TW200837345A - Planar surface plasma resonance sensor - Google Patents

Planar surface plasma resonance sensor Download PDF

Info

Publication number
TW200837345A
TW200837345A TW096108667A TW96108667A TW200837345A TW 200837345 A TW200837345 A TW 200837345A TW 096108667 A TW096108667 A TW 096108667A TW 96108667 A TW96108667 A TW 96108667A TW 200837345 A TW200837345 A TW 200837345A
Authority
TW
Taiwan
Prior art keywords
surface plasma
metal
plasma resonance
polarizing plate
resonance sensor
Prior art date
Application number
TW096108667A
Other languages
Chinese (zh)
Inventor
Da-Ren Yan
Zhong-Tian Li
xin-yun Zhang
You-Lun Guan
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW096108667A priority Critical patent/TW200837345A/en
Publication of TW200837345A publication Critical patent/TW200837345A/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A planar surface plasma resonance sensor is provided. Periodic metal raster structures are formed on a normal glass substrate. The raster structures replace a prism to excite surface plasma resonance. Furthermore, use surface plasma resonance wavelength or incident angle variation to detect biochemical molecular and use low-cost white LED to replace laser light source. Combination of the metal raster structures and white LED can greatly reduce device production cost and shrink device size to make the portable surface plasma resonance sensor portable and popular for use.

Description

200837345 九、發明說明: • 【發明所屬之技術領域】 一種電漿共振感測器’尤指一種利用光柵結構代替稜 鏡激發表面電漿共振,且可利用白光之發光二極體為光源 之平面式表面電漿共振感測器。 【先前技術】 表面電漿共振(Surface Plasmon Resonance,SPR)的現 象指的是,當光束以某一固定入射角入射於金屬表面時, Γ 光偵測器檢測到的反射光強度會接近零,也就是金屬膜的 反射率近於零,未反射的光將沿著平行界面方向傳播,激 發金屬表面電漿共振,此即為表面電漿共振。全反射衰逝 法(Attenuated Total Reflection,ATR)是常見用來激發表面 電漿共振的方法,其原理是將光束以某一大於全反射角的 角度入射經棱鏡入射到金屬膜層,在特定的角度反射光強 度接近零。 因為表面電漿共振感測器具有高靈敏度、無須對待測 i 分子做任何標記(Labeling Free)、可即時地分析分子間的交 互作用、偵測速度快、可定量、並可大量平行篩檢等種種 優點’因此對於生物分子的偵測上已有廣泛的應用。實際 上的應用如偵測抗原與抗體間、酵素與基質間、激素與受 體間、以及核酸與核酸等分子間之反應,也可與生物晶片 配合’建立新藥篩選平台。此外,表面電漿共振感測器也 可應用於環境工程,如氣體檢測、化學物質檢測、廢水檢 測、污染監控等方面。 5 200837345 表面電漿共振是在兩物質的界面間產生集體電子震 • 盪的效應,其為金屬的電荷密度發生集體式電偶極震盪的 現象。然而,並非任何界面都可產生表面電漿共振,一般 而言,需要兩個介電常數正負號相反且其和為負的物質才 能產生表面電漿共振,例如金屬和介電質。此外,一般的 平面波入射至金屬表面上是無法激發表面電漿共振,因此 利用全反射產生的消散波(evanescent wave)產生較大的波 向量分量(kx)可成功的做到。表面電漿波之電磁場在界面 " 處有最大強度,沿著垂直於界面方向進入介質中,會呈現 指數形式衰減。當入射光波平行於界面之波向量分量(kx) 等於表面電漿波之波向量(ksp)時,表面電漿波才會被激發 出來。利用消散波原理的有兩個模式,分別為0tt〇以及 Kretschmann結構。該些模式,都是利用稜鏡產生的消散 波來達到激發表面電漿的效果,而這也是一般應用於感測 生物化學分子的方法。 習知的Kretschmann模式的表面電漿共振感測器,係 、 在一稜鏡表面鍍上一金屬薄層,以稜鏡-金屬薄層-待測物 介質(空氣或水容液)的系統測定待測物質。另,Salain〇n 人於US5,991,488中揭露一種改良式的波導柄合(Coupled Plasmon-Waveguide Resonance,CPWR)表面電漿共振感測 器,在金屬薄層與待測物介質間加上一層介電物質層,藉 此提高靈敏度,增強光譜分析能力,並且可以吸附或固定 化待測物的配位體,使此種感測器的應用更廣泛。 雖然,目前已有不少表面電漿共振(SPR)感測器,但該 6 200837345 些產品都是使用高折射係數之稜鏡來增加入射波波長之 波向量分量(kx)以產生表面電漿,或是使用雷射、紅外線 作為其光源。即受限於棱鏡的材料需為高成本且不易製作 之高折射係數玻璃,而光源為高成本之單色光,故目前商 業化之表面電漿共振(SPR)感測器大多有體積大、攜^不 易、高成本、不易製作等缺點待克服。 【發明内容】 本發明之目的係一種平面式表面電漿共振感测器,係 在普通玻璃基材上設置週期性金屬光柵結構的表面,光桃 結構代替稜鏡激發表面電漿共振,進而利用表面電將共振200837345 IX. Description of the invention: • [Technical field of invention] A plasma resonance sensor is a plane that uses a grating structure instead of a 稜鏡-excited surface plasma resonance, and can use a white light-emitting diode as a light source. Surface plasma resonance sensor. [Prior Art] The phenomenon of Surface Plasmon Resonance (SPR) means that when the beam is incident on the metal surface at a fixed incident angle, the intensity of the reflected light detected by the X-ray detector will be close to zero. That is, the reflectivity of the metal film is close to zero, and the unreflected light will propagate along the parallel interface direction, exciting the metal surface plasma resonance, which is the surface plasma resonance. Attenuated Total Reflection (ATR) is a common method used to excite surface plasma resonance. The principle is to inject a beam into the metal film layer at a certain angle greater than the total reflection angle. The angle reflected light intensity is close to zero. Because the surface plasma resonance sensor has high sensitivity, does not require any labeling of the molecules to be measured (Labeling Free), can instantly analyze the interaction between molecules, fast detection, quantifiability, and a large number of parallel screenings, etc. These advantages have therefore been widely used for the detection of biomolecules. Practical applications such as detecting antigen-to-antibody, enzyme-to-matrix, hormone-to-receptor, and interactions between nucleic acids and nucleic acids can also be used in conjunction with biochips to create new drug screening platforms. In addition, surface plasma resonance sensors can also be used in environmental engineering such as gas detection, chemical detection, wastewater detection, and pollution monitoring. 5 200837345 Surface plasmon resonance is a collective electron shock effect between the interfaces of two substances, which is a phenomenon of collective electric dipole oscillation of the charge density of metal. However, not all interfaces can generate surface plasma resonance. In general, two materials with opposite dielectric constants and negative sums are required to generate surface plasma resonances, such as metals and dielectrics. In addition, the general plane wave is incident on the metal surface to excite the surface plasma resonance, so the use of the evanescent wave generated by total reflection to generate a large wave vector component (kx) can be successfully achieved. The electromagnetic field of the surface plasma wave has the maximum intensity at the interface " entering the medium perpendicular to the interface direction, exhibiting an exponential decay. When the wave vector component (kx) of the incident light wave parallel to the interface is equal to the wave vector (ksp) of the surface plasma wave, the surface plasma wave is excited. There are two modes that use the principle of the dissipative wave, namely 0tt〇 and Kretschmann structures. These modes use the evanescent wave generated by helium to achieve the effect of exciting the surface plasma, which is also commonly used in sensing biochemical molecules. A conventional Kretschmann mode surface plasma resonance sensor is a system for measuring a thin layer of metal on a surface of a crucible, a thin layer of germanium - a medium to be tested (air or water) Substance to be tested. In addition, a modified Coupled Plasmon-Waveguide Resonance (CPWR) surface plasma resonance sensor is disclosed in US Patent No. 5,991,488, which is incorporated between a thin layer of metal and a medium to be tested. A layer of dielectric material, thereby increasing sensitivity, enhancing spectral analysis capabilities, and adsorbing or immobilizing the ligand of the analyte to make the sensor more widely used. Although there are many surface plasmon resonance (SPR) sensors, some of these products use high refractive index to increase the wave vector component (kx) of the incident wavelength to produce surface plasma. Or use laser or infrared light as its light source. That is, the material limited by the prism needs to be a high-cost and difficult-to-produce high-refractive-index glass, and the light source is a high-cost monochromatic light, so the commercial surface acoustic resonance (SPR) sensors are mostly bulky. The shortcomings of carrying it are not easy, high cost, and difficult to manufacture. SUMMARY OF THE INVENTION The object of the present invention is a planar surface plasma resonance sensor, which is provided with a surface of a periodic metal grating structure on a common glass substrate, and the light peach structure replaces the 电 excitation surface plasma resonance, thereby utilizing Surface electricity will resonate

波長偏移來偵測生物化學分子,藉此降低元件製作成本,X 並縮小元件體積,使其成為可攜式表面電漿共振感測器。 本發明的再一目的係利用低成本的白光發光二極體 取代雷射光源來激發普通玻璃基材上週期性金屬光拇於 構的表面電漿,結合金屬光柵結構與白光發光二極體光 源,大大降低元件製作成本,並縮小元件體積,使其成為 可攜式表面電漿共振感測器,進而使表面電漿共振感測器 更為普及化。 、、。 本發明之平面式表面電漿共振感測器係由一玻璃基 材,一金屬感測膜層設置於該玻璃基材上,以及一金屬二 柵結構層設置於該感測膜層上;透過上述結構使待測物質 之液體設於該金屬感測膜層與金屬光柵結構層上用以進 行表面電漿共振。使用上,本發明更包含一光^產生器, 用以提供入射該金屬光柵結構層的光源,其中該光源^生 7 200837345 器係包括白光之發光二極體。也包含_光偵測裝置,接收 該金屬感測膜層反射出來之光訊號。 其中,本發明更包含一蓋體形成加蓋式流道於該蓋體 與該金屬光柵結構層之間,藉由微流道之設計可使在數十 μπι範圍内讓含有待測物質之液體完全通過,可增加實際 感測面積。 其中,該金屬光柵結構層係為金(Au)或銀(Ag),且相 鄰金屬光柵間隔係50nm至500nm之間,係利用奈米愿印 (nano imprint)、電子束微影術(E_beam Lhh〇graphy, EBL)、紫外線微影術(uv Lithography)及干涉微影術其中 一方式或其他相關奈米製造技術所製作。 其中,該金屬感測膜層係係擇自金(Au)膜、銀(Ag)膜 及銅(Cu)膜其中之一,或為金(Au)膜係沉積於銀(Ag)膜上 方之金(Au)膜與銀(Ag)膜之組成。 另,該玻璃基材與該金屬感測膜層間進一步可設置一 黏著層,該黏著層材料係擇自鈦(Ti)、鋁(A1)及鉻(Cr)其中 之一形成一約3nm之薄膜,用以增加該金屬感測膜層對該 玻璃基材的附著力,使本發明可不斷重複使用。 【實施方式】 效有關本發明之詳細内容及技術說明,現以實施例來 作進一步說明’但應瞭解的是,該等實施例僅為例示說明 之用,而不應被解釋為本發明實施之限制。 請參閱「第1圖」所示,係本發明平面式表面電漿共 振感測器之不意圖。本發明之平面式表面電漿共振感測器 8 200837345 係由一玻璃基材π,一金屬感測膜層12設置於該玻璃基 材11上,以及一金屬光栅結構層13設置於該感測膜層 上;透過上述結構使待測物質20之液體設於該金屬感測 膜層12與金屬光柵結構層13上用以進行表面電漿共振(如 「第2圖」所示)。其中,該金屬感測膜層12係擇自金(Au) 膜、銀(Ag)膜及銅(Cu)膜其中之一,或為金(Au)膜係沉積 於銀(Ag)膜上方之金(Au)膜與銀(Ag)膜之組成;而該金屬Wavelength shifting to detect biochemical molecules, thereby reducing component fabrication costs, X and reducing component size, making it a portable surface plasma resonance sensor. A further object of the present invention is to replace the laser light source with a low-cost white light emitting diode to excite the surface metal plasma of the periodic metal light on the ordinary glass substrate, and combine the metal grating structure with the white light emitting diode light source. It greatly reduces the component manufacturing cost and reduces the component volume, making it a portable surface plasma resonance sensor, which makes the surface plasma resonance sensor more popular. ,,. The planar surface plasma resonance sensor of the present invention comprises a glass substrate, a metal sensing film layer is disposed on the glass substrate, and a metal two-gate structure layer is disposed on the sensing film layer; The above structure allows the liquid of the substance to be tested to be disposed on the metal sensing film layer and the metal grating structure layer for surface plasma resonance. In use, the present invention further includes a light source generator for providing a light source incident on the metal grating structure layer, wherein the light source is a white light emitting diode. The photodetecting device is also included, and receives the optical signal reflected by the metal sensing film layer. Wherein, the present invention further comprises a cover body forming a capped flow channel between the cover body and the metal grating structure layer, and the micro flow channel is designed to allow the liquid containing the substance to be tested to be in a range of several tens μm Fully passed, which increases the actual sensing area. Wherein, the metal grating structure layer is gold (Au) or silver (Ag), and the adjacent metal grating spacers are between 50 nm and 500 nm, and the system utilizes nano imprint and electron beam lithography (E_beam). One of Lhh〇graphy, EBL), uv Lithography, and interference lithography, or other related nanofabrication techniques. Wherein, the metal sensing film layer is selected from one of a gold (Au) film, a silver (Ag) film, and a copper (Cu) film, or a gold (Au) film is deposited on the silver (Ag) film. The composition of a gold (Au) film and a silver (Ag) film. In addition, an adhesive layer may be further disposed between the glass substrate and the metal sensing film layer, and the adhesive layer material is selected from one of titanium (Ti), aluminum (A1) and chromium (Cr) to form a film of about 3 nm. In order to increase the adhesion of the metal sensing film layer to the glass substrate, the invention can be repeatedly used. The detailed description of the present invention and the technical description of the present invention will be further described by the embodiments. It should be understood that the embodiments are for illustrative purposes only and should not be construed as The limit. Please refer to Fig. 1 for the purpose of the planar surface acoustic resonance sensor of the present invention. The planar surface plasma resonance sensor 8 200837345 of the present invention is provided on a glass substrate π, a metal sensing film layer 12 is disposed on the glass substrate 11, and a metal grating structure layer 13 is disposed on the sensing layer. On the film layer, the liquid of the substance to be tested 20 is disposed on the metal sensing film layer 12 and the metal grating structure layer 13 through the above structure for surface plasma resonance (as shown in "Fig. 2"). The metal sensing film layer 12 is selected from one of a gold (Au) film, a silver (Ag) film, and a copper (Cu) film, or a gold (Au) film is deposited on the silver (Ag) film. a composition of a gold (Au) film and a silver (Ag) film; and the metal

光栅結構層13材料係為金(Au)或銀(Ag),且相鄰金屬光栅 之間隔係50nm至5〇〇nm之間,該金屬光柵結構層是 利用奈米壓印技術、電子束微影術、紫外線微影術及干= 微影術其中-方式製作的,能達到奈米級的尺度,並於 確的得到理想的結構。 ’ 另 二 隹該玻璃基材11與該金屬感測膜層12間進一步 可设置—黏著層1U,該黏著層111的作用在增加該金屬 感測膜層12對該玻璃基材U的附著力,使本發明之電聚 共振感測器可不斷重複使用。其中該黏著層U1材料係^ 自鈦㈤、銘(A1)及鉻(Cr)其中之一形成,其厚度約3nm。 、請參閱「第3圖」所示,使用上’本發明更包含一光 、原產生器3G’用以k供人射該金屬光栅結 =光源產生器3。係包括白光之發光二極體= 之光ϋ裝置4〇,用以接收該金屬感測膜層12反射出來 9 200837345 之間,藉由微流道之設計可使在數十μπι範圍内讓含有待 測物質20之液體完全通過,可增加實際感測面積。 表面電漿(surface plasmon)是存在金屬與介電質 (dielectric)介面上的表面電磁波,其為金屬的電荷密度發 生集體式電偶極震盪的現象。表面電漿波之電磁場在界面 處有最大強度,沿著垂直於界面方向進入介質中,會呈現 指數形式衰減。當入射光波平行於界面之波向量分量(kx) 等於表面電漿波之波向量(ksp)時,表面電漿波才會被激發 出來。光線的入射角度與介面間介電常數滿足耦合條件, 如下面所列公式:The material of the grating structure layer 13 is gold (Au) or silver (Ag), and the spacing between adjacent metal gratings is between 50 nm and 5 〇〇 nm, and the metal grating structure layer utilizes nano imprint technology, electron beam micro Shadow, UV lithography and dry = lithography are produced in a way that achieves nanometer scales and achieves the ideal structure. Further, an adhesive layer 1U may be further disposed between the glass substrate 11 and the metal sensing film layer 12, and the adhesive layer 111 acts to increase the adhesion of the metal sensing film layer 12 to the glass substrate U. Therefore, the electro-convergence resonance sensor of the present invention can be continuously used repeatedly. The adhesive layer U1 is formed from one of titanium (five), indium (A1) and chromium (Cr), and has a thickness of about 3 nm. Referring to the "Fig. 3", the present invention further includes a light, original generator 3G' for the human grating grating = light source generator 3. The device comprises a light-emitting diode of white light=the light-emitting device 4〇 for receiving the metal sensing film layer 12 and reflecting between 9 200837345, and the design of the micro-flow channel can make the content within the range of several tens μπι The liquid of the substance to be tested 20 completely passes, which can increase the actual sensing area. Surface plasmon is a surface electromagnetic wave present on the interface between metal and dielectric, which is a phenomenon of collective electric dipole oscillation of the charge density of metal. The electromagnetic field of the surface plasma wave has the maximum intensity at the interface, and enters the medium along the direction perpendicular to the interface, which exhibits an exponential decay. When the wave vector component (kx) of the incident light wave parallel to the interface is equal to the wave vector (ksp) of the surface plasma wave, the surface plasma wave is excited. The angle of incidence of the light and the dielectric constant between the interfaces satisfy the coupling conditions, as shown in the formula below:

(其中各符號的物理意義:α是入射光頻率,θ是入射 角,^是介電物質介電係數(^ >0),^是金屬介電係數 (。<0))。 由於一般入射光平行於界面之波向量分量(kx)小於表 面電漿波之波向量(ksp),故需要稜鏡(prism)、光柵(grating) 或波導(waveguide)來達到激發表面電漿之條件。 光桃結構或是規則性的起伏是搞合表面電聚的另一 種方式,從波的波向量(wave vector)來看: ksp=27i/^*nb sin(0)+mx2ji/A (等式 1) 上式中nb表示環境的折射係數,λ表示光的波長,Λ 200837345 表示週期性,ksp表示表面電漿共振的波向量,m表示繞 * 射級數(diffraction order)。 入射光的波向量必須符合表面電漿波之波向量(ksp) 才能成功耦合表面電漿,在光柵結構中,週期性的結構提 供了 一個增強的項(πχχ2π/Λ),因此,從色散關係中(如 「第5圖」),可以看到入射光的曲線由左往右移,因此能 和ksp相交於一點,此貢獻便來自於週期性的結構。由於 光柵結構可以下列正弦函數表示: ’ S(x) = h sin(27c/a)x,(a=A);此式可解釋增強項的由來。 本發明係利用光柵結構可提供入射光產生表面電漿 共振的功效,使用在生物化學感測領域。相較於ATR共振 模式(習知利用稜鏡產生全反射的消散波激發表面電漿共 振),本發明係在普通玻璃基材11上設置週期性金屬光柵 結構層13的表面,光柵結構代替稜鏡激發表面電漿共振, 進而利用表面電漿共振波長偏移來偵測生物化學分子。 請再參閱「第3圖」,光源產生器30產生入射光(固定 , 波長)由金屬光栅結構層13上方打入,並調整入射的角度 (改變sin (Θ)),在某一特定角度能使連續的膜層金屬感測 膜層12與金屬光柵結構層13產生表面電漿共振。若產生 表面電漿共振,反射光的強度會大幅的降低,由該光偵測 裝置40可以偵測到此現象。然而,如果我們改變環境的 折射係數nb,由(等式1)可知,改變nb能間接改變產生表 面電漿共振的入射角度。請再參閱「第4圖」,因此,藉 由微流道之設計流進待測物質20之生物化學分子,藉由 11 200837345 生物分子與表面的反應(我們可預先在表面上鐘上能與特 定分子作㈣分子團),改變環境的折射係數,我們會得到 θ的變化’再#由觀察表”漿共㈣度的變化來孩測生 物化學分子。 明再多閱第2圖」’該圖中顯示本發明之平面式表 面電敷感測器的基本裝置’待測物質2()卩n代表流過的 不同介質崎射係數’表示不同生物分子接合在表面造成 折射係數改變的情況,如同前述改變環境的折射係數仙。 且使用白光之發光二極體發出·腕到·nm波長的 續波入射,以其在特定頻率時(333THz_6〇〇 τ 電漿共振的現象。 I® 金屬光栅、.、。構層13的週期性可依不同的感測環 感測分子而改變’在此以週期為448nm,每光拇結構^ 距離為224nm的週期性結構來實驗,金屬感測膜層心 度1〇議° #流經不同折射係數的介質時(待測物質20 : 油分別為丨.33、^.39時)會造成表面電漿共^ 的改變。 貝手 、其實驗結果如「第6圖」所示,圖中每—個向下 值代表表©電漿共振發生的頻率(波長)。由圖可知,在 不同的折射係數下,表面電漿共振的頻率會隨之改變 應到峰值的位移,藉由峰值位置的改變(共振頻率的改 變)’可作為生物感測的應用。 本發明之精神係在普通玻璃基材上設置週期性金屬 光栅結構的表面,藉由光栅結構代替稜鏡激發表面電漿共 12 200837345 - 振,進而利用表面電漿共振波長偏移來偵測生物化學分 • 子。且本發明之結構可利用低成本的白光發光二極體取代 雷射光源來激發普通玻璃基材上週期性金屬光栅結構的 表面電漿。本發明結合金屬光柵結構與白光發光二極體光 源,大大降低元件製作成本,並縮小元件體積,使其成為 可攜式表面電漿共振感測器,進而使表面電漿共振感測器 更為普及化。 惟以上所述者,僅為本發明之較佳實施例而已,當不 : 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 13 200837345 【圖式簡單說明】 . 圖,係本發明平面式表面電漿共振感測器之示意圖。 第2圖’係本發明置有待測物質之示意圖。 第3圖’係本發明之實施示意圖。 第4圖’係本發明之微流道設計之示意圖。 第5圖,係色散關係之曲線圖。 第6圖’係不同待測物質之反射強度比與波長的關係圖。 【主要元件符號說明】 、 11 :玻璃基材 111 :黏著層 12 :金屬感測膜層 13 :金屬光柵結構層 20 :待測物質 30 :光源產生器 40 :光偵測裝置 50 :蓋體 14(The physical meaning of each symbol: α is the incident light frequency, θ is the incident angle, ^ is the dielectric material dielectric constant (^ > 0), and ^ is the metal dielectric coefficient (. < 0)). Since the wave vector component (kx) of the incident light parallel to the interface is smaller than the wave vector (ksp) of the surface plasma wave, a prism, a grating or a waveguide is required to achieve the surface plasma. condition. The light peach structure or the regular fluctuation is another way to make the surface electro-convergence. From the wave vector of the wave: ksp=27i/^*nb sin(0)+mx2ji/A (equation 1) In the above formula, nb represents the refractive index of the environment, λ represents the wavelength of light, Λ 200837345 represents periodicity, ksp represents the wave vector of surface plasma resonance, and m represents the diffraction order. The wave vector of the incident light must conform to the wave vector (ksp) of the surface plasma wave to successfully couple the surface plasma. In the grating structure, the periodic structure provides an enhanced term (πχχ2π/Λ), and therefore, the dispersion relation In the middle (such as "figure 5"), you can see that the curve of the incident light shifts from left to right, so it can intersect with ksp at a point. This contribution comes from the periodic structure. Since the grating structure can be represented by the following sine function: ' S(x) = h sin(27c/a)x, (a=A); this equation explains the origin of the enhancement. The present invention utilizes a grating structure to provide the effect of incident light to generate surface plasma resonance for use in the field of biochemical sensing. Compared with the ATR resonance mode (the conventionally used dissipative wave excitation surface plasma resonance using 稜鏡 to generate total reflection), the present invention sets the surface of the periodic metal grating structure layer 13 on the ordinary glass substrate 11, and the grating structure replaces the rib. The mirror excites the surface plasma resonance, which in turn uses the surface plasma resonance wavelength shift to detect biochemical molecules. Referring to FIG. 3 again, the light source generator 30 generates incident light (fixed, wavelength) which is driven from above the metal grating structure layer 13 and adjusts the angle of incidence (changes sin (Θ)), which can be at a certain angle. The continuous film metal sensing film layer 12 and the metal grating structure layer 13 are caused to generate surface plasma resonance. If surface plasmon resonance occurs, the intensity of the reflected light is greatly reduced, and the photodetecting device 40 can detect this phenomenon. However, if we change the refractive index nb of the environment, it can be seen from (Equation 1) that changing nb can indirectly change the incident angle at which the surface plasma resonance occurs. Please refer to "Fig. 4". Therefore, the biochemical molecules of the substance to be tested 20 are flowed by the design of the microchannel, and the reaction of the biomolecule with the surface by 11 200837345 (we can pre-clock on the surface) The specific molecule is used as the (4) molecular group), and the refractive index of the environment is changed. We will get the change of θ, and then the biochemical molecule will be measured by the change of the total (four) degree of the observation table. See Figure 2 again. The figure shows the basic device of the planar surface electrospray sensor of the present invention. The substance to be tested 2 () 卩 n represents the different medium volatility coefficient flowing through ' indicates that different biomolecules are bonded to the surface to cause a change in the refractive index. The refractive index of the environment is changed as described above. And the light-emitting diode of white light emits a continuous wave incident from the wrist to the nm wavelength, at a specific frequency (333THz_6〇〇τ plasma resonance phenomenon. I® metal grating, ., . The polarity can be changed according to different sensing ring sensing molecules. Here, the periodic structure with a period of 448 nm and a distance of 224 nm per light thumb structure is used to test the metal layer of the metal layer. When the medium with different refractive index (substance 20: oil is 丨.33, ^.39, respectively), the surface plasma will change. The results of the experiment are shown in Figure 6. Each of the downward values represents the frequency (wavelength) at which the plasma resonance occurs. It can be seen from the figure that at different refractive indices, the frequency of the surface plasma resonance will change to the peak displacement, with the peak value. The change in position (change in resonance frequency) can be used as a biosensing application. The spirit of the present invention is to provide a surface of a periodic metal grating structure on a common glass substrate, and to replace the 稜鏡 excitation surface plasma by a grating structure. 12 200837345 - Vibration, and then use the table Surface plasma resonance wavelength shift to detect biochemical ions. The structure of the present invention can replace the laser light source with a low-cost white light emitting diode to excite the surface electrical energy of the periodic metal grating structure on a common glass substrate. The invention combines the metal grating structure and the white light emitting diode light source, greatly reduces the component manufacturing cost, and reduces the component volume, so that it becomes a portable surface plasma resonance sensor, thereby making the surface plasma resonance sensor The above is only the preferred embodiment of the present invention, and it is not intended to limit the scope of the present invention to the extent that the scope of the invention and the description of the invention are simple. Equivalent changes and modifications are still within the scope of the present invention. 13 200837345 [Simplified illustration] Figure is a schematic diagram of the planar surface plasma resonance sensor of the present invention. The invention is provided with a schematic diagram of the substance to be tested. Fig. 3 is a schematic view showing the implementation of the present invention. Fig. 4 is a schematic view showing the design of the microchannel of the present invention. The graph of the relationship. Fig. 6 is a graph showing the relationship between the reflection intensity ratio and the wavelength of different substances to be tested. [Main component symbol description], 11: Glass substrate 111: Adhesive layer 12: Metal sensing film layer 13: Metal Grating structure layer 20: substance to be tested 30: light source generator 40: light detecting device 50: cover body 14

Claims (1)

200837345 十、申請專利範圍: • L 一種電漿反射偏極板,其包括: 一透明基板;以及 一金屬線膜,係由金屬線週期排列設置於該透明基板 上。 & 2·如申請專利範圍第丨項所述之電漿反射偏極板,其中該 金屬線膜材料係擇自金、銀、銅和銘其中之一。 3·依據申請專利範圍第1項所述之電漿反射偏極板,其中 ,該金屬線膜之厚度係50nm至300nm之間。 \ . 4·依據申請專利範圍第1項所述之電漿反射偏極板,其中 相鄰金屬線之間隔係50nm至500nm之間。 5· —種電漿反射偏極板,其包括: 複數個堆疊的透明基板;以及 每一透明基板上設有一金屬線膜,且該金屬線膜係由 金屬線週期排列設置於該透明基板上。 6·如申請專利範圍第5項所述之電漿反射偏極板,其中該 金屬線膜材料係擇自金、銀、銅和銘其中之一。 ' 7·依據申請專利範圍第5項所述之電漿反射偏極板,其中 該金屬線膜之厚度係50nm至300nm之間。 8·依據申請專利範圍第5項所述之電漿反射偏極板,其中 相鄰金屬線之間隔係50nm至500nm之間。 15200837345 X. Patent Application Range: • L A plasma reflective polarizing plate comprising: a transparent substrate; and a metal wire film arranged on the transparent substrate by a periodic arrangement of metal wires. & 2. The plasma reflective polarizing plate according to the invention of claim 2, wherein the metal wire film material is selected from the group consisting of gold, silver, copper and Ming. 3. The plasma reflective polarizing plate according to claim 1, wherein the thickness of the metal wire film is between 50 nm and 300 nm. 4. The plasma reflective polarizing plate according to claim 1, wherein the interval between adjacent metal wires is between 50 nm and 500 nm. 5· a plasma reflective polarizing plate, comprising: a plurality of stacked transparent substrates; and each of the transparent substrates is provided with a metal wire film, and the metal wire film is periodically arranged on the transparent substrate by metal wires . 6. The plasma reflective polarizing plate of claim 5, wherein the metal wire film material is selected from the group consisting of gold, silver, copper and a metal. The plasma reflective polarizing plate according to claim 5, wherein the thickness of the metal wire film is between 50 nm and 300 nm. 8. The plasma-reflecting polarizing plate according to claim 5, wherein the interval between the adjacent metal wires is between 50 nm and 500 nm. 15
TW096108667A 2007-03-14 2007-03-14 Planar surface plasma resonance sensor TW200837345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096108667A TW200837345A (en) 2007-03-14 2007-03-14 Planar surface plasma resonance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096108667A TW200837345A (en) 2007-03-14 2007-03-14 Planar surface plasma resonance sensor

Publications (1)

Publication Number Publication Date
TW200837345A true TW200837345A (en) 2008-09-16

Family

ID=44820177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096108667A TW200837345A (en) 2007-03-14 2007-03-14 Planar surface plasma resonance sensor

Country Status (1)

Country Link
TW (1) TW200837345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422813B (en) * 2010-09-03 2014-01-11 Univ Nat Taiwan A method for enhancing the electromagnetic energy density of a periodic structure by means of a dielectric constant difference and its nanostructure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422813B (en) * 2010-09-03 2014-01-11 Univ Nat Taiwan A method for enhancing the electromagnetic energy density of a periodic structure by means of a dielectric constant difference and its nanostructure

Similar Documents

Publication Publication Date Title
Tabatabaei et al. Tunable 3D plasmonic cavity nanosensors for surface-enhanced Raman spectroscopy with sub-femtomolar limit of detection
TWI364533B (en) A method for improving surface plasmon resonance by using conducting metal oxide as adhesive layer
US8537353B2 (en) Sensor chip for biological and chemical sensing
Kim et al. Subwavelength focusing of Bloch surface waves
Szeghalmi et al. Theoretical and experimental analysis of the sensitivity of guided mode resonance sensors
US10107807B2 (en) One dimensional photonic crystals for enhanced fluorescence based sensing, imaging and assays
Abbas et al. Patterned resonance plasmonic microarrays for high-performance SPR imaging
Hackett et al. Spectrometer-free plasmonic biosensing with metal–insulator–metal nanocup arrays
US20140242571A1 (en) Optical element, analysis equipment, analysis method and electronic apparatus
Byun et al. Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures
US20140242573A1 (en) Optical element, analysis device, analysis method and electronic apparatus
Pal et al. Figure of merit enhancement of surface plasmon resonance biosensor using Ga-doped zinc oxide in near infrared range
CN102798615A (en) Periodic nanostructure-based biosensor and preparation method thereof
Ballarini et al. A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation
Baquedano et al. Low-cost and large-size nanoplasmonic sensor based on Fano resonances with fast response and high sensitivity
JP2015152493A (en) Analysis device and electronic apparatus
JP2015212626A (en) Electric field enhancement element, raman spectroscopy, raman spectrometer, and electronic equipment
EP3359952B1 (en) Analysing apparatus and method
Ma et al. Voltage-modulated surface plasmon resonance biosensors integrated with gold nanohole arrays
Karki et al. Gold, MXene, and graphene nanofilm-based surface plasmon resonance sensor for malaria detection
CN102954950A (en) Biological sensor based on periodical nano medium particles and preparation method of sensor
Fu et al. Nanorod-mediated surface plasmon resonance sensor based on effective medium theory
Tarumaraja et al. FDTD numerical analysis of SPR sensing using graphene-based photonic crystal
Mahmood et al. Massive enhancement of optical transmission across a thin metal film via wave vector matching in grating-coupled surface plasmon resonance
US9880100B2 (en) Electronic field enhancement element, analysis device, and electronic apparatus