CN101199033A - 掺锰的钛酸钡薄膜组合物、电容器和它们的制造方法 - Google Patents

掺锰的钛酸钡薄膜组合物、电容器和它们的制造方法 Download PDF

Info

Publication number
CN101199033A
CN101199033A CNA200680021826XA CN200680021826A CN101199033A CN 101199033 A CN101199033 A CN 101199033A CN A200680021826X A CNA200680021826X A CN A200680021826XA CN 200680021826 A CN200680021826 A CN 200680021826A CN 101199033 A CN101199033 A CN 101199033A
Authority
CN
China
Prior art keywords
dielectric
barium titanate
capacitor
manganese
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200680021826XA
Other languages
English (en)
Inventor
W·J·博兰德
I·布恩
J·F·伊勒菲尔德
J·-P·马里亚
徐世起
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN101199033A publication Critical patent/CN101199033A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及电容器用的电介质薄膜组合物,该组合物包含:(1)一种或多种含钡/钛添加剂,选自:(a)钛酸钡,(b)能够在焙烧时形成钛酸钡的任何组合物和(c)它们的混合物;(2)有机介质;所述(1)添加剂能溶解在(2)有机介质中;其中所述薄膜组合物掺有0.002-0.05原子%的含锰添加剂。

Description

掺锰的钛酸钡薄膜组合物、电容器和它们的制造方法
技术领域
本发明涉及薄膜电容器,具体地说,涉及在铜箔上形成薄膜电容器,这种电容器能够嵌入印刷线路板(PWB),为安装在该印刷线路板封装件上的集成电路模块进行去耦和电压控制提供电容。
背景技术
由于包含集成电路(IC)的半导体器件需要在高频率、高数据处理速度和低电压下工作,电源和接地线(回线)中的噪音以及提供足够的电流以适应快速的电路转换操作已成为日益重要的问题,要求在电源分配系统中的低阻抗。为了向IC提供低噪音、稳定的电源,通过使用以并联的方式互连的外加式表面装配工艺(SMT)的电容器来减少传统电路中的阻抗。工作频率越高(IC转换速率越高)意味着对IC的电压响应时间越快。低工作电压要求容许电压变化(脉动)和噪音变得较小。例如,当微处理器进行开关和开始工作时,需要电源来支持对电路的开关。如果电压供应的响应时间太慢,微处理器会遭遇电压下降即功率下降,导致超过容许的脉动电压和噪音的限度,并且IC会触发假闸门(falsegeat)。此外,随IC的功率上升,响应时间慢会导致功率过冲。必须使用足够靠近IC的电容器,在适当的响应时间内提供和吸收功率,而将功率下降或过冲控制在允许的范围之内。用电容器在适当的响应时间内提供或吸收功率的方式可以将功率下降和过冲维持在容许的范围之内。
用于去耦和衰减功率下降或过冲的电容器一般放置在尽可能靠近IC的位置,以提高它们的性能。传统的设计使表面安装在印刷线路板(PWB)上的电容器聚集在IC周围。在这种情况下,大量的电容器需要复杂的电路接线,这些电路接线产生电感。随着频率增加和工作电压持续下降,功率增加,因此必须以更低的电感水平提供更高的电容。一种解决问题的方法是在其上安装有IC的PWB封装件中加入高电容密度的薄膜陶瓷电容器。直接装配在IC下面的单层陶瓷电容器将电感尽可能减小到最低,高电容密度则提供了满足IC要求的电容。PWB中的这种电容器能够以明显加快的响应时间和较低的电感水平提供电容。
在印刷线路板中嵌入陶瓷电容器膜的方法是众所周知的。首先在金属箔上形成电容器,其方法是在箔上沉积电容器的电介质材料并在高温下对材料进行退火。在电介质上形成顶部电极,以在金属箔构件上形成焙烧过的电容器。然后将金属箔与有机层压构件接合在一起产生一块内层片,其中,电容器嵌埋在该内层片中。然后将这些内层片重叠起来并用互连电路连接,叠层的内层片形成了多层印刷线路板。
采用具有高电容率即介电常数(K)的电介质和薄电介质可以获得高电容密度的电容器。众所周知铁电体陶瓷为高介电常数的。具有高介电常数的铁电体电介质材料包括通式为ABO3的钙钛矿,式中A位和B位可以为一种或多种不同金属所占据。例如,已知钛酸钡晶体(BT)、锆钛酸铅(PZT)、锆钛酸铅镧(PLZT)、铌酸铅镁(PMN)和钛酸钡锶(BST)具有高介电常数,这些材料常用于表面装配部件的器件。钛酸钡基组合物因具有高介电常数且不含铅而特别有用。
厚度小于1μm的薄膜电容器电介质是人们所熟知的。可以通过溅射、激光烧蚀、化学气相沉积和化学溶液沉积等方法在基材上沉积薄膜。最初的沉积物依据沉积条件或是非晶形的或是结晶体。非晶形组合物具有低K(约20)并且必须在高温下进行退火以诱导结晶和产生所需的高K相。在钛酸钡基电介质中的高K相只有在颗粒尺寸超过0.1μm的情况下才能获得,因此可以采用高达900℃的退火温度。
化学溶液沉积(CSD)工艺常被用来在金属箔上形成薄膜电容器。CDS工艺因为简便和低成本而是合意的。在诸如铜或镍之类的基底金属箔上形成的钛酸钡CSD薄膜进行的高温退火需要低氧分压,以避免金属氧化。但低氧分压往往因电介质材料还原而导致钛酸钡基组合物在施加偏压下出现高漏电流(电流密度)的情况。在最糟糕的情况下,电容器可能短路并且无法测出电介质性能。这可以用随后在较低温度下进行的再氧化工序来解释,在该工序中电介质和金属箔暴露在较高的氧分压下,但这导致基底金属箔氧化。
美国国家专利申请第10/621,796(美国专利公开号2005-001185)揭示了一种钛酸钡CSD组合物。该组合物特别适用于在铜箔上形成高电容密度的陶瓷膜。该前体组合物包括以下化学物质:
乙酸钡        2.6g
异丙氧化钛    2.9ml
乙酰丙酮   2.0ml
乙酸       10.0ml
甲醇       15ml
但是,在氧分压为约10-11大气压中于900℃进行退火时,该薄膜是导电的,而且有必要进行再氧化过程,以产生从中可以获取电学性能数据的部件。该工序使金属箔氧化,未必产生最佳电容器性能,特别是偏压下的漏电流密度。况且在独立的步骤中对电介质进行再氧化成本效率不高。因此,如果能在低氧分压退火加工后,立即掺入钛酸钡组合物以产生良好的电学性能,尤其是偏压下的低漏电流密度的话,则是有益的。
发明概述
本发明涉及电介质薄膜组合物,该组合物包括:(1)一种或多种含钡/钛的添加剂,选自:(a)钛酸钡,(b)能够在焙烧时形成钛酸钡的任何组合物和(c)它们的混合物;(2)有机介质;所述(1)添加剂能溶解于(2)有机介质中;其中所述薄膜组合物掺有0.002至0.05原子%的含锰添加剂。
本方面还涉及一种包含上述薄膜组合物的电容器,其中所述薄膜组合物已在还原环境中进行焙烧而不需要再氧化。此外,本发明还涉及一种内层片和包括这种电容器的印刷线路板。
在一个实施方式中,本发明涉及一种制造电容器的方法,该方法包括:提供金属箔;在金属箔上形成电介质,其中形成电介质的步骤包括:在金属箔上形成电介质层,其中电介质层是由上述组合物形成的;对电介质层进行退火;在电介质上形成导电层,其中金属箔、电介质和导电层形成电容器。
附图的简要说明
参考以下附图进行详细描述,附图中相同的数字指相同的元件,其中:
图1所示是不需要再氧化工序来形成电介质的前体溶液的制备方法的框图。
图2所示是在铜箔上制造电容器的方法的框图。
图3所示是纯钛酸钡再氧化后的电容密度和损耗角正切作为电压函数的变量图。
图4所示是未掺杂的纯钛酸钡再氧化后的漏电流密度作为电压变量的曲线图。
图5所示是不进行再氧化但掺有0.01原子%锰的钛酸钡的电容密度和损耗角正切作为电压变量的曲线图。
图6所示是说明不进行再氧化但掺有0.02原子%锰的钛酸钡的漏电流密度作为电压变量的曲线图。
图7所示是不进行再氧化但掺有0.02原子%数锰的钛酸钡的电容密度和损耗角正切作为电压变量的曲线图。
图8所示是不进行再氧化掺有0.02原子%锰的钛酸钡的漏电流密度作为电压变量的曲线图。
图9所示是不进行再氧化但掺有0.04原子%锰的钛酸钡的电容密度和损耗角正切作为电压变量的曲线图。
图10所示不进行再氧化但掺有0.04原子%锰的钛酸钡的漏电流密度作为电压变量的曲线图。
图11所示是不进行再氧化但掺有0.01原子%锰的钛酸锶钡的电容密度和损耗角正切作为电压变量的曲线图。
图12所示是不进行再氧化但掺有0.01原子%锰的钛酸锶钡的漏电流密度作为电压变量的曲线图。
发明详述
公开了高电容密度的薄膜电介质及其制造方法。
根据本发明,掺杂锰的钛酸钡电介质具有与经过再氧化的不掺杂的钛酸钡基本相同的电容密度和损耗角正切。但是在不采用再氧化工序进行处理时,掺杂锰的钛酸钡电介质偏压下的漏电流密度比经过再氧化的纯钛酸钡低得多。
BaTiO3是形成本发明的高电容密度电介质的优选的核心材料。但是,在MO2氧化物化学计量式中的金属阳离子也可以用来部分地或基本上取代钛(如Zr、Hf、Sn和它们的混合物)。虽然术语“部分地”和“基本上”并不意味着具体的限定,但仍有各种优选的实施方式。在一个实施方式中,“部分地”定义为最多及包括10摩尔%的钛。在一个实施方式中,“基本上”定义为最多及包括50摩尔%的钛。通过使BaTiO3的三相转变“收缩”(相移)而在温度空间相互接近,这些增加了在居里温度下电介质的电容对温度的依赖性。具有MO氧化物化学计量式的金属阳离子(如Pb、Ca、Sr和它们的混合物)也可以用来部分地或基本上取代钡。虽然术语“部分地”和“基本上”并不意味着具体的限定,所以可以存在各种优选的实施方式。在一个实施方式中,“部分地”在本文定义为最多及包括10摩尔%的钡。在一个实施方式中,“基本上”定义为最多及包括50摩尔%的钡。根据所用的材料,这些阳离子将电介质的居里点转移到更高或更低的温度。
根据第一实施方式,公开了一种高电容密度的薄膜CSD电介质组合物,该实施方式取消了在小于约10-8大气压的低氧分压和约800~1050℃温度条件下对电介质层进行退火后进行再氧化工序的需求。在一个实施方式中,公开一种高电容密度的薄膜CSD电介质组合物,该实施方式取消了在小于约10-11大气压的低氧分压和约900℃的条件下对电介质层进行退火后进行再氧化工序的需求。
按照上述方法制成的电容器可以嵌入内层片中,而内层片又可以被结合到印刷线路板中。这些电容器具有高电容密度、低损耗角正切和在偏压下的低漏电流密度。此外本发明的方法可以不需要采用再氧化处理,而使用符合环境需要的材料进行实施。
本领域的技术人员在结合下列附图阅读了对实施方式的详细说明后,会了解本发明的上述优点,以及各种其他实施方式的其他优点和益处。
按照常规实践,以下讨论的附图的各特征不必按比例绘制。图中各种特征和要素可以放大或缩小,以便更清楚地说明本发明的实施方式。
在此讨论的电容器实施方式中,电介质的厚度在约0.4~1.0μm范围,电容密度为约2.5μF/cm2。在这一电容密度范围的电容器的击穿电压超过约20V。
在本说明书所讨论的容电器实施方式中,使用掺杂锰的结晶钛酸钡制成高电容率的电介质膜或电介质层。掺杂锰的结晶钛酸钡膜可以用来制造高电容密度的部件。采用物理上结实的厚度,优选0.4~1.0μm之间的电介质可以获得高电容密度。可以使用掺入少到250ppm的锰来形成高介电常数的电介质,这种电介质可以没有采用再氧化工序进行处理的电介质相比。
可以采用化学溶液沉积技术(CSD)来形成电介质。CSD技术因为简便和低成本而是合意的。用来制备掺杂锰的BaTiO3的化学前体溶液优选含有乙酸钡、异丙氧化钛、乙酰丙酮、乙酸、甲醇、二乙醇胺和四水合乙酸锰。
为制备稳定的前体溶液,上述化学品应不含水。水使前体组合物不稳定,产生氧化钛沉淀。因此重要的是在相对湿度较低的环境,如小于约40%的相对湿度环境中制备和沉积前体溶液。一旦前体溶液完全沉积在金属箔上并干燥,它对湿度的敏感性就较低。
图1示出按照本发明方法制备用来形成电介质的前体溶液的方法的框图。在步骤S110中,异丙氧化钛与乙酰丙酮预混合并加热。该预混合过程可以在例如PYREX容器中进行,加热可以在表面温度为约90℃的热板上进行。在步骤S120中,将乙酸加入到异丙氧化钛/乙酰丙酮的混合物中。在步骤S130中,将乙酸钡和四水合乙酸锰加入该容器中,进行搅拌直至它们溶解。在步骤S140中,对溶液于90℃加热约1小时的同时进行搅拌。在步骤S150中,将甲醇加入到该溶液中,达到约0.3摩尔的浓度。至此,前体溶液可用于沉积。
图2示出按照本发明形成电容器的方法框图。采用参考图1所示的方法制成的前体溶液来形成最终电容器的电介质。也可以使用上述前体溶液中甲醇和乙酰丙酮等组分的变体。例如,甲醇可以被乙酸替代。甲醇也可以被乙醇、异丙醇、丙酮、丁醇和其他醇替代。乙酰丙酮可以被诸如3-乙醇胺、二乙醇胺或单乙醇胺等乙醇胺替代。异丙氧化钛也可以被丁氧化钛取代。
图2所示的沉积工艺为旋涂。其他涂布方法也是可行的,如浸涂或喷涂。在步骤S210中,对金属箔进行清洁。清洁工作并非总是必需的,而是可取的。金属箔可以用铜制成。铜箔因为其低成本和易于处理而是合意的。铜箔将用作在其上制造电容器的基材。铜箔也可以用作成品电容器中的电容器“底”电极。在一个实施方式中,基材为18μm厚的无电裸铜箔。其他未经处理的金属箔,如1盎司(oz)铜箔也是适用的。适用的清洁条件包括在盐酸的氯化铜稀溶液中对金属箔进行30秒的蚀刻。蚀刻溶液可以是其浓缩液形式稀释约10,000倍后的溶液。清洁步骤去除了金属箔上的过量氧化层、指印和其他积累的外来物质。如果来自供应商或其他来源的铜箔为基本清洁的状况,并且经过仔细处理并很快使用的话,则不必采用推荐的清洁工序。
铜箔最好不用有机添加剂进行处理。有时使用有机添加剂是为了改善金属基材与环氧树脂的粘合性。但是有机添加剂会使电介质膜在退火时发生降解。
在步骤S220中,将参见图1所述制成的前体溶液沉积在铜箔基材的转鼓面(即“光滑面”)上。前体溶液可以采用例如塑料注射器进行施涂。
在步骤S230中,旋转基材以便进行旋涂。适用的旋转时间和速率分别为30秒和每分钟3000转。在步骤S240中,对基材进行热处理。热处理例如可以在250℃温度下进行5~10分钟。热处理用于通过蒸发前体溶液中的溶剂对前体溶液进行干燥。热处理后,干燥的电介质前体层厚约150nm。可以采用连续旋涂步骤,涂覆铜箔基材至所需的厚度。例如可以采用三道旋涂步骤,使最终干燥电介质前体的厚度达到约0.5μm。
在S250中,对涂覆后的基材进行退火。退火步骤首先去除了残留的有机物,然后对干燥的电介质前体进行烧结、致密化和结晶。退火可以在高温、低氧分压的环境中进行。合适的总压环境为约1个大气压。合适的氧分压为约10-10~10-11大气压。
在S250中,低氧分压可以通过使高纯度的氮气鼓泡通过控制温度的水浴来获得。也可采用其他混合气体。在一个实施方式中,炉温度为至少约900℃,氧分压为约10-11个大气压。水浴的温度可以为约25℃。可以将涂覆的金属箔基材插入温度在250℃以下的炉中进行退火。然后以约30℃/min的速率使炉温、上升到最高为900℃。炉温在900℃下保持30分钟。
在步骤S260中,使箔基材冷却。冷却可以利用牛顿分布(Newtonian profile)来加以调节,例如,只是简单地关闭加热炉产生的分布曲线。或者,炉温可以以特定的速率下降。当炉温达到约450℃时,可以从炉中安全取出箔基材而不会有对铜箔产生不需要的氧化作用的风险。或者,在将铜箔基材从加热炉中取出之前,允许炉温回落到室温。
在低氧分压退火方法中,铜箔没有被氧化成Cu2O或CuO。存在这种抗氧化性的原因在于低氧分压和高处理温度。电介质也没有被还原并保持良好的电学性能,尤其是在偏压下的低漏电流密度。存在这种抗还原性的原因在于锰受体的掺混。通过掺杂锰,导电电子被锰捕获,因而耐绝缘性的下降和介电损失的增加受到抑制。
上述为使沉积后的电介质致密化和结晶而在900℃高温进行的退火步骤产生了所需要的物理性质和电学性质。一种需要的物理性质是致密的微结构。另一个需要的物理性质是产生的颗粒粒度为0.1-0.2μm。由这种粒度的颗粒产生的一种所需要的电学性质是超过1μF/cm2的电容密度。另一个的需要的物理性质是低损耗角正切,可能低于2.5%。总之,当平均粒度小于0.1μm时,基于多晶BaTiO3的材料的介电常数明显下降,因此至少为这一量级的粒度是合要求的。
在步骤S270中,在所得电介质上形成顶电极。顶电极的可以采用例如以下方法形成:溅射、燃烧气相沉积、无电电镀、印刷或其他适用的沉积方法。在一个实施方式中,使用溅射的铂电极。其他适用于顶电极的材料包括镍、铜和钯。需要时,顶电极可以镀敷铜以增加厚度。
以下实施例说明了按照本发明方法制备的电介质的良好性能以及加入这种电介质的电容器。
实施例1
使用按美国国家专利申请10/621,796(美国专利公开第2005-001185)揭示的前体,在铜箔上制备未掺杂的纯钛酸钡薄膜。采用图2所示的方法在铜箔上涂覆电介质前体组合物。电介质前体的组成如下:
乙酸钡        2.6g
异丙氧化钛    2.9ml
乙酰丙酮      2.0ml
乙酸          10.0ml
甲醇          15ml
进行3次旋涂。涂覆后的铜箔在约10-11大气压的氧分压下,于900℃进行30分钟退火。退火后,将所述箔置于氧分压为约10-5托的气氛,温度为550℃的真空室中,对纯钛酸钡进行30分钟再氧化。选择上述条件是为了避免铜箔发生明显的氧化,同时仍能提供用于电介质再氧化的氧。再氧化后,在电介质上溅射铂顶电极,可测定电容、耗散因数和偏压下的漏电流密度。
如图3所示,在零偏压时,电容密度为约2.5μF/cm2,损耗角正切为约5%,但如图4所示,在10V偏压下,纯钛酸钡层显示达1安培/厘米2量级的高漏电流密度。
实施例2
在铜箔上制备掺杂有0.01原子%锰的钛酸钡薄膜。采用图2所示的方法,在所述铜箔上涂覆电介质前体组合物。所述电介质前体的组成如下:
乙酸钡        5.08g
异丙氧化钛    5.68ml
乙酰丙酮      3.86ml
乙酸          21ml
甲醇          24.26ml
乙酸锰     0.002g
二乙醇胺   0.54g
实施例1和实施例2之间无机物含量方面仅有的差异是锰。二乙醇胺是降低应力(stress reducing)的有机物,对最终的无机组合物没有影响。进行3次旋涂。涂覆后的铜箔在约10-11大气压的氧分压下,于900℃进行30分钟退火。在电介质上溅射铂顶电极,测定电容器的电学性质。
如图5所示,没有进行再氧化的掺杂锰的钛酸钡层显示出与经过再氧化的纯钛酸钡相似的电容密度和损耗角正切。但是如图6所示,没有经过再氧化的掺杂锰的钛酸钡在10V偏压下显示出约10微安/厘米2的低漏电流密度,即与经过再氧化的未掺杂锰的钛酸钡相比,漏电流量低了约10,000倍。
实施例3
按照与实施例1所述方式相类似的方式,使用下面所述的前体溶液,在铜箔上制备掺杂有0.02原子%锰的钛酸钡薄膜,除了重复进行6次涂覆/预烘焙处理之外。将Mn(OAc)2(0.2g)溶解在热乙酸(29.8g)中制成锰掺杂剂溶液:
乙酸钡        2.0g
异丙氧化钛    2.22g
乙酰丙酮      1.56g
乙酸          17.0g
二乙醇胺      0.21g
锰掺杂剂溶液  0.17g
没有进行再氧化的掺杂锰的钛酸钡层的电容密度和损耗角正切示于图7。在零伏偏压下电容密度为约1.4μF/cm2,损耗角正切小于5%,耗散因数在偏压下没有降低。与实施例1和实施例2相比,电容密度较低的原因是涂覆次数为两倍,产生明显增厚的电介质层的结果。如图8所示,没有进行氧化工序的掺杂0.02原子%锰的钛酸钡在10V偏压下显示出约10微安/厘米2的低漏电流密度,即与经过再氧化的未掺杂锰的钛酸钡相比,漏电流量低了约1,000,000倍。
实施例4
按照与实施例3所述方式相类似的方式,使用以下所述的前体溶液,在铜箔上制备杂掺0.04原子%锰的钛酸钡薄膜。涂覆/预烘焙处理重复6次。将Mn(OAc)2(0.2g)溶解在热乙酸(29.8g)中制成锰掺杂剂溶液:
乙酸钡        2.0g
异丙氧化钛    2.22g
乙酰丙酮      1.56g
乙酸          17.0g
二乙醇胺      0.21g
锰掺杂剂溶液  0.42g
没有进行再氧化的掺杂锰的钛酸钡层的电容密度和损耗角正切示于图9。0伏时电容密度为约1.3μF/cm2,损耗角正切小于等于8%,在偏压下耗散因数没有降低。与实施例3相似,电容密度较低是较厚的电介质所致。如图10所示,没有进行氧化工序的掺杂0.04原子%锰的钛酸钡在10V偏压下显示出约10微安/厘米2的低漏电流密度,即与经过再氧化的未掺杂锰的钛酸钡相比,漏电流量低了约1,000,000倍。
实施例5
按照与实施例3所述方式相类似的方式,使用下述前体溶液,在铜箔上制备掺杂0.01原子%锰的钛酸钡锶(Ba0.65Sr0.35TiO3)薄膜,除了在加入乙酸钡的同时还加入乙酸锶外。涂覆/预烘焙处理重复6次。将四水合乙酸锰(0.29g)溶解在乙酸(27.71g)和蒸馏水(2.0g)的混合液中制成锰掺杂剂溶液:
乙酸钡        7.45g
乙酸锶        3.17g
异丙氧化钛    12.67g
乙酰丙酮      8.93g
乙酸          94.3g
二乙醇胺      1.17g
锰掺杂剂溶液  0.63g
没有进行再氧化的掺杂锰的钛酸钡锶层的电容密度和损耗角正切示于图11。0伏时电容密度为约1.2μF/cm2,损耗角正切小于等于3%,偏压下耗散因数没有降低。与实施例3相似,电容密度较低是较厚的电介质所致。如图12所示,没有进行氧化工序的掺杂0.01原子%锰的钛酸钡锶在10V偏压下显示出约10微安/厘米2的低漏电流密度,即与经过再氧化的未杂掺的锰钛酸钡相比,漏电流量低了约1,000倍。

Claims (11)

1.一种电介质薄膜组合物,该组合物包含:
(1)一种或多种含钡/钛的添加剂,选自:(a)钛酸钡、(b)能够在焙烧时形成钛酸钡的任何组合物和(c)它们的混合物;
(2)有机介质;
所述添加剂溶解于有机介质中;
所述薄膜组合物掺杂有0.002-0.05原子%的含锰添加剂。
2.权利要求1所述的组合物,其特征在于,在所述含钡/钛的添加剂中的钡已部分或基本上全部被一种或多种氧化物化学计量式为MO的金属阳离子所替代,其中M选自:(a)锶、(b)铅、(c)钙、和(d)它们的混合物。
3.权利要求1所述的组合物,其特征在于,在所述含钡/钛的添加剂中的钛已部分或基本上被一种或多种氧化物化学计量式为MO2的金属阳离子所取代,其中M选自:(a)锆、(b)铪、(c)锡、和(d)它们的混合物。
4.一种包括权利要求1所述的薄膜组合物的电容器,所述薄膜组合物已在还原气氛中进行焙烧而不需要进行再氧化。
5.一种包括权利要求4所述的电容器的内层片。
6.一种包括权利要求4所述的电容器的印刷线路板。
7.一种制造电容器的方法,该方法包括:
提供金属箔;
在金属箔上形成电介质;所述形成电介质的步骤包括:
在金属箔上形成电介质层,所述电介质层是由权利要求1所述的组合物形成的;
对电解质层进行退火;和
在电介质上形成导电层,
所述金属箔、电介质和导电层形成所述电容器。
8.权利要求7所述的方法,其特征在于,退火步骤包括在约800~1050℃范围的温度下进行退火。
9.权利要求7所述的方法,其特征在于,退火步骤包括在低于约10-8个大气压的氧分压的环境中进行退火。
10.权利要求7所述的方法,其特征在于,退火步骤产生了包含结晶钛酸钡或结晶钛酸钡锶的电介质。
11.权利要求7所述的方法,其特征在于,电容器的电容密度为至少0.5μF/cm2
CNA200680021826XA 2005-06-21 2006-06-21 掺锰的钛酸钡薄膜组合物、电容器和它们的制造方法 Pending CN101199033A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/157,621 2005-06-21
US11/157,621 US20060287188A1 (en) 2005-06-21 2005-06-21 Manganese doped barium titanate thin film compositions, capacitors, and methods of making thereof

Publications (1)

Publication Number Publication Date
CN101199033A true CN101199033A (zh) 2008-06-11

Family

ID=37110237

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200680021826XA Pending CN101199033A (zh) 2005-06-21 2006-06-21 掺锰的钛酸钡薄膜组合物、电容器和它们的制造方法

Country Status (7)

Country Link
US (3) US20060287188A1 (zh)
EP (1) EP1897103A1 (zh)
JP (1) JP2008547227A (zh)
KR (1) KR100949254B1 (zh)
CN (1) CN101199033A (zh)
TW (1) TW200715324A (zh)
WO (1) WO2007002107A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795663B2 (en) * 2005-06-21 2010-09-14 E. I. Du Pont De Nemours And Company Acceptor doped barium titanate based thin film capacitors on metal foils and methods of making thereof
JP4908244B2 (ja) * 2007-01-26 2012-04-04 昭和電工株式会社 複合酸化物膜形成用塗布剤
US7635634B2 (en) * 2007-04-16 2009-12-22 Infineon Technologies Ag Dielectric apparatus and associated methods
US20120196189A1 (en) 2007-06-29 2012-08-02 Johnson Ip Holding, Llc Amorphous ionically conductive metal oxides and sol gel method of preparation
US9034525B2 (en) * 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide
US8211496B2 (en) * 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
US20090092903A1 (en) * 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
US8446706B1 (en) * 2007-10-10 2013-05-21 Kovio, Inc. High precision capacitors
US20090238954A1 (en) * 2008-03-20 2009-09-24 Seigi Suh Large area thin film capacitors on metal foils and methods of manufacturing same
US20090238955A1 (en) * 2008-03-20 2009-09-24 E. I. Du Pont De Nemours And Company Processes for the manufacture of barium titanate capacitors on nickel foils
US20100202099A1 (en) * 2009-02-12 2010-08-12 Lite-On Capital Inc. Thin film capacitor
US7987566B2 (en) * 2009-07-15 2011-08-02 Sturzebecher Richard J Capacitor forming method
EP2426684A1 (en) 2010-09-02 2012-03-07 Mitsubishi Materials Corporation Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
TWI465485B (zh) 2011-09-13 2014-12-21 Ind Tech Res Inst 含氧化石墨之樹脂配方、組成物及其複合材料與無機粉體的分散方法
EP2608219B1 (en) 2011-12-20 2015-03-04 Mitsubishi Materials Corporation Dielectric thin film-forming composition, method of forming dielectric thin film and dielectric thin film formed by the method
CN110416478A (zh) 2012-03-01 2019-11-05 约翰逊Ip控股有限责任公司 固态复合隔膜、其制造方法以及固态可充电锂电池
US9793525B2 (en) 2012-10-09 2017-10-17 Johnson Battery Technologies, Inc. Solid-state battery electrodes
JP6547435B2 (ja) * 2014-09-12 2019-07-24 Tdk株式会社 誘電体膜および誘電体素子
WO2017112804A1 (en) 2015-12-21 2017-06-29 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
EP4295381A1 (en) * 2021-02-17 2023-12-27 Applied Materials, Inc. Capacitor dielectric for shorter capacitor height and quantum memory dram

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920781A (en) * 1971-04-02 1975-11-18 Sprague Electric Co Method of forming a ceramic dielectric body
EP0058125B1 (fr) 1981-01-27 1984-07-18 Marcel Ramond Poste de travail universel, transformable et adaptable, permettant des utilisations spécifiques, multiples et fonctionnelles
JPS57187905A (en) 1981-05-13 1982-11-18 Matsushita Electric Ind Co Ltd Method of producing positive temperature coefficient thermistor
US4988468A (en) * 1987-01-08 1991-01-29 Murata Manufacturing Co., Ltd. Method for producing non-reducible dielectric ceramic composition
US4855266A (en) * 1987-01-13 1989-08-08 E. I. Du Pont De Nemours And Company High K dielectric composition for use in multilayer ceramic capacitors having copper internal electrodes
JPS6469514A (en) 1987-09-11 1989-03-15 Ube Industries Preparation of starting powder for condenser material
US5198269A (en) * 1989-04-24 1993-03-30 Battelle Memorial Institute Process for making sol-gel deposited ferroelectric thin films insensitive to their substrates
US5155072A (en) * 1990-06-29 1992-10-13 E. I. Du Pont De Nemours And Company High K dielectric compositions with fine grain size
CA2046496C (en) 1990-07-10 1995-09-05 Harunobu Sano Dielectric ceramic compositions and manufacturing method of dielectric ceramics
WO1992019564A1 (en) * 1991-05-01 1992-11-12 The Regents Of The University Of California Amorphous ferroelectric materials
US5296646A (en) * 1992-04-03 1994-03-22 The Whitaker Corporation Protector module for telephone line junction box
US5271955A (en) * 1992-04-06 1993-12-21 Motorola, Inc. Method for making a semiconductor device having an anhydrous ferroelectric thin film
EP0581251A3 (en) * 1992-07-31 1995-02-08 Taiyo Yuden Kk Ceramic materials with a high dielectric constant and capacitors made from them.
US6025619A (en) * 1992-10-23 2000-02-15 Azuma; Masamichi Thin films of ABO3 with excess A-site and B-site modifiers and method of fabricating integrated circuits with same
US5384294A (en) * 1993-11-30 1995-01-24 The United States Of America As Represented By The Secretary Of The Air Force Sol-gel derived lead oxide containing ceramics
US5456908A (en) 1994-03-01 1995-10-10 The University Of Kentucky Research Foundation Polyamine-polyamine and polyamine-protein transport inhibitor conjugates and their use as pharmaceuticals and in research relating to polyamine transport
US5453908A (en) 1994-09-30 1995-09-26 Texas Instruments Incorporated Barium strontium titanate (BST) thin films by holmium donor doping
US5563762A (en) 1994-11-28 1996-10-08 Northern Telecom Limited Capacitor for an integrated circuit and method of formation thereof, and a method of adding on-chip capacitors to an integrated circuit
US6066581A (en) * 1995-07-27 2000-05-23 Nortel Networks Corporation Sol-gel precursor and method for formation of ferroelectric materials for integrated circuits
US5853500A (en) 1997-07-18 1998-12-29 Symetrix Corporation Method for fabricating thin films of barium strontium titanate without exposure to oxygen at high temperatures
WO1999018587A2 (en) * 1997-10-08 1999-04-15 Koninklijke Philips Electronics N.V. Ceramic multilayer capacitor
US5962654A (en) * 1998-01-30 1999-10-05 International Business Machines Operation Alkoxyalkoxides and use to form films
US6631551B1 (en) * 1998-06-26 2003-10-14 Delphi Technologies, Inc. Method of forming integral passive electrical components on organic circuit board substrates
US6207522B1 (en) * 1998-11-23 2001-03-27 Microcoating Technologies Formation of thin film capacitors
US6623865B1 (en) 2000-03-04 2003-09-23 Energenius, Inc. Lead zirconate titanate dielectric thin film composites on metallic foils
US6649930B2 (en) * 2000-06-27 2003-11-18 Energenius, Inc. Thin film composite containing a nickel-coated copper substrate and energy storage device containing the same
US6541137B1 (en) * 2000-07-31 2003-04-01 Motorola, Inc. Multi-layer conductor-dielectric oxide structure
WO2002054420A1 (fr) * 2000-12-28 2002-07-11 Tdk Corporation Carte de circuit imprime laminee, procede de production d'une piece electronique et piece electronique laminee
US6477034B1 (en) 2001-10-03 2002-11-05 Intel Corporation Interposer substrate with low inductance capacitive paths
US6693793B2 (en) * 2001-10-15 2004-02-17 Mitsui Mining & Smelting Co., Ltd. Double-sided copper clad laminate for capacitor layer formation and its manufacturing method
US6936301B2 (en) * 2002-05-06 2005-08-30 North Carolina State University Methods of controlling oxygen partial pressure during annealing of a perovskite dielectric layer
US7029971B2 (en) * 2003-07-17 2006-04-18 E. I. Du Pont De Nemours And Company Thin film dielectrics for capacitors and methods of making thereof
US7290315B2 (en) * 2004-10-21 2007-11-06 Intel Corporation Method for making a passive device structure
KR100631894B1 (ko) * 2004-12-07 2006-10-09 삼성전기주식회사 유전체 세라믹용 졸 조성물, 이를 이용한 유전체 세라믹과적층세라믹 커패시터
US7795663B2 (en) 2005-06-21 2010-09-14 E. I. Du Pont De Nemours And Company Acceptor doped barium titanate based thin film capacitors on metal foils and methods of making thereof

Also Published As

Publication number Publication date
JP2008547227A (ja) 2008-12-25
EP1897103A1 (en) 2008-03-12
TW200715324A (en) 2007-04-16
US7601181B2 (en) 2009-10-13
US20060287188A1 (en) 2006-12-21
US20080044672A1 (en) 2008-02-21
KR20080018272A (ko) 2008-02-27
US20080047117A1 (en) 2008-02-28
WO2007002107A1 (en) 2007-01-04
KR100949254B1 (ko) 2010-03-25
US7572518B2 (en) 2009-08-11

Similar Documents

Publication Publication Date Title
CN101199033A (zh) 掺锰的钛酸钡薄膜组合物、电容器和它们的制造方法
KR100890144B1 (ko) 금속 호일 상의 억셉터 도핑된 티탄산바륨 기재의 박막축전기 및 그의 제조 방법
KR100668562B1 (ko) 커패시터용 박막 유전체 및 그의 제조 방법
KR19980702979A (ko) 혼합된 층형성 초격자 물질을 갖는 집적 회로 및 이들을 제조하는 방법에 사용하기 위한 전구체 용액
KR100938073B1 (ko) 커패시터용 동시소성 전극을 갖는 박막 유전체 및 그의제조 방법
KR100798257B1 (ko) 티탄이 지르코늄, 주석 또는 하프늄으로 부분적으로 치환된바륨 티타네이트 박막
US7981741B2 (en) High-capacitance density thin film dielectrics having columnar grains formed on base-metal foils
US20090238954A1 (en) Large area thin film capacitors on metal foils and methods of manufacturing same
US8875363B2 (en) Thin film capacitors on metal foils and methods of manufacturing same
JP2009540602A (ja) 化学溶液堆積誘電体薄膜のガラスフラックスを補助とした焼結
CN101872680A (zh) 电介质薄膜、薄膜电容器及其制作方法
CN101188161A (zh) 使用厚顶部电极在金属箔上制造薄膜电容器的方法
JP2001213624A (ja) 強誘電体薄膜用原料溶液および強誘電体薄膜の作製方法
JPH05298920A (ja) 高誘電体薄膜
JPH1192922A (ja) 誘電体膜形成用スパッタリングターゲット、その製造方法および強誘電体メモリの製造方法
Klee et al. Oxide films for integrated capacitors in thin film functional modules
JP2001006965A (ja) セラミックコンデンサ及びその製造方法
MASCOT et al. VERY HIGH TUNABILITY OF FERROELECTRIC THIN FILMS DEPOSITED BY SOL-GEL.
KR20090031567A (ko) 화학 용액 증착 박막 유전층을 유리 플럭스 존재하에 소결하는 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080611