular to the axial center has an angle greater than 0 degrees and less than 360 degrees;
  • the plurality of emitters are configured to send an electromagnetic signal to the transmissive member, the electromagnetic signal entering the transmissive member from a first side of the transmissive member;
  • the detector is configured to detect an electromagnetic signal transmitted by the transmitter through the transmitting member and emerging from the second side of the transmitting member;
  • the electromagnetic signal has a path through the transmissive member from each of the plurality of emitters to a corresponding one of the plurality of detectors such that there is no
  • the corresponding detector detects the electromagnetic signal in the case of a touch
  • the path includes a transmission path of at least one total reflection in the transmissive member, and the total reflection transmission path refers to entering from the first side
  • the electromagnetic signal inside the transmissive member is totally reflected by the first boundary surface and/or the second boundary surface of the transmissive member to a propagation path of the corresponding side surface of the first side surface, wherein the first boundary surface is the transmissive member
  • the touch surface, the second boundary surface is a surface opposite to the touch surface.
  • a portion of the path of the electromagnetic signal is changed without the plurality of emitters and the plurality of detectors satisfying: at the touch surface of the transmissive member The detector detects a change in the electromagnetic signal when touched at any position;
  • the processor is configured to determine a touch location according to a positioning signal sent by the transmitter and/or the detector.
  • system further includes:
  • the first set of emitters are located on a third side of the transmissive member, the first set of emitters for transmitting an electromagnetic signal to the transmissive member;
  • the first set of detectors are located on a fourth side of the transmissive member corresponding to the third side, the first set of detectors for detecting an electromagnetic signal transmitted by the transmitter through the transmissive member;
  • the electromagnetic signal has a path through the transmissive member from each of the first set of emitters to a corresponding one of the first set of detectors such that The corresponding detector detects the electromagnetic signal without a touch, the path including the transmission of at least one total reflection inside the transmissive member, in the case of a touch, a portion of the electromagnetic signal
  • the path is changed without the first set of emitters and the first set of detectors satisfying: the detector detects a change in the electromagnetic signal when touched at any position on the touch surface of the transmissive member;
  • the processor is configured to determine a touch location according to a positioning signal sent by the first group of transmitters and/or the first group of detectors.
  • the transmissive member may be one layer or multiple layers.
  • the material of the transmissive member is adapted to transmit energy in the interior of the electromagnetic signal and between the two boundary surfaces by reflection (including total reflection), and the material of the transmissive member includes but is not limited to glass, PMMA (poly methyl methacrylate, polymethyl) Polypropylene (polycarbonate), PET (polyethylene terephthalate, polyethylene terephthalate).
  • Electromagnetic signals include, but are not limited to, ultraviolet light, visible light, infrared light, and other types of signals.
  • the transmitter can use infrared emission transistor and infrared emission diode.
  • the detector can use infrared receiving transistor, infrared receiving diode, and other types of transmitter and detector.
  • the transmitter and detector can also be placed in a different manner than shown in Figure 1, including but not limited to the arrangement of the transmitter and detector alternately.
  • FIG. 2 is a three-view and a perspective view of a transmissive member according to an embodiment of the present invention.
  • the transmissive member is a touch curved body
  • the cross section AA is perpendicular to the axis of the annular cylindrical surface
  • the cross section BB passes through the axis of the annular cylindrical surface
  • is the angle of the cross section perpendicular to the axial center of the touch curved body, the range of the angle It is greater than 0 degrees and less than 360 degrees.
  • the first surface and the second surface in the embodiment of the present invention may both be the first boundary surface. If the first surface is the first boundary surface, the second surface is the second boundary surface.
  • Figure 3 is a schematic illustration of the transmission of electromagnetic signals across the cross section of the transmissive member.
  • the section in the figure is the section ⁇ - ⁇ in Figure 2.
  • the transmissive member is a curved surface; 0 is the center of two concentric circles on the cross section, the inner diameter of the concentric circle is r, and the outer diameter of the concentric circle is R.
  • the transmitter 1 emits an electromagnetic signal which enters the interior of the transmissive member 3 in a specific direction via the orienting device 6, the electromagnetic signal being reflected (including total reflection) between the first surface 4 and the second surface 5 of the transmissive member 3 After transmission, the electromagnetic signal passes through the orientation device 7 and is transmitted to the detector 2 in a specific direction.
  • this figure only shows the transmission path 8 of an electromagnetic signal.
  • the radius of the first surface 4 is greater than the radius of the second surface 5.
  • points A and C are two reflection points of electromagnetic signals adjacent to the second surface 5 of the transmissive member 3
  • points B and D are two adjacent electromagnetic signals on the first surface 4 of the transmissive member 3.
  • the reflection point, the electromagnetic signal passes through the ABCD point in turn.
  • the E point is the intersection of the A point normal OA extension line and the first surface 4
  • the F point is the intersection of the C point normal OC extension line and the first surface 4.
  • the incident light and the reflected light are located on the same side of the reflective interface, and the incident angle is equal to the reflection angle.
  • the incident angle is less than or equal to 90° and the reflection angle is less than or equal to 90°.
  • ZEAB is the angle of reflection of the electromagnetic signal at point A, then ZEAB 90. .
  • ZBCF is the incident angle of the electromagnetic signal at point C, then ZBCF 90. .
  • ZEAB is the angle of reflection of point A
  • ZBCF is the angle of incidence of point C. It is obtained by the law of reflection of geometric optics: the angle of incidence of point A and point C is equal.
  • the electromagnetic signal is reflected at point c, and the normal is a straight line oc.
  • ZBCF and ZBCO complement each other and get ZBCF+Z
  • ZOBC is the reflection angle of point B.
  • ZCDO is the incident angle of point D
  • ZOBC is the reflection angle of point B
  • ZCDO is the incident angle of point D. It is obtained by the law of reflection of geometric optics: the incident angles of point B and point D are equal.
  • Figure 4 is a schematic illustration of the transmission of electromagnetic signals across the other section of the transmissive member.
  • the section in the figure is the section BB in Fig. 2.
  • the upper and lower sides of the section are parallel, i.e., the portions of the first surface 4 and the second surface 5 of the transmissive member are parallel in this section.
  • the emitter 1 emits an electromagnetic signal which passes through the orientation device 6' and enters the interior of the transmissive member 3.
  • the electromagnetic signal is transmitted between the first surface 4 and the second surface 5 inside the transmissive member 3 by reflection (including total reflection) to
  • the orientation device 7' is then entered into the detector 2.
  • this figure only shows the transmission path 11 of an electromagnetic signal.
  • FIG. 5 is a schematic illustration of the transmission of an electromagnetic signal in a see-through member in accordance with an embodiment of the present invention.
  • the transmissive member 3 is a light-tight medium having a refractive index of ⁇ .
  • the outside of the transmissive member 3 is optically permeable, and the refractive index is.
  • the critical angle of total reflection between the transmissive member 3 and the external optically permeable material is 0c.
  • An angle of incidence of the electromagnetic signal at the first surface 4 of the transmissive member 3 is ⁇ .
  • FIG. 6-A is a schematic diagram of the transmission of electromagnetic signals when the transmissive member is not touched.
  • the electromagnetic signal emitted by the transmitter 1 is at least one full inside the transmissive member 3.
  • the reflected transmission path is transmitted to the detector 2 to be detected by it, wherein 4 is the first surface of the transmissive member 3, 5 is the second surface of the transmissive member 3, 6, 7 is the orientation device, and 8 is the transmission of the electromagnetic signal. Path, for the sake of clarity, only one electromagnetic signal transmission path 8 is indicated.
  • FIG. 6-B is a schematic diagram of the transmission of the electromagnetic signal when the transmissive member is touched.
  • the touch object 12 is touched, at the touch position, a part of the electromagnetic signal is scattered or absorbed by the touch object 12, and the electromagnetic signal is transmitted.
  • the path is changed and cannot be transmitted to the detector 2, and the intensity of the electromagnetic signal detected by the detector 2 is lowered, so that it is possible to determine that there is a touch object on the electromagnetic signal transmission path from the transmitter 1 to the detector 2, wherein 1 is a transmitter 3 is a transmissive member, 4 is a first surface of the transmissive member, 5 is a second surface of the transmissive member, 6 and 7 are orientation devices, and 8 is a transmission path of electromagnetic signals, and for the sake of clarity, only one electromagnetic signal transmission is indicated. Path 8.
  • FIG. 6-C is a schematic diagram of the transmission of the electromagnetic signal when the transmitting member is touched.
  • the touch object 12 is touched, at the touch position, a part of the electromagnetic signal is scattered or absorbed by the touch object 12, and the electromagnetic signal is transmitted.
  • the path is changed and cannot be transmitted to the detector 2, and the intensity of the electromagnetic signal detected by the detector 2 is lowered, so that it is possible to determine that there is a touch object on the electromagnetic signal transmission path from the transmitter 1 to the detector 2, wherein 1 is a transmitter 3 is a transmissive member, 4 is a first surface of the transmissive member, 5 is a second surface of the transmissive member, 6 and 7 are orientation devices, and 8 is a transmission path of electromagnetic signals, and for the sake of clarity, only one electromagnetic signal transmission is indicated. Path 8.
  • both the large radius boundary surface and the small radius boundary surface of the transmission member can be used as the touch surface.
  • FIG. 7-A is a schematic diagram of the transmission of electromagnetic signals in a transmissive member according to an embodiment of the present invention.
  • the transmissive member 3' is a touch curved body.
  • Transmitter 1' emitted electricity
  • the magnetic signal is incident inside the transmissive member 3', and the electromagnetic signal has at least one totally reflective transfer path between the first surface 4' and the second surface 5' of the transmissive member 3' and is detected by the detector 2'.
  • this figure only shows two electromagnetic signal transmission paths 8'
  • Figure 7-B is a partial schematic view of the embodiment of Figure 7-A.
  • the emission angle of the emitter 1' is such that the electromagnetic signal emitted by the emitter 1' enters the interior of the transmissive member 3' via the surface 14'.
  • the electromagnetic signal is reflected on the first surface 4' of the transmitting member 3', and the maximum incident angle e ⁇ m ⁇ and the minimum incident angle ⁇ on the first surface 4' can be determined, and the arbitrary incident angle 0i satisfies 6 1 . > 0 1 ⁇ 1 , ⁇ . Therefore, it is only necessary to satisfy that min is greater than or equal to the critical angle of total reflection, and the electromagnetic signal emitted by the emitter 1' can be transmitted inside the transmissive member 3' with a total reflection transmission path.
  • Figure 7-C is a side view and a perspective view of a transmissive member based on Figure 7-A.
  • the relevant size data is indicated in the figure, and the unit is glutinous rice.
  • the dimensions of 1.6 mm and 2 mm in the figure are the distances of the emission center of the emitter 1' relative to the transmission member 3'.
  • the receiver 2' uses an infrared receiving transistor
  • the external light of the transmitting member 3' is Air
  • air refractive index ⁇ 2 1 ⁇
  • the transfer path is transmitted inside the transmissive member 3'.
  • FIG. 7-C is only one of many embodiments that can be designed by the method of the embodiment of Figures 7-A and 7-B. Many other embodiments can be devised in accordance with the method of the embodiment of Figures 7-A and 7-B.
  • Figure 8-A is a side view of a transmissive member according to an embodiment of the present invention.
  • the transmissive member 3'' has a first surface 4'' and a second surface 5''.
  • Transmissive member 3'' consists of a touch curved body ABB'!
  • the touch surface body BCC B' and the touch surface body CDD' C are composed, ABB'A' is tangent to BCC'B', and BCC B' is tangent to CDD' C, that is, the arc AB is tangent to the arc BC, and the circle Arc BC is tangent to arc CD, arc ⁇ ' ⁇ ' and arc ⁇ ' Tangent, the arc ⁇ ' ⁇ is tangent to the arc c D'.
  • the side view of the first surface 4'' is composed of arcs AB, BC, CD
  • the side view of the second surface 5'' is composed of arcs ⁇ ' ⁇ ', ⁇ 'C', CD'.
  • the arc AB and the arc A'B' are the same center, the arc BC and the arc ⁇ 'C are the same center, and the arc CD and the arc CD' are the same center.
  • the radius of the arc AB is R1
  • the radius of the arc BC is R2
  • the radius of the arc CD is R3
  • the radius of the arc A'B' is rl
  • the radius of the arc ⁇ ' is r2
  • the arc C'D' The radius is r3, where Rl>rl, R2>r2, R3>r3.
  • the transmissive member may be combined in a tangential manner by two segments of the curved surface, and the transmissive member may also be formed by a plurality of segments of the curved surface in a tangential manner.
  • Figure 8-B is a schematic illustration of electromagnetic signal transfer in the transmissive member of Figure 8-A.
  • the electromagnetic signal emitted by the emitter 1'' is incident inside the transmissive member 3'', and the electromagnetic signal has at least one total reflection transmission path between the first surface 4'' of the transmissive member 3'' and the second surface 5'' And detected by detector 2.
  • this illustration only shows two electromagnetic signal transmission paths through 8".
  • Figure 8-C is a schematic diagram of the electromagnetic signal transmission of the CDD'C portion of Figure 8-A.
  • the emission angle of the emitter is that the electromagnetic signal emitted by the emitter passes through the surface 14 ⁇ into the transmissive member 3''.
  • the electromagnetic signal is reflected at the CD segment of the first surface 4" of the transmitting member 3".
  • the maximum incident angle ⁇ 2 , ma of the CD segment of the first surface 4 and the minimum incident angle ⁇ 2 , ⁇ can be determined . Any incident angle ⁇ 2 of an arc CD segment satisfies ⁇ 2 , max > ⁇ 2
  • Figure 8-D shows the electromagnetic signal transmission in the BCC'B' part of Figure 8-A.
  • the maximum angle of incidence of the segment BC is intended, in the electromagnetic signal transmission member 3 'of the first surface 4''of the segment BC is reflected, may determine a first surface 4''of, max and the minimum incident angle ⁇ 3, min, Any incident angle ⁇ 3 of the arc BC segment satisfies ⁇ 3 , > ⁇ 3 > ⁇ 3 , ⁇
  • Fig. 8- ⁇ is a schematic diagram of electromagnetic signal transmission in the ABB'A' portion of Fig. 8- ⁇ , the electromagnetic signal is reflected in the AB segment of the first surface 4'' of the transmitting member 3'', and can be determined
  • the maximum incident angle e 4 , max of the first surface 4′′ and the minimum incident angle ⁇ 4 , min , the arbitrary incident angle ⁇ 4 of the arc segment AB satisfy ⁇ 4 , max > ⁇ 4 > ⁇ 4 , ⁇
  • Figure 8-F is a side view and a perspective view of a transmissive member based on Figure 8-A, with associated dimensional data in mils.
  • the dimensions 1.7 mm and 2 mm in the figure are the distances of the emission center of the emitter 1'' relative to the transmission member 3''.
  • the law of reflection and the geometric relationship can be calculated electromagnetic
  • Fig. 8-F is only one of many embodiments that can be designed by the method of the embodiment of Figs. 8-A, 8-B, 8-C, 8-D, and 8-E. Many other embodiments can be devised in accordance with the method of the embodiment of Figs. 8-A, 8-B, 8-C, 8-D, and 8-E.
  • Figure 8-G is a side view of a transmissive member based on Figure 8-A, with associated dimensional data in mils.
  • the dimensions in the figure are 1.7mm and 2mm are emission
  • the detector 1'' uses an infrared receiving transistor
  • the transmitting part y ' is made of PMMA
  • the medium is air
  • the electromagnetic signal emitted by the emitter may have a total reflection transmission path inside the transmissive member 3'', the side of the transmissive member shown in Figure 8-G Views are left and right asymmetric structures.
  • Fig. 8-G is only one of many embodiments that can be designed by the method of the embodiment of Figs. 8-A, 8-B, 8-C, 8-D, and 8-E. Many other embodiments can be devised in accordance with the method of the embodiment of Figures 8-A, 8-B, 8-C, 8-D, and 8-E.
  • Figure 9-A is a side view of a transmissive member according to an embodiment of the present invention.
  • the transmissive member V has a first surface f and a second surface 5'.
  • the transmissive member 3' ⁇ is composed of a touch curved body EFP E', a plane body FGG' P and a touch curved body GHH'G',EFF'E' is tangent to FGG' P, and FGG' P is tangent to GHH'G'.
  • the side view of the first surface 4 ⁇ is composed of an arc EF, a line segment FG, and an arc GH
  • the side view of the second surface 5' is composed of an arc ⁇ ' ⁇ , a line segment F'G', and an arc G'H'.
  • the arc EF and the arc E' P are the same center, the line segment FG is parallel to the line segment F'G', and the arc GH and the arc G'H' are the same center.
  • the radius of the arc EF is R4, the radius of the arc GH is R5, the radius of the arc F' is r4, the radius of the arc G'H' is r5, and the thickness of the plane FGG' P is hl, where R4> R4, R5>r5.
  • the electromagnetic signal is incident
  • the incident angle to any boundary surface of the plane body FGG'F' and the incident angle of the electromagnetic signal incident on the large radius boundary surface of the touch curved body GHH'G' are simultaneously greater than or equal to the critical angle of total reflection, the electromagnetic signal can A transfer path with total reflection is transmitted in the transmissive member.
  • the transmissive member may be combined by a touch curved body and a planar body in a tangent manner, or may be combined by a plurality of touch curved bodies and a plurality of planar bodies in a tangent manner. Made.
  • Figure 9-B is a perspective view of the transmission member of Figure 9-A.
  • Figure 9-C is a schematic illustration of the electromagnetic signal transfer in the transmissive member of Figure 9-A.
  • the electromagnetic signal emitted by the emitter 1' is incident inside the transmissive member V, and the electromagnetic signal has at least one total reflection transmission path between the first surface f and the second surface 5' of the transmissive member V, and is detected by the detector 2' detected.
  • this illustration only indicates two electromagnetic signal transmission paths through ' '.
  • Figure 9-D is a schematic diagram of the electromagnetic signal transmission of the EFP E' portion of Figure 9-A.
  • the emission angle of the transmitter r ⁇ is ⁇ 3 , and the electromagnetic signal emitted by the transmitter r ⁇ enters through the surface If Inside the transmissive member y, the electromagnetic signal is reflected at the EF segment of the first surface 4' of the transmissive member y, and the maximum incident angle of the EF segment of the first surface 4' 6 6 5 , max and the minimum incident angle 0 5 can be determined.
  • the arbitrary incident angle ⁇ 5 of the arc EF segment satisfies ⁇ 5 , max ⁇ ⁇ 5 > ⁇ 5 , m in .
  • Figure 9-E is a schematic diagram of electromagnetic signal transmission in the FGG'E' portion of Figure 9-A.
  • the electromagnetic signal is reflected at the FG segment of the first surface 4 ⁇ of the transmissive member V, and the first surface can be determined.
  • the maximum incident angle of the FG segment of f is 0 6 , max and the minimum incident angle ⁇ 6 , min , and the arbitrary incident angle ⁇ 6 of the segment FG segment satisfies ⁇ 6 , max > 0 6 > ⁇ 6 , ⁇ .
  • Figure 9F is a schematic diagram of the electromagnetic signal transmission of the GHH'G' portion of Figure 9-A.
  • the electromagnetic signal is reflected at the GH segment of the first surface 4' of the transmissive member V, and the first surface f can be determined.
  • the maximum incident angle of the GH segment is 0 7 , max and the minimum incident angle ⁇ 7 , min , and the arbitrary incident angle ⁇ 7 of the arc GH segment satisfies ⁇ 7 , max > ⁇ 7 > ⁇ 7 , min .
  • Figure 9-G is a side elevational view of a transmissive member based on Figure 9-A, with associated dimensional data in mils.
  • the dimensions of 1.6 mm and 2 mm in the figure are the distances of the emission center of the emitter 1'' with respect to the transmissive member V.
  • Transmitter 1' ⁇ Select infrared emission transistor with emission angle ⁇ 3 45°
  • detector 1'''Select infrared receiving triode detector 1'''Select infrared receiving triode
  • Transmissive part '''Material selected PMMA, PMMA refractive index 1 ⁇ 1.49, Transparency ⁇ ''
  • Figure 9-G is merely a number of embodiments of the method of the embodiment of Figures 9-A, 9-B, 9-C, 9-D, 9-E, 9-F One. Many other embodiments can be devised in accordance with the method of the embodiment of Figures 9-A, 9-B, 9-C, 9-D, 9-E, and 9-F.
  • Figure 9-H is a side view of a transmissive member based on Figure 9-A, with associated dimensional data in mils.
  • the dimensions of 1.6 mm and 2 mm in the figure are the distances of the emission center of the emitter 1'' with respect to the transmissive member V.
  • Transmitter 1' ⁇ Select infrared emission transistor with emission angle ⁇ 3 45°
  • detector 1'''Select infrared receiving triode detector 1'''Select infrared receiving triode
  • Transmissive part '''Material selected PMMA, PMMA refractive index 1 ⁇ 1.49, Transparency ⁇ ''
  • ⁇ 5 , ⁇ 6 , min , ⁇ 7 , min are all larger than the total reflection critical angle 6c, and the electromagnetic signal emitted by the emitter V " may have a total reflection transmission path inside the transmission member V Transfer, wherein the side view of the transmissive member shown in Fig. 9-H is a left-right asymmetric structure.
  • Figure 9-H is only Figure 9-A, Figure 9-B, Figure 9-C, Figure 9-D, Figure 9-E, Figure
  • Figure 10 illustrates an embodiment of a method of detecting the position of an object on a curved touch interface of the present invention. The process is as follows:
  • Step 1001 Send an electromagnetic signal from the first side of the transmissive member to the transmissive member;
  • Step 1002 Detect the received electromagnetic signal on the second side of the transmissive member;
  • Step 1003 According to the detection result of the received electromagnetic signal Determining a position of the touch;
  • the transmissive member includes at least one piece of the touch curved surface body, wherein the touch curved surface body is a part of the annular cylindrical surface, and a portion of the annular cylindrical surface having an angle perpendicular to the axial center has an angle greater than 0 degrees Less than 360 degrees;
  • the electromagnetic signal has at least one fully reflective transmission path in the transmissive member such that the second side detects the electromagnetic signal without a touch;
  • the total reflection transmission path means that the electromagnetic signal entering the inside of the transmissive member from the first side is totally reflected on the first boundary surface and/or the second boundary surface of the transmissive member. a propagation path of the side surface corresponding to the first side, wherein the first boundary surface is a touch surface of the transmissive member, and the second boundary surface is a surface opposite to the touch surface;
  • the detection result includes: a strength of the detected electromagnetic signal.
  • the transmissive member is a piece of curved surface.
  • the transmissive member comprises: at least two segments of curved curved surfaces having different radii, the tangential joints being tangentially connected. In one embodiment, the transmissive member comprises: at least one piece of touch curved surface body and at least one plane body, the tangent connection between the touch curved surface bodies, and the tangent connection between the touch curved surface body and the planar body.
  • the outer side of the first boundary surface and the outer side of the second boundary surface of the transmissive member are optically thinner with respect to the transmissive member.
  • the second side is a side corresponding to the first side.
  • a minimum incident angle of the incident angle of the electromagnetic signal entering the first side into the transmitting member is greater than a total reflection critical angle of the transmitting member, wherein the incident angle is the The incident angle of the electromagnetic signal entering the transmitting member and incident on the first boundary surface of the transmitting member and the incident angle of the second boundary surface.
  • the electromagnetic signal transmitted from the first side is all a total reflection transmission path in the transmissive member.
  • a "comprising" element in the ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> does not exclude the presence of additional the same factors in the process, method, article, or device that includes the element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明提供了一种检测曲面触摸界面上对象位置的系统及方法,该系统包括:透射件、发射器、检测器、处理器;透射件包括至少一段触摸曲面体,其中,所述触摸曲面体为环形圆柱面的一部分,该环形圆柱面的一部分的垂直于轴心的截面的角度范围为大于0度小于360度;发射器用于向所述透射件发送电磁信号,电磁信号从透射件的第一侧面进入所述透射件;检测器用于检测发射器发送的穿过透射件并从透射件的第二侧面出射的的电磁信号;发射器和所述检测器满足:在透射件的触摸表面上的任一位置触摸时都有检测器检测到电磁信号的变化;处理器,用于根据发射器和/或检测器发来的定位信号来确定触摸位置。通过该系统及方法能够检测曲面触摸界面上对象位置。

Description

一种检测曲面触摸界面上对象位置的系统及方法 技术领域
本发明涉及触摸界面技术领域, 尤其涉及一种检测曲面触摸界面 上对象位置的系统及方法, 该曲面触摸界面利用被破坏的全反射作为
背景技术
随着触摸界面技术的发展, 触摸屏在手机、 电脑等各种领域都得 到了广泛的应用。
当前主要的触摸屏种类有: 电阻式触摸屏、 电容式触摸屏、 红外 式触摸屏、 表面声波式触摸屏、 光学影像触摸技术等。 当前大部分显 示器的显示表面是平面, 各种技术原理的触摸屏为配合显示器的显示 平面而设计, 因此大部分的触摸屏的触摸表面是平面。
随着 OLED( Organic Electroluminesence Display,有机发光二极管 ) 技术的发展, 曲面显示界面的产品已经出现, 近年来在各种消费电子 产品展览上已经有一些公司推出曲面手机、 弧面显示器、 弧面电视机 等。
针对曲面触摸界面, 需要一种检测曲面触摸界面上对象位置的方 法。 发明内容
本发明提供了一种检测曲面触摸界面上对象位置的系统及方法, 能够实现对曲面触摸界面上对象位置的检测。
第一方面, 本发明提供了一种检测曲面触摸界面上对象位置的系 透射件、 发射器、 检测器、 处理器;
所述透射件包括至少一段触摸曲面体, 其中, 所述触摸曲面体为 环形圆柱面的一部分, 该环形圆柱面的一部分的垂直于轴心的截面的 角度范围为大于 0度小于 360度;
所述发射器用于向所述透射件发送电磁信号, 所述电磁信号从所 述透射件的第一侧面进入所述透射件;
所述检测器用于检测发射器发送的穿过透射件并从透射件的第二 侧面出射的的电磁信号;
在没有触摸的情况下, 所述电磁信号在所述透射件中至少有一个 全反射的传递路径, 使得在没有触摸的情况下所述检测器检测到所述 电磁信号, 其中, 所述全反射的传递路径是指从第一侧面进入透射件 内部的电磁信号在透射件的第一边界面和 /或第二边界面上经过全反射 到达该第一侧面对应的侧面的传播路径, 其中, 所述第一边界面为所 述透射件的触摸表面, 所述第二边界面为与所述触摸表面相对的表面; 在有触摸的情况下, 一部分所述电磁信号的所述路径被改变而不 所述发射器和所述检测器满足: 在透射件的触摸表面上的任一位 置触摸时都有检测器检测到电磁信号的变化;
所述处理器, 用于根据发射器和 /或检测器发来的定位信号来确定 触摸位置。
进一步地,所述定位信号包括:检测器检测到的电磁信号的强度。 进一步地, 所述透射件为一段触摸曲面体。
进一步地, 所述透射件包括: 至少两段半径不同的触摸曲面体, 所述触摸曲面体之间相切连接。
进一步地, 所述透射件包括: 至少一段触摸曲面体和至少一段平 面体,触摸曲面体之间相切连接,触摸曲面体与平面体之间相切连接。
进一步地, 所述透射件的第一边界面外侧及第二边界面外侧是相 对于所述透射件的光疏媒质。
进一步地, 所述系统还包括: 定向设备, 用于给电磁信号定向。 进一步地, 所述定向设备包括: 棱镜、 透镜、 光学薄片、 光学膜。 进一步地, 所述第二侧面为第一侧面对应的侧面。
进一步地, 所述发射器发送的电磁信号的入射角中的最小入射角 大于所述透射件的全反射临界角, 其中, 所述入射角为发射器发送的 电磁信号进入透射件后入射到透射件的第一边界面的入射角和第二边 界面的入射角。
进一步地, 所述发射器发送的电磁信号在所述透射件中全是全反 射的传递路径。
第二方面, 本发明提供了一种检测曲面触摸界面上对象位置的系 透射件、 多个发射器、 多个检测器、 处理器;
所述透射件包括至少一段触摸曲面体, 其中, 所述触摸曲面体为 环形圆柱面的一部分, 该环形圆柱面的一部分的垂直于轴心的截面的 角度范围为大于 0度小于 360度;
所述多个发射器用于向所述透射件发送电磁信号, 所述电磁信号 从所述透射件的第一侧面进入所述透射件;
所述检测器用于检测与发射器发送的穿过透射件并从透射件的第 二侧面出射的的电磁信号;
在没有触摸的情况下, 所述电磁信号具有穿过所述透射件从所述 多个发射器中的每一个到所述多个检测器中的对应的至少一个检测器 的路径, 使得在没有触摸的情况下所述对应的检测器检测到所述电磁 信号, 所述路径包括在所述透射件中的至少一个全反射的传递路径, 所述全反射的传递路径是指从第一侧面进入透射件内部的电磁信号在 透射件的第一边界面和 /或第二边界面上经过全反射到达该第一侧面对 应的侧面的传播路径, 其中, 所述第一边界面为所述透射件的触摸表 面, 所述第二边界面为与所述触摸表面相对的表面;
在有用户触摸的情况下, 一部分所述电磁信号的所述路径被改变 任一位置触摸时都有检测器检测到电磁信号的变化;
所述处理器, 用于根据发射器和 /或检测器发来的定位信号来确定 触摸位置。
进一步地, 所述系统还包括:
第一组发射器、 第一组检测器;
所述第一组发射器位于透射件的第三侧面上, 所述第一组发射器 用于向所述透射件发送电磁信号;
所述第一组检测器位于与所述第三侧面相对应的透射件的第四侧 面上, 所述第一组检测器用于检测发射器发送的穿过透射件的电磁信 号;
在没有触摸的情况下, 所述电磁信号具有穿过所述透射件从所述 第一组发射器中的每一个到所述第一组检测器中的对应的至少一个检 测器的路径, 使得在没有触摸的情况下所述对应的检测器检测到所述 电磁信号, 所述路径包括在所述透射件内部的至少一个全反射的传递 在有触摸的情况下, 一部分所述电磁信号的所述路径被改变而不 所述第一组发射器和所述第一组检测器满足: 在透射件的触摸表 面的任一位置触摸时都有检测器检测到电磁信号的变化;
所述处理器, 用于根据所述第一组发射器和 /或第一组检测器发来 的定位信号来确定触摸位置。
第三方面, 本发明提供了一种检测曲面触摸界面上对象位置的方 法, 该方法包括:
从透射件的第一侧面向所述透射件发送电磁信号;
在透射件的第二侧面上检测接收到的电磁信号;
根据对接收到的电磁信号的检测结果确定触摸位置;
所述透射件包括至少一段触摸曲面体, 其中, 所述触摸曲面体为 环形圆柱面的一部分, 该环形圆柱面的一部分的垂直于轴心的截面的 角度范围为大于 0度小于 360度;
其中, 在没有触摸的情况下, 所述电磁信号在所述透射件中至少 有一个全反射的传递路径, 使得在没有触摸的情况下所述第二侧面检 测到所述电磁信号, 其中, 所述全反射的传递路径是指从第一侧面进 入透射件内部的电磁信号在透射件的第一边界面和 /或第二边界面上经 过全反射到达该第一侧面对应的侧面的传播路径, 其中, 所述第一边 界面为所述透射件的触摸表面, 所述第二边界面为与所述触摸表面相 对的表面;
在有触摸的情况下, 一部分所述电磁信号的所述路径被改变而不 能到达所述第二侧面。
进一步地, 所述检测结果包括: 检测到的电磁信号的强度。
进一步地, 所述透射件为一段触摸曲面体。
进一步地, 所述透射件包括: 至少两段半径不同的触摸曲面体, 所述触摸曲面体之间相切连接。
进一步地, 所述透射件包括: 至少一段触摸曲面体和至少一段平 面体,触摸曲面体之间相切连接,触摸曲面体与平面体之间相切连接。
进一步地, 所述透射件的第一边界面外侧及第二边界面外侧是相 对于所述透射件的光疏媒质。
进一步地, 所述第二侧面为第一侧面对应的侧面。
进一步地, 所述进入第一侧面的电磁信号入射到所述透射件的入 射角中的最小入射角大于所述透射件的全反射临界角, 其中, 所述入 射角为所述电磁信号进入透射件后入射到透射件的第一边界面的入射 角和第二边界面的入射角。
进一步地, 所述从第一侧面发送的电磁信号在所述透射件中全是 全反射的传递路径。
通过本发明实施例提供的一种检测曲面触摸界面上对象位置的系 统及方法, 能够实现对曲面触摸界面上对象位置的检测。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面 将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而 易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通 技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图 获得其他的附图。
图 1是本发明一实施例提供的一种检测曲面触摸界面上对象位置 的系统结构示意图;
图 2是本发明一实施例提供的一种透射件的三视图及立体图; 图 3是本发明一实施例提供的电磁信号在透射件截面上传递的示 意图;
图 4是本发明一实施例提供的电磁信号在透射件另一截面传递的 示意图;
图 5是本发明一实施例提供的一种电磁信号在透视件中传递的示 意图;
图 6-A是本发明一实施例提供的透射件未被触摸时电磁信号的传 递示意图;
图 6-B是本发明一实施例提供的透射件被触摸时电磁信号的传递 示意图
图 6-C是本发明一实施例提供的另一种透射件被触摸时电磁信号 的传递示意图;
图 7-A是本发明一实施例提供的一种透射件中电磁信号的传递示 意图;
图 7-B是本发明一实施例提供的电磁信号入射到透射件中的示意 图;
图 7-C是本发明一实施例提供的一种透射件的侧视图及立体图; 图 8-A是本发明一实施例提供的一种透射件的侧视图;
图 8-B是本发明一实施例提供的图 8-A中的透射件中的电磁信号 传递的示意图;
图 8-C是本发明一实施例提供的图 8-A的 CDD' C 部分的电磁 信号传递示意图;
图 8-D是本发明一实施例提供的图 8-A的 BCC B' 部分的电磁 信号传递示意图;
图 8-E是本发明一实施例提供的图 8-A的 ABA' B' 部分的电磁 信号传递示意图;
图 8-F是本发明一实施例提供的基于图 8-A的一种透射件的侧视 图及立体图;
图 8-G是本发明一实施例提供的基于图 8-A的一种透射件的侧视 图;
图 9-A是本发明一实施例提供的一种透射件的侧视图;
图 9-B是本发明一实施例提供的图 9-A中的透射件的立体图; 图 9-C是本发明一实施例提供的图 9-A中的透射件中的电磁信号 传递的示意图;
图 9-D是本发明一实施例提供的图 9-A的 EFP Ε' 部分的电磁信 号传递示意图;
图 9-Ε是本发明一实施例提供的图 9-Α的 FGG' Ε'部分的电磁信 号传递示意图;
图 9-F是本发明一实施例提供的图 9-Α的 GHH' G' 部分的电磁 信号传递示意图;
图 9-G是本发明一实施例提供的基于图 9-Α的一种透射件的侧视 图;
图 9-Η是本发明一实施例提供的基于图 9-Α的另一种透射件的侧 视图;
图 10是本发明一实施例提供的一种检测曲面触摸界面上对象位置 的方法流程图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结 合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例, 基于本发明中的实施例, 本领域普通技术人员在没有 做出创造性劳动的前提下所获得的所有其他实施例, 都属于本发明保 护的范围。
本发明提供了一种检测曲面触摸界面上对象位置的系统,参见图 1, 该系统包括:
透射件 3、 发射器 10、 检测器 20、 处理器 80;
具体地, 该系统包括多个发射器和多个检测器, 每个发射器对应 至少一个检测器, 每个检测器对应至少一个发射器。
所述透射件包括至少一段触摸曲面体, 其中, 所述触摸曲面体为 环形圆柱面的一部分, 该环形圆柱面的一部分的垂直于轴心的截面的 角度范围为大于 0度小于 360度; 相应的, 在触摸曲面体的基础上做 一些改变包括但不限于增加圆角、倒角,被认为也在本说明的范围内。
所述发射器用于向所述透射件发送电磁信号, 所述电磁信号从所 述透射件的第一侧面进入所述透射件;
具体地, 该发射器可以位于透射件的第一侧面上。
所述检测器用于检测发射器发送的穿过透射件并从透射件的第二 侧面出射的的电磁信号;
具体地, 该检测器可以位于透射件的第二侧面上。
在没有触摸的情况下, 所述电磁信号在所述透射件中至少有一个 全反射的传递路径, 使得在没有触摸的情况下所述检测器检测到所述 电磁信号, 其中, 在本发明实施例中, 所述全反射的传递路径是指从 第一侧面进入透射件内部的电磁信号在透射件的第一边界面和 /或第二 边界面上经过全反射到达该第一侧面对应的侧面的传播路径, 其中, 所述第一边界面为所述透射件的触摸表面, 所述第二边界面为与所述 触摸表面相对的表面;
在有触摸的情况下, 一部分所述电磁信号的所述路径被改变而不 所述发射器和所述检测器满足: 在透射件的触摸表面上的任一位 置触摸时都有检测器检测到电磁信号的变化;
所述处理器, 用于根据发射器和 /或检测器发来的定位信号来确定 触摸位置。
具体地, 在计算触摸位置时, 可以建立与触摸面相同的曲面模型 来计算, 也可以建立一个触摸面展开的平面模型, 通过与触摸面对应 来计算触摸位置。
其中, 在透射件未被触摸的情况下, 电磁信号在所述透射件中至 少有一个全反射的传递路径, 这样检测器就能检测到电磁信号。 当透 射件被触摸时, 一部分所述电磁信号的所述传递路径被改变, 检测器 检测到的电磁信号能量发生衰减, 以此判断触摸位置。
通过本发明实施例提供的一种检测曲面触摸界面上对象位置的系 统及方法, 能够实现对曲面触摸界面上对象位置的检测。
其中, 电磁信号在所述透射件内以反射 (包括全反射)方式传递 时具有如下特征: 同一电磁信号在大半径边界面上每一次反射的入射 角相同, 同一电磁信号在小半径边界面上每一次反射的入射角相同, 同一电磁信号在大半径边界面上的入射角小于等于在小半径边界面上 的入射角, 所述大半径边界面是透射件半径大的一侧的边界面, 小半 径边界面是与大半径边界面相对的边界面。 边界面是指透射件的触摸 表面或触摸表面相对的表面。
所述透射件的第一边界面外侧及第二边界面外侧是相对于所述透 射件的光疏媒质。
其中, 所述发射器发送的电磁信号在所述透射件中至少有一个全 反射的传递路径穿过所述透射件到达所述检测器, 相应的, 需要避免 发射器发送的电磁信号未经上述路径而被检测器检测到。 在一种实施方式中, 所述发射器发送的电磁信号在所述透射件中 全是全反射的传递路径。
所述定位信号包括: 检测器检测到的电磁信号的强度。
可选地, 所述处理器, 用于当同一个检测器发来的电磁信号的强 度的衰减超过预设阈值时, 判定该检测器和 /或发射器对应的路径上被 触摸, 并根据被触摸的路径对应的检测器和 /或发射器的位置来确定触 摸位置, 当同一个检测器发来的电磁信号的强度的衰减没有超过预设 阈值时, 判定该检测器和 /或发射器对应的路径上没有被触摸。
具体地, 当透射件被触摸时, 在未被触摸的情况下会被检测器检 测到的电磁信号有一部分不能被检测器检测到, 即与未被触摸的情况 相比, 触摸情况下检测器检测到的电磁信号减少了, 电磁信号强度会 减弱。
需要说明的是: 发射器 10到检测器 20的电磁信号传递路径在透 射件 3上形成网格, 为清楚起见, 图 1只标示了两条电磁信号传递路 径 50。 发生触摸时, 检测器检测到电磁信号的变化。 可选的, 处理器 通过重构电磁信号发生变化的路径以及通过识别这些路径的交叉计算 出触摸位置。 可选的, 为了防止不同发射器之间的干扰, 可以选择在 同一时间只有一个发射器被激活, 例如第一个 10微秒只有第一个发射 器被激活, 第二个 10微秒只有第二个发射器被激活, 以此类推。
在一种实施例中, 所述透射件包括: 至少两段半径不同的触摸曲 面体, 所述触摸曲面体之间相切连接。
在一种实施例中, 所述透射件包括: 至少一段触摸曲面体和至少 一段平面体, 触摸曲面体之间相切连接, 触摸曲面体与平面体之间相 切连接。
在一种实施方式中, 所述透射件为一段触摸曲面体。
在一种实施例中, 所述系统还包括: 定向设备, 用于给电磁信号 定向; 所述定向设备包括但不限于: 棱镜、 透镜、 光学薄片、 光学膜 等。 在一种实施方式中,所述第二侧面为第一侧面对应的侧面,其中, 第一侧面和第二侧面可以分别是所述透射件周围的端面或所述透射件 边界面的周围部分,其中,边界面是触摸表面或触摸表面相对的表面。
在一种实施方式中, 所述发射器发送的电磁信号的入射角中的最 小入射角大于所述透射件的全反射临界角, 其中, 所述入射角为发射 器发送的电磁信号进入透射件后入射到透射件的第一边界面的入射角 和第二边界面的入射角。
本发明实施例还提供了一种检测曲面触摸界面上对象位置的系统, 该系统包括:
透射件、 多个发射器、 多个检测器、 处理器;
所述透射件包括至少一段触摸曲面体, 其中, 所述触摸曲面体为 环形圆柱面的一部分, 该环形圆柱面的一部分的垂直于轴心的截面的 角度范围为大于 0度小于 360度;
所述多个发射器用于向所述透射件发送电磁信号, 所述电磁信号 从所述透射件的第一侧面进入所述透射件;
所述检测器用于检测发射器发送的穿过透射件并从透射件的第二 侧面出射的的电磁信号;
在没有触摸的情况下, 所述电磁信号具有穿过所述透射件从所述 多个发射器中的每一个到所述多个检测器中的对应的至少一个检测器 的路径, 使得在没有触摸的情况下所述对应的检测器检测到所述电磁 信号, 所述路径包括在所述透射件中的至少一个全反射的传递路径, 所述全反射的传递路径是指从第一侧面进入透射件内部的电磁信号在 透射件的第一边界面和 /或第二边界面上经过全反射到达该第一侧面对 应的侧面的传播路径, 其中, 所述第一边界面为所述透射件的触摸表 面, 所述第二边界面为与所述触摸表面相对的表面。
在有触摸的情况下, 一部分所述电磁信号的所述路径被改变而不 所述多个发射器和所述多个检测器满足: 在透射件的触摸表面的 任一位置触摸时都有检测器检测到电磁信号的变化;
所述处理器, 用于根据发射器和 /或检测器发来的定位信号来确定 触摸位置。
在一种实施方式中, 所述系统还包括:
第一组发射器、 第一组检测器;
所述第一组发射器位于透射件的第三侧面上, 所述第一组发射器 用于向所述透射件发送电磁信号;
所述第一组检测器位于与所述第三侧面相对应的透射件的第四侧 面上, 所述第一组检测器用于检测发射器发送的穿过透射件的电磁信 号;
在没有触摸的情况下, 所述电磁信号具有穿过所述透射件从所述 第一组发射器中的每一个到所述第一组检测器中的对应的至少一个检 测器的路径, 使得在没有触摸的情况下所述对应的检测器检测到所述 电磁信号, 所述路径包括在所述透射件内部的至少一个全反射的传递 在有触摸的情况下, 一部分所述电磁信号的所述路径被改变而不 所述第一组发射器和所述第一组检测器满足: 在透射件的触摸表 面的任一位置触摸时都有检测器检测到电磁信号的变化;
所述处理器, 用于根据所述第一组发射器和 /或第一组检测器发来 的定位信号来确定触摸位置。
需要说明的是: 所述透射件可以是一层, 也可以是多层。 所述透 射件的材料适合电磁信号在其内部并且在两个边界面之间以反射 (包 括全反射)的方式传递能量,透射件的材料包括但不限于玻璃、 PMMA ( poly methyl methacrylate, 聚甲基丙錄酸甲酉 )、 PC(polycarbonates, 聚碳酸酯)、 PET(poly ethylene terephthalate, 聚对苯二甲酸乙二酯)。
电磁信号包括但不限于: 紫外光、 可见光、 红外光, 也可以选择 其它类型的信号。 发射器可以选用红外发射三极管、 红外发射二极管, 对应的, 检 测器可以选用红外接收三极管、 红外接收二极管, 发射器和检测器也 可以选择其他类型。 发射器和检测器也可以与图 1 所示不同的方式放 置, 包括但不限于发射器和检测器交替排列放置。
参见图 2,图 2为本发明实施例提供的一种透射件的三视图及立体 图。该透射件是一段触摸曲面体,截面 A-A垂直于环形圆柱面的轴心, 截面 B-B穿过环形圆柱面的轴心, φ为触摸曲面体的垂直于轴心的截 面的角度, 该角度的范围为大于 0度小于 360度。
本发明实施例中的第一表面和第二表面都可以是第一边界面, 若 第一表面为第一边界面, 则第二表面为第二边界面。
参见图 3, 图 3为电磁信号在透射件截面上传递的示意图。 其中, 该图中的截面为图 2 中的截面 Α-Α。 该透射件是一段触摸曲面体; 0 是该截面上两个同心圆的圆心, 同心圆内径是 r, 同心圆外径是 R。 发 射器 1发射出电磁信号, 电磁信号经过定向设备 6以特定方向进入透 射件 3内部, 电磁信号在透射件 3的第一表面 4和第二表面 5之间以 反射(包括全反射) 的方式传递, 电磁信号经过定向设备 7后以特定 方向传向检测器 2。 为清楚起见,本图只标示出一个电磁信号的传递路 径 8。 第一表面 4的半径大于第二表面 5的半径。 其中, A点和 C点 是电磁信号在透射件 3的第二表面 5上相邻的两个反射点, B点和 D 点是电磁信号在透射件 3的第一表面 4上相邻的两个反射点, 电磁信 号依次经过 ABCD点。 E点是 A点法线 OA延长线与第一表面 4的交 点, F点是 C点法线 OC延长线与第一表面 4的交点。
在三角形 ABO中, 由正弦定理可得:
OA _ OB _ AB ( 1 ).
sin ( ZABO ) _ sin ( OAB ) _ sin ( Z BOA ) ^ '
在三角形 OBC中, 由正弦定理可得:
OC _ OB _ BC 式 ( 2 ).
sin ( OBC ) _ sin ( Z BCO ) _ sin ( COB ) ^ '
由图可知 OA, OC是同心圆的内径, 贝 ij OA=OC=r, OB是同心圆 径, 贝 iJ OB=R, 代入式 (1)、 式 (2) 可得:
r R AB
式 (3);
sin ( Z ABO) sin ( OAB ) sin ( Z BOA)
r R BC
式 (4);
sin ( ZOBC) sin ( ZBCO) sin ( COB )
电磁信号在 B点发生反射, 法线是直线 OB, 根据几何光学的反射 定律可知 Z ABO=ZOBC,
可得 . 、 = . ( r、, 代入式 (3)、 式 (4)得:
sin ( ABO ) sin ( ZOBC)
R R
■ , 、 ■ , 、- 式 ( 5 );
sin(ZOAB) sin(ZBCO)
光发生反射时, 入射光与反射光位于反射界面的同一侧, 入射角 等于反射角, 可得入射角小于等于 90° , 反射角小于等于 90° 。
ZEAB是电磁信号在 A点的反射角, 则 ZEAB 90。 。 如图可知
ZEAB与 ZOAB互为补角, 即 ZEAB+ZOAB=180° 式(6), 可得: 90。 < ZOAB< 180° 式 (7)。
ZBCF是电磁信号在 C点的入射角, 则 ZBCF 90。 。 如图可知
ZBCF与 ZBCO互为补角, 即 ZBCF +ZBCO=180。 式 (8), 可得: 90。 < ZBCO< 180° 式 (9)。
由式(5), 式(7), 式(9)可得: OAB=ZBCO 式( 10 )。 由式 (6), 式 (8), 式 (10) 可得: ZEAB=ZBCF。
ZEAB是 A点的反射角, ZBCF是 C点的入射角, 由几何光学的 反射定律可得: A点和 C点的入射角相等。
以此类推, 我们可以得出结论: 同一电磁信号在透射件 3 的第二 表面 5上发生反射时, 所有反射点的入射角相等。
同理:
在三角形 OBC中, 由正弦定理可得:
OB _ BC _ OC 弋 J
sin ( ZBCO) _ sin ( COB) _ sin ( ZOBC) ^ °
在三角形 OCD中, 由正弦定理可得: OD CD OC
sin ( OCD) sin ( ZDOC) sin ( CDO)
OB, OD是同心圆的外径, 则 OB=OD=R, OC是同心圆
Figure imgf000017_0001
R BC r
式 ΠΙ;
sin ( ZBCO ) sin ( COB ) sin ( ZOBC )
R CD r
式 VI;
sin ( OCD) sin ( ZDOC) sin ( CDO)
电磁信号在 c点发生反射, 法线是直线 oc,根据几何光学的反射 定律可知 ZBCF=ZFCD。 ZBCF和 ZBCO互为补角, 可得 ZBCF+Z
BCO=180。 H ZFCD 和 ZOCD 互为补角, 可得 ZFCD+
ZOCD=180。 ······式 VI。 于是可得: ZBCO = ZOCD。
可得^^ ~~ - = ~~ -, 代入式 ΠΙ, 式 IV可得:
sin ( ZBCO) sin ( OCD)
r r
式 VII,
sin ( ZOBC) sin ( ZCDO)
ZOBC是 B点的反射角,
可得, ZOBC≤ 90° ……式丽。
ZCDO是 D点的入射角,
可得, CDO < 90° ······式 IX。
由式 VII, 式丽, 式 IX可得: ZOBC=ZCDO 式 X。
ZOBC是 B点的反射角, ZCDO是 D点的入射角, 由几何光学 的反射定律可得: B点和 D点的入射角相等。
以此类推, 我们可以得出结论: 同一电磁信号在透射件 3 的第一 表面 4上发生反射时, 所有反射点的入射角相等。
在三角形 BOC中, BCO+ Z COB+ OBC= 180° 式( 11 )。 由式(8), 式(11 )可得: BCF= COB+ OBC 式(12)。
ZCOB是三角形 BOC中的一个角, 所以 ZCOB>0。 (仅当电磁 信号在透射件 3的第一表面 4或第二表面 5上的入射角为 0° 时,或透 射件第一表面 4或第二表面 5的曲率半径无穷大时, ZCOB = 0° ), 代入式 (12) 可得: ZBCF> ZOBC。 可以得出结论: 同一电磁信号在透射件 3 的垂直于轴心的截面中 传播时, 第一表面 4上的入射角小于等于第二表面 5上的入射角。
根据以上所得的结论, 在该截面上, 只需使发射器 1发出的电磁 信号在透射件 3的第一表面 4上发生一次全反射, 则电磁信号在透射 件 3内具有全反射的传递路径传递至检测器 2。
参见图 4, 图 4为电磁信号在透射件另一截面传递的示意图。该图 中的截面为图 2 中的截面 B-B。 该截面上下边平行, 即透射件的第一 表面 4和第二表面 5在此截面上的部分平行。 发射器 1发射出电磁信 号, 经过定向设备 6' 后进入透射件 3内部, 电磁信号在透射件 3内部 的第一表面 4和第二表面 5之间以反射 (包括全反射) 的方式传递至 定向设备 7', 然后进入检测器 2。 为清楚起见, 本图只标示出一个电 磁信号的传递路经 11。 由几何光学的反射定律、 折射定律以及几何关 系可以得出电磁信号在截面的上下表面的入射角全部相等, 即 Z al= Z
Figure imgf000018_0001
Z d2, 其中, Ll、 L2、 L3、 L4是法 线。
根据以上所得的结论, 在该截面上, 只需使发射器 1发出的电磁 信号在透射件 3 的第一表面或第二表面上发生一次全反射, 则该电磁 信号在透射件 3内以全反射的传递路径传递至检测器 2。
参见图 5,图 5是本发明实施例中一种电磁信号在透视件中传递的 示意图。 透射件 3是光密媒质, 折射率是 ηι。 透射件 3的外部是光疏 媒质, 折射率是 。 透射件 3与外部的光疏媒质之间的全反射临界角 是 0c。 电磁信号在透射件 3的第一表面 4的一个入射角是 θ。 由几何 光学的折射定律, 在发生全反射时可以得出如下: ^ sin90° = ^ nx, 即 ec=arcsin(n2/ni)。 只要满足 θ > θ 则发生全反射的条件成立, 即可实 现全反射方式经透射件 3传递电磁信号。 其中, 4为透射件 3的第一表 面, 5为透射件 3的第二表面, 6、 7为定向设备, 8为电磁信号的传递 路径, 为清楚起见, 只标示出一个电磁信号传递路径 8。
参见图 6-A, 图 6-A为透射件未被触摸时电磁信号的传递示意图, 根据本发明的一个实施方式的侧视图, 发射器 1发射的电磁信号在透 射件 3 内部以至少一个全反射的传递路径传递到检测器 2从而被其检 测到, 其中, 4为透射件 3的第一表面, 5为透射件 3的第二表面, 6、 7为定向设备, 8为电磁信号的传递路径, 为清楚起见, 只标示出一个 电磁信号传递路径 8。
参见图 6-B, 图 6-B为透射件被触摸时电磁信号的传递示意图, 触 摸物体 12触摸时, 在触摸位置, 一部分电磁信号通过触摸物体 12被 散射或吸收,这部分电磁信号的传递路径被改变而无法传递至检测器 2, 检测器 2检测到的电磁信号强度下降, 这样就能够判断出发射器 1到 检测器 2的电磁信号传递路径上有触摸物体, 其中, 1为发射器, 3为 透射件, 4为透射件的第一表面, 5为透射件的第二表面, 6、 7为定向 设备, 8为电磁信号的传递路径, 为清楚起见, 只标示出一个电磁信号 传递路径 8。
参见图 6-C, 图 6-C为透射件被触摸时电磁信号的传递示意图, 触 摸物体 12触摸时, 在触摸位置, 一部分电磁信号通过触摸物体 12被 散射或吸收,这部分电磁信号的传递路径被改变而无法传递至检测器 2, 检测器 2检测到的电磁信号强度下降, 这样就能够判断出发射器 1到 检测器 2的电磁信号传递路径上有触摸物体, 其中, 1为发射器, 3为 透射件, 4为透射件的第一表面, 5为透射件的第二表面, 6、 7为定向 设备, 8为电磁信号的传递路径, 为清楚起见, 只标示出一个电磁信号 传递路径 8。
参见图 6-B和图 6-C,透射件的大半径边界面和小半径边界面都可 以作为触摸面。
参见图 7-A,图 7-A为本发明实施例提供的一种透射件中电磁信号 的传递示意图, 该透射件 3' 是一段触摸曲面体。 发射器 1' 发射的电 磁信号射入透射件 3' 内部, 电磁信号在透射件 3' 的第一表面 4' 和 第二表面 5' 之间具有至少一个全反射的传递路径, 并被检测器 2' 检 测到。 为清楚起见, 本图只标示了两个电磁信号传递路经 8'
参见图 7-B,图 7-B为图 7-A所示实施例的局部示意图,发射器 1' 的发射角度是 ,发射器 1'发射的电磁信号经表面 14'进入透射件 3' 内部, 电磁信号在透射件 3' 的第一表面 4' 发生反射, 可以确定第一 表面 4'上面最大的入射角 e^ m^和最小的入射角 θ^ ^,任意入射角 0i 满足61, > 01 ^1, ^。 因此, 只需要满足 min大于等于全反射临界 角,发射器 1'发射的电磁信号可以具有全反射的传递路径在透射件 3' 内部传递。
参见图 7-C,图 7-C为基于图 7-A的一种透射件的侧视图及立体图。 图中标示了相关的尺寸数据,单位是亳米。 图中尺寸 1.6mm和 2mm是 发射器 1' 的发射中心相对于透射件 3' 的距离。 发射器 1' 选用发射 角度 ttl=45° 的红外发射三极管, 接收器 2' 选用红外接收三极管, 透 射件 3' 材质选用 ΡΜΜΑ ΡΜΜΑ的折射率 ηι=1.49, 透射件 3' 外部 的光疏媒质是空气, 空气的折射率 η2=1 ΡΜΜΑ与空气的全反射临界 角 ec=arcsin(n2/ni)=arcsin( l/1.49)=42.2。 。 由折射定律, 几何关系可以 计算出电磁信号在透射件 的第一表面 4' 上面的最小入射角 min=43.6° θ , ^大于全反射临界角 6c, 发射器 发射的电磁信号可 以具有全反射的传递路径在透射件 3' 内部传递。
图 7-C的实施例仅是图 7-A和图 7-B的实施例的方法可以设计的 许多实施方式的一种。 根据图 7-A和图 7-B的实施例的方法还可以设 计出许多其他的实施方式。
参见图 8-A, 图 8-A为本发明实施例提供的一种透射件的侧视图。 透射件 3' ' 有第一表面 4' ' 和第二表面 5' '。 透射件 3' ' 由触摸曲面 体 ABB' !、 触摸曲面体 BCC B' 和触摸曲面体 CDD' C 组成, ABB' A' 与 BCC' B' 相切, BCC B' 与 CDD' C 相切, 即圆弧 AB与圆弧 BC相切,圆弧 BC与圆弧 CD相切,圆弧 Α' Β'与圆弧 Β' 相切, 圆弧 Β' σ 与圆弧 c D' 相切。 第一表面 4' ' 的侧视图 由圆弧 AB、 BC、 CD组成, 第二表面 5' ' 的侧视图由圆弧 Α' Β'、 Β' C'、 C D' 组成。 圆弧 AB与圆弧 A' B' 同圆心, 圆弧 BC与圆弧 Β' C 同圆心, 圆弧 CD与圆弧 C D' 同圆心。 圆弧 AB的半径是 Rl, 圆弧 BC的半径是 R2, 圆弧 CD的半径是 R3, 圆弧 A' B' 的半径是 rl , 圆弧 Β' 的半径是 r2, 圆弧 C' D' 的半径是 r3, 其中 Rl〉rl, R2>r2, R3〉r3。 ABB' k1、 BCC B'、 CDD' C 在各自半径的方向 上厚度相同, 即 Rl-rl=R2-r2=R3-r3。 其中, 只要满足同一电磁信号入 射到触摸曲面体 ABB' A' 的大半径边界面上的入射角、 该电磁信号 入射到触摸曲面体 BCC B' 的大半径边界面上的入射角、 该电磁信 号入射到触摸曲面体 CDD' C 的大半径边界面上的入射角同时大于 等于全反射临界角, 则该电磁信号能够具有全反射的传递路径在透射 件 3" 中传递。
另外, 在本发明一实施例中, 透射件可以由两段触摸曲面体以相 切的方式组合而成, 透射件也可以由多段触摸曲面体以相切的方式组 合而成。
参见图 8-B,图 8-B为图 8-A中的透射件中的电磁信号传递的示意 图。 发射器 1' ' 发射的电磁信号射入透射件 3' ' 内部, 电磁信号在透 射件 3' ' 的第一表面 4' ' 和第二表面 5' ' 之间具有至少一个全反射的 传递路径, 并被检测器 2 检测到。 为清楚起见, 本图例只标示了两 个电磁信号传递路经 8"。
参见图 8-C, 图 8-C为图 8-A的 CDD' C 部分的电磁信号传递示 意图, 发射器 的发射角度是 , 发射器 发射的电磁信号经表 面 14〃进入透射件 3' ' 内部, 电磁信号在透射件 3' ' 的第一表面 4' ' 的 CD段发生反射,可以确定第一表面 4 的 CD段的最大的入射角 θ2, ma 和最小的入射角 θ2, ώη, 圆弧 CD段任意入射角 Θ2满足 θ2, max > θ2
》 θ2, min =
参见图 8-D, 图 8-D为图 8-A的 BCC' B' 部分的电磁信号传递示 意图, 电磁信号在透射件 3' ' 的第一表面 4' ' 的 BC段发生反射, 可 以确定第一表面 4' ' 的 BC段最大的入射角 , max和最小的入射角 θ3, min, 圆弧 BC段任意入射角 θ3满足 θ3, > θ3 > θ3, ώηο
参见图 8-Ε, 图 8-Ε为图 8-Α的 ABB' A' 部分的电磁信号传递示 意图, 电磁信号在透射件 3' ' 的第一表面 4' ' 的 AB段发生反射, 可 以确定第一表面 4' ' 的 AB段最大的入射角 e4, max和最小的入射角 θ4, min, 圆弧 AB段任意入射角 θ4满足 θ4, max > θ4 > θ4, η
只需要满足 e2,min、 ,min和 e4,min全部同时大于等于全反射临界角, 发射器 ' 发射的电磁信号可以具有全反射的传递路径在透射件 y ' 内部传递。
参见图 8-F,图 8-F是基于图 8-A的一种透射件的侧视图及立体图, 图中标示了相关的尺寸数据,单位是亳米。 图中尺寸 1.7mm和 2mm是 发射器 1' ' 的发射中心相对于透射件 3' ' 的距离。 发射器 选用发 射角度 α2=45° 的红外发射三极管,检测器 2"选用红外接收三极管, 透射件 Ύ ' 材质选用 PMMA PMMA的折射率 1^=1.49, 透射件 Ύ ' 外部的光疏媒质是空气, 空气的折射率 n2=l PMMA与空气的全反射 临界角 0c=arcsin(n2/nl)=arcsin(l/1.49)=42.2。 。 由折射定律、 反射定律 和几何关系可以计算出电磁信号在透射件 3' ' 的第一表面 4' ' 的 AB 部分、 BC部分、 CD部分的最小入射角分别为 02,min=49.5° ,min=49.8° θ4, min=50.1° θ2, θ3, min θ4, min全部大于全反射临界角 6c, 发射器 \" 发射的电磁信号可以具有全反射的传递路径在透射件 3 内部传 递, 图 8-F所示的透射件的侧视图是左右对称结构。
图 8-F的实施例仅是图 8-A、 图 8-B、 图 8-C、 图 8-D、 图 8-E的 实施例的方法可以设计的许多实施方式的一种。 根据图 8-A、 图 8-B 图 8-C、 图 8-D、 图 8-E的实施例的方法还可以设计出许多其他的实施 方式。
参见图 8-G, 图 8-G是基于图 8-A的一种透射件的侧视图, 图中 标示了相关的尺寸数据,单位是亳米。 图中尺寸 1.7mm和 2mm是发射 器 的发射中心相对于透射件 3' ' 的距离。 发射器 选用发射角 度 α2=45° 的红外发射三极管, 检测器 1' ' 选用红外接收三极管, 透 射件 y ' 材质选用 PMMA, PMMA的折射率 1^=1.49, 透射件 Ύ ' 外 部的光疏媒质是空气, 空气的折射率 n2=l。 PMMA与空气的全反射临 界角 ec=arcsin(n2/nl)=arcsin(l/1.49)=42.2。 。 由折射定律、 反射定律和 几何关系可以计算出电磁信号在透射件 3' ' 的第一表面 4' ' 的 AB部 分、 BC部分、 CD部分的最小入射角分别为 θ2 ηίη=49.5。 、 =49.8。 、 e4, min=50.3° 。 62, 、 e3, min、 全部大于全反射临界角 ec, 发射 器 发射的电磁信号可以具有全反射的传递路径在透射件 3' ' 内部 传递, 图 8-G所示的透射件的侧视图是左右非对称结构。
图 8-G的实施例仅是图 8-A、 图 8-B、 图 8-C、 图 8-D、 图 8-E的 实施例的方法可以设计的许多实施方式的一种。 根据图 8-A、 图 8-B、 图 8-C、 图 8-D、 图 8-E的实施例的方法还可以设计出许多其他的实施 方式。
参见图 9-A, 图 9-A为本发明实施例提供的一种透射件的侧视图。 透射件 V 有第一表面 f 和第二表面 5'〃。 透射件 3'〃 由触摸 曲面体 EFP E'、 平面体 FGG' P 和触摸曲面体 GHH' G' 组成, EFF' E' 与 FGG' P 相切, FGG' P 与 GHH' G' 相切, 即圆弧 EF与线段 FG相切, 线段 FG与圆弧 GH相切, 圆弧 F' 与线段 G' 相切, 线段 F' G' 与圆弧 G' H' 相切。 第一表面 4^ 的侧视图 由圆弧 EF、 线段 FG、 圆弧 GH组成, 第二表面 5' 的侧视图由圆弧 Ε' Ρ、 线段 F' G'、 圆弧 G' H' 组成。 圆弧 EF与圆弧 E' P 同圆 心, 线段 FG与线段 F' G' 平行, 圆弧 GH与圆弧 G' H' 同圆心。 圆弧 EF的半径是 R4, 圆弧 GH的半径是 R5, 圆弧 F' 的半径是 r4, 圆弧 G' H' 的半径是 r5, 平面体 FGG' P 的厚度是 hl, 其中, R4>r4, R5〉r5。 EFP E'、 FGG' P、 GHH' G' 在各自半径的方向 上厚度相同, 即 R4-r4=R5-r5=hl。 其中, 只要满足同一电磁信号入射 到触摸曲面体 EFP Ε' 的大半径边界面上的入射角、 该电磁信号入射 到平面体 FGG' F' 的任意边界面上的入射角、该电磁信号入射到触摸 曲面体 GHH' G' 的大半径边界面上的入射角同时大于等于全反射临 界角, 则该电磁信号能够具有全反射的传递路径在透射件中传递。
另外, 在本发明一实施例中, 透射件可以由一个触摸曲面体和一 个平面体以相切的方式组合而成, 也可以由多个触摸曲面体和多个平 面体以相切的方式组合而成。
参见图 9-B, 图 9-B是图 9-A中的透射件的立体图。
参见图 9-C,图 9-C为图 9-A中的透射件中的电磁信号传递的示意 图。 发射器 1' 发射的电磁信号射入透射件 V 内部, 电磁信号在 透射件 V 的第一表面 f 和第二表面 5' 之间具有至少一个全 反射的传递路径, 并被检测器 2'〃 检测到。 为清楚起见, 本图例只标 示了两个电磁信号传递路经 ' '。
参见图 9-D, 图 9-D为图 9-A的 EFP E' 部分的电磁信号传递示 意图, 发射器 r〃 的发射角度是 α3,, 发射器 r〃 发射的电磁信号 经表面 If 进入透射件 y 内部, 电磁信号在透射件 y 的第一 表面 4'〃 的 EF段发生反射, 可以确定第一表面 4'〃 的 EF段最大的 入射角 65, max和最小的入射角 05 圆弧 EF段任意入射角 θ5满足 θ5, max ^ θ5 > θ5, min。
参见图 9-E, 图 9-E为图 9-A的 FGG' E' 部分的电磁信号传递示 意图, 电磁信号在透射件 V 的第一表面 4^ 的 FG段发生反射, 可以确定第一表面 f 的 FG段最大的入射角 06, max和最小的入射角 θ6, min, 线段 FG段任意入射角 θ6满足 θ6, max > 06 > θ6, η
参见图 9-F, 图 9F为图 9-A的 GHH' G' 部分的电磁信号传递示 意图, 电磁信号在透射件 V 的第一表面 4'〃 的 GH段发生反射, 可以确定第一表面 f 的 GH段最大的入射角 07, max和最小的入射角 θ7, min, 圆弧 GH段任意入射角 θ7满足 θ7, max > θ7 > θ7, min
只需要满足 e5,min、e6,min和 e7,min全部同时大于等于全反射临界角, 发射器 r ' '发射的电磁信号可以具有全反射的传递路径在透射件 y ' ' 内部传递。
参见图 9-G, 图 9-G是基于图 9-A的一种透射件的侧视图, 图中 标示了相关的尺寸数据,单位是亳米。 图中尺寸 1.6mm和 2mm是发射 器 1'〃 的发射中心相对于透射件 V 的距离。 发射器 1'〃 选用发 射角度 α3=45° 的红外发射三极管,检测器 1' ' '选用红外接收三极管, 透射件 Ύ ' '材质选用 PMMA, PMMA的折射率 1^=1.49,透射件 Ύ ' ' 外部的光疏媒质是空气, 空气的折射率 n2= l。 PMMA与空气的全反射 临界角 ec=arcsin(n2/ni)=arcsin(l/1.49)=42.2° 。 由折射定律、 反射定律 和几何关系可以计算出电磁信号在透射件 V 的第一表面 f 的 EF 部分、 FG部分、 GH部分的最小入射角分别为 e5,min=49.2° 、06,min=51.5° θ7, min=50.2° 。 θ5, 、 θ6, min、 θ7, min全部大于全反射临界角 6c, 发射器 V " 发射的电磁信号可以具有全反射的传递路径在透射件 V 内部 传递, 其中, 图 9-G所示的透射件的侧视图是左右对称结构。
图 9-G的实施例仅是图 9-A、 图 9-B、 图 9-C、 图 9-D、 图 9-E、 图 9-F的实施例的方法可以设计的许多实施方式的一种。 根据图 9-A、 图 9-B、 图 9-C、 图 9-D、 图 9-E、 图 9-F的实施例的方法还可以设计出许 多其他的实施方式。
参见图 9-H, 图 9-H是基于图 9-A的一种透射件的侧视图, 图中 标示了相关的尺寸数据,单位是亳米。 图中尺寸 1.6mm和 2mm是发射 器 1'〃 的发射中心相对于透射件 V 的距离。 发射器 1'〃 选用发 射角度 α3=45° 的红外发射三极管,检测器 1' ' '选用红外接收三极管, 透射件 Ύ ' '材质选用 PMMA, PMMA的折射率 1^=1.49,透射件 Ύ ' ' 外部的光疏媒质是空气, 空气的折射率 n2= l。 PMMA与空气的全反射 临界角 ec=arcsin(n2/ni)=arcsin(l/1.49)=42.2° 。 由折射定律、 反射定律 和几何关系可以计算出电磁信号在透射件 V 的第一表面 f 的 EF 部分、 FG部分、 GH部分的最小入射角分别为 e5,min=49.2° 、06,min=51.5° θ7, min=50.1° 。 θ5, 、 θ6, min、 θ7, min全部大于全反射临界角 6c, 发射器 V " 发射的电磁信号可以具有全反射的传递路径在透射件 V 内部 传递, 其中, 图 9-H所示的透射件的侧视图是左右非对称结构。
图 9-H的实施例仅是图 9-A、 图 9-B、 图 9-C、 图 9-D、 图 9-E、 图
9-F的实施例的方法可以设计的许多实施方式的一种。 根据图 9-A、 图 9-B、 图 9-C、 图 9-D、 图 9-E、 图 9-F的实施例的方法还可以设计出许 多其他的实施方式。
图 10图解了本发明的一种检测曲面触摸界面上对象位置的方法的 一种实施方式。 流程如下:
步骤 1001: 从透射件的第一侧面向所述透射件发送电磁信号; 步骤 1002: 在透射件的第二侧面上检测接收到的电磁信号; 步骤 1003:根据对接收到的电磁信号的检测结果确定触摸的位置; 所述透射件包括至少一段触摸曲面体, 其中, 所述触摸曲面体为 环形圆柱面的一部分, 该环形圆柱面的一部分的垂直于轴心的截面的 角度范围为大于 0度小于 360度;
在没有触摸的情况下, 所述电磁信号在所述透射件中至少有一个 全反射的传递路径, 使得在没有触摸的情况下所述第二侧面检测到所 述电磁信号;
其中, 在本发明实施例中, 所述全反射的传递路径是指从第一侧 面进入透射件内部的电磁信号在透射件的第一边界面和 /或第二边界面 上经过全反射到达该第一侧面对应的侧面的传播路径, 其中, 所述第 一边界面为所述透射件的触摸表面, 所述第二边界面为与所述触摸表 面相对的表面;
在有触摸的情况下, 一部分所述电磁信号的所述路径被改变而不 能到达所述第二侧面。
在一种实施方式中, 所述检测结果包括: 检测到的电磁信号的强 度。
在一种实施方式中, 所述透射件为一段触摸曲面体。
在一种实施方式中, 所述透射件包括: 至少两段半径不同的触摸 曲面体, 所述触摸曲面体之间相切连接。 在一种实施方式中, 所述透射件包括: 至少一段触摸曲面体和至 少一段平面体, 触摸曲面体之间相切连接, 触摸曲面体与平面体之间 相切连接。
所述透射件的第一边界面外侧及第二边界面外侧是相对于所述透 射件的光疏媒质。
在一种实施方式中, 所述第二侧面为第一侧面对应的侧面。
在一种实施方式中, 所述进入第一侧面的电磁信号入射到所述透 射件的入射角中的最小入射角大于所述透射件的全反射临界角, 其中, 所述入射角为所述电磁信号进入透射件后入射到透射件的第一边界面 的入射角和第二边界面的入射角。
在一种实施方式中, 所述从第一侧面发送的电磁信号在所述透射 件中全是全反射的传递路径。
需要说明的是, 在本文中, 诸如第一和第二之类的关系术语仅仅 用来将一个实体或者操作与另一个实体或操作区分开来, 而不一定要 求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 "包括"、 "包含" 或者其任何其他变体意在涵盖非排他性 的包含, 从而使得包括一系列要素的过程、 方法、 物品或者设备不仅 包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括 为这种过程、 方法、 物品或者设备所固有的要素。 在没有更多限制的 情况下, 由语句 "包括一个 " 限定的要素, 并不排除在包括所 述要素的过程、 方法、 物品或者设备中还存在另外的相同因素。
最后需要说明的是: 以上所述仅为本发明的一部分实施例, 仅用 于说明本发明的技术方案, 并非用于限定本发明的保护范围。 凡在本 发明的精神和原则之内所做的任何修改、 等同替换、 改进等, 均包含 在本发明的保护范围内。
显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实 施方式的限定。 对于所属领域的普通技术人员来说, 在上述说明的基 础上还可以做出其它不同形式的变化或变动。 这里无需也无法对所有 的实施方式予以穷举。 而由 于本发明的保护范围之中。

Claims

权 利 要 求 书
1、 一种检测曲面触摸界面上对象位置的系统, 其特征在于, 该系 透射件、 发射器、 检测器、 处理器;
所述透射件包括至少一段触摸曲面体, 其中, 所述触摸曲面体为 环形圆柱面的一部分, 该环形圆柱面的一部分的垂直于轴心的截面的 角度范围为大于 0度小于 360度;
所述发射器用于向所述透射件发送电磁信号, 所述电磁信号从所 述透射件的第一侧面进入所述透射件;
所述检测器用于检测发射器发送的穿过透射件并从透射件的第二 侧面出射的的电磁信号;
在没有触摸的情况下, 所述电磁信号在所述透射件中至少有一个 全反射的传递路径, 使得在没有触摸的情况下所述检测器检测到所述 电磁信号, 其中, 所述全反射的传递路径是指从第一侧面进入透射件 内部的电磁信号在透射件的第一边界面和 /或第二边界面上经过全反射 到达该第一侧面对应的侧面的传播路径, 其中, 所述第一边界面为所 述透射件的触摸表面, 所述第二边界面为与所述触摸表面相对的表面; 在有触摸的情况下, 一部分所述电磁信号的所述路径被改变而不 所述发射器和所述检测器满足: 在透射件的触摸表面上的任一位 置触摸时都有检测器检测到电磁信号的变化;
所述处理器, 用于根据发射器和 /或检测器发来的定位信号来确定 触摸位置。
2、根据权利要求 1所述的系统,其特征在于,所述定位信号包括: 检测器检测到的电磁信号的强度。
3、 根据权利要求 1所述的系统, 其特征在于, 所述透射件为一段 触摸曲面体。
4、 根据权利要求 1 所述的系统, 其特征在于, 所述透射件包括: 至少两段半径不同的触摸曲面体, 所述触摸曲面体之间相切连接。
5、 根据权利要求 1 所述的系统, 其特征在于, 所述透射件包括: 至少一段触摸曲面体和至少一段平面体, 触摸曲面体之间相切连接, 触摸曲面体与平面体之间相切连接。
6、 根据权利要求 1所述的系统, 其特征在于, 所述透射件的第一 边界面外侧及第二边界面外侧是相对于所述透射件的光疏媒质。
7、 根据权利要求 1 所述的系统, 其特征在于, 所述系统还包括: 定向设备, 用于给电磁信号定向。
8、根据权利要求 7所述的系统,其特征在于,所述定向设备包括: 棱镜、 透镜、 光学薄片、 光学膜。
9、 根据权利要求 1所述的系统, 其特征在于, 所述第二侧面为第 一侧面对应的侧面。
10、 根据权利要求 1 所述的系统, 其特征在于, 所述发射器发送 的电磁信号的入射角中的最小入射角大于所述透射件的全反射临界角, 其中, 所述入射角为发射器发送的电磁信号进入透射件后入射到透射 件的第一边界面的入射角和第二边界面的入射角。
11、 根据权利要求 1 所述的系统, 其特征在于, 所述发射器发送 的电磁信号在所述透射件中全是全反射的传递路径。
12、 一种检测曲面触摸界面上对象位置的系统, 其特征在于, 该 透射件、 多个发射器、 多个检测器、 处理器;
所述透射件包括至少一段触摸曲面体, 其中, 所述触摸曲面体为 环形圆柱面的一部分, 该环形圆柱面的一部分的垂直于轴心的截面的 角度范围为大于 0度小于 360度;
所述多个发射器用于向所述透射件发送电磁信号, 所述电磁信号 从所述透射件的第一侧面进入所述透射件;
所述检测器用于检测与发射器发送的穿过透射件并从透射件的第 二侧面出射的的电磁信号;
在没有触摸的情况下, 所述电磁信号具有穿过所述透射件从所述 多个发射器中的每一个到所述多个检测器中的对应的至少一个检测器 的路径, 使得在没有触摸的情况下所述对应的检测器检测到所述电磁 信号, 所述路径包括在所述透射件中的至少一个全反射的传递路径, 所述全反射的传递路径是指从第一侧面进入透射件内部的电磁信号在 透射件的第一边界面和 /或第二边界面上经过全反射到达该第一侧面对 应的侧面的传播路径, 其中, 所述第一边界面为所述透射件的触摸表 面, 所述第二边界面为与所述触摸表面相对的表面;
在有用户触摸的情况下, 一部分所述电磁信号的所述路径被改变 而不能到达所述检测器;
所述多个发射器和所述多个检测器满足: 在透射件的触摸表面的 任一位置触摸时都有检测器检测到电磁信号的变化;
所述处理器, 用于根据发射器和 /或检测器发来的定位信号来确定 触摸位置。
13、根据权利要求 12所述的系统,其特征在于,所述系统还包括: 第一组发射器、 第一组检测器;
所述第一组发射器位于透射件的第三侧面上, 所述第一组发射器 用于向所述透射件发送电磁信号;
所述第一组检测器位于与所述第三侧面相对应的透射件的第四侧 面上, 所述第一组检测器用于检测发射器发送的穿过透射件的电磁信 号;
在没有触摸的情况下, 所述电磁信号具有穿过所述透射件从所述 第一组发射器中的每一个到所述第一组检测器中的对应的至少一个检 测器的路径, 使得在没有触摸的情况下所述对应的检测器检测到所述 电磁信号, 所述路径包括在所述透射件内部的至少一个全反射的传递 所述第一组发射器和所述第一组检测器满足: 在透射件的触摸表 面的任一位置触摸时都有检测器检测到电磁信号的变化;
所述处理器, 用于根据所述第一组发射器和 /或第一组检测器发来 的定位信号来确定触摸位置。
14、 一种检测曲面触摸界面上对象位置的方法, 其特征在于, 该 方法包括:
从透射件的第一侧面向所述透射件发送电磁信号;
在透射件的第二侧面上检测接收到的电磁信号;
根据对接收到的电磁信号的检测结果确定触摸位置;
所述透射件包括至少一段触摸曲面体, 其中, 所述触摸曲面体为 环形圆柱面的一部分, 该环形圆柱面的一部分的垂直于轴心的截面的 角度范围为大于 0度小于 360度;
其中, 在没有触摸的情况下, 所述电磁信号在所述透射件中至少 有一个全反射的传递路径, 使得在没有触摸的情况下所述第二侧面检 测到所述电磁信号, 其中, 所述全反射的传递路径是指从第一侧面进 入透射件内部的电磁信号在透射件的第一边界面和 /或第二边界面上经 过全反射到达该第一侧面对应的侧面的传播路径, 其中, 所述第一边 界面为所述透射件的触摸表面, 所述第二边界面为与所述触摸表面相 对的表面;
在有触摸的情况下, 一部分所述电磁信号的所述路径被改变而不 能到达所述第二侧面。
15、 根据权利要求 14所述的方法, 其特征在于, 所述检测结果包 括: 检测到的电磁信号的强度。
16、 根据权利要求 14所述的方法, 其特征在于, 所述透射件为一 段触摸曲面体。
17、根据权利要求 14所述的方法,其特征在于,所述透射件包括: 至少两段半径不同的触摸曲面体, 所述触摸曲面体之间相切连接。
18、根据权利要求 14所述的方法,其特征在于,所述透射件包括: 至少一段触摸曲面体和至少一段平面体, 触摸曲面体之间相切连接, 触摸曲面体与平面体之间相切连接。
19、 根据权利要求 14所述的方法, 其特征在于, 所述透射件的第 一边界面外侧及第二边界面外侧是相对于所述透射件的光疏媒质。
20、 根据权利要求 14所述的方法, 其特征在于, 所述第二侧面为 第一侧面对应的侧面。
21、 根据权利要求 14所述的方法, 其特征在于, 所述进入第一侧 面的电磁信号入射到所述透射件的入射角中的最小入射角大于所述透 射件的全反射临界角, 其中, 所述入射角为所述电磁信号进入透射件 后入射到透射件的第一边界面的入射角和第二边界面的入射角。
22、 根据权利要求 14所述的方法, 其特征在于, 所述从第一侧面 发送的电磁信号在所述透射件中全是全反射的传递路径。
PCT/CN2014/075964 2014-04-22 2014-04-22 一种检测曲面触摸界面上对象位置的系统及方法 WO2015161449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075964 WO2015161449A1 (zh) 2014-04-22 2014-04-22 一种检测曲面触摸界面上对象位置的系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075964 WO2015161449A1 (zh) 2014-04-22 2014-04-22 一种检测曲面触摸界面上对象位置的系统及方法

Publications (1)

Publication Number Publication Date
WO2015161449A1 true WO2015161449A1 (zh) 2015-10-29

Family

ID=54331589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075964 WO2015161449A1 (zh) 2014-04-22 2014-04-22 一种检测曲面触摸界面上对象位置的系统及方法

Country Status (1)

Country Link
WO (1) WO2015161449A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776586A (zh) * 2004-11-17 2006-05-24 国际商业机器公司 提供利用被破坏的全内反射的触摸界面的方法和系统
US20090213384A1 (en) * 2005-06-14 2009-08-27 Fujifilm Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
CN101813993A (zh) * 2010-03-22 2010-08-25 上海复翔信息科技有限公司 一种曲面显示系统以及手势识别和定位方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776586A (zh) * 2004-11-17 2006-05-24 国际商业机器公司 提供利用被破坏的全内反射的触摸界面的方法和系统
US20090213384A1 (en) * 2005-06-14 2009-08-27 Fujifilm Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
CN101813993A (zh) * 2010-03-22 2010-08-25 上海复翔信息科技有限公司 一种曲面显示系统以及手势识别和定位方法

Similar Documents

Publication Publication Date Title
TWI704483B (zh) 用於感測波導之薄耦合器及反射器
US10401546B2 (en) Optical component for light coupling
US9366565B2 (en) Light out-coupling arrangement and a touch sensitive system comprising the out-coupling arrangement
TWI534685B (zh) 觸控式顯示裝置
US20150324028A1 (en) Optical coupling of light into touch-sensing systems
US20120098794A1 (en) Transmissive Body
WO2015004331A1 (en) Light guide assembly for optical touch sensing, and method for detecting a touch
WO2014050806A1 (ja) 赤外線受発光用光学物品及び赤外線受発光部
CN101669088A (zh) 用于检测多个触摸的触摸屏
TW201001258A (en) Determining the location of one or more objects on a touch surface
EP2534559B1 (en) Optical touch-sensitive device and method of detection of touch
WO2011143719A1 (en) Optical systems for infrared touch screens
WO2016180027A1 (en) Optical touch device and touch display device having the same
US11018273B2 (en) Photosensitive reflector, laser induced touch device and laser touch detection method
CN104407747A (zh) 一种红外触控屏、其触控侦测方法及显示装置
WO2015161449A1 (zh) 一种检测曲面触摸界面上对象位置的系统及方法
US20120097854A1 (en) Infrared retroreflecting device used for a high-aspect-ratio optical touch panel, the method of manufacturing the same and a high-aspect-ratio touch panel using such device
JP2014021576A (ja) 導光ユニット、導光ユニットを備える光学式タッチパネル、および光学式タッチパネルを備える電子機器
CN105308548A (zh) 光学触摸屏
US11209294B2 (en) Thin proximity sensing device
TWI436253B (zh) 光學式觸控裝置及其運作方法
CN109034039B (zh) 一种显示屏模组及终端设备
CN111078045A (zh) 一种显示装置及其触摸检测方法
JP2017068999A (ja) 近接センサおよび電子機器
CN104407745A (zh) 一种触控面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890428

Country of ref document: EP

Kind code of ref document: A1