CN101180509A - 将利用第一冷却循环冷却所获gnl流过冷的方法及相关设备 - Google Patents

将利用第一冷却循环冷却所获gnl流过冷的方法及相关设备 Download PDF

Info

Publication number
CN101180509A
CN101180509A CNA2006800176869A CN200680017686A CN101180509A CN 101180509 A CN101180509 A CN 101180509A CN A2006800176869 A CNA2006800176869 A CN A2006800176869A CN 200680017686 A CN200680017686 A CN 200680017686A CN 101180509 A CN101180509 A CN 101180509A
Authority
CN
China
Prior art keywords
heat exchanger
cryogenic fluid
fluid
cold
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800176869A
Other languages
English (en)
Other versions
CN101180509B (zh
Inventor
H·帕拉多夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip Energies France SAS
Original Assignee
Technip France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France SAS filed Critical Technip France SAS
Publication of CN101180509A publication Critical patent/CN101180509A/zh
Application granted granted Critical
Publication of CN101180509B publication Critical patent/CN101180509B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0092Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

在该方法中,在第一热交换器(19)中利用制冷流体(41)过冷液化天然气流(11)。该制冷流体(41)经受一封闭制冷循环(21)。封闭循环(21)包括在第二热交换器(23)中加热所述制冷流体(42)的阶段、和在压缩装置(25)中将制冷流体(43)压缩到一高于它的临界压力的高压的阶段。该方法另外包括在第二热交换器(23)中使来自压缩装置(25)的制冷流体(45)冷却的阶段、和使来自第二热交换器(23)的制冷流体的一部分(47)在透平(31)中动态膨胀的阶段。制冷流体(41)包含氮和甲烷的混合物。

Description

将利用第一冷却循环冷却所获GNL流过冷的方法及相关设备
技术领域
[01]本发明涉及将利用第一冷却循环冷却所获得的液化天然气(GNL)流过冷的方法,该方法包括以下步骤:
[02](a)将温度低于-90℃的液化天然气流引入第一热交换器中;
[03](b)在所述第一热交换器中通过与制冷流体进行热交换,过冷所述液化天然气流;
[04](c)使所述制冷流体经受独立于所述第一制冷循环的第二封闭制冷循环,所述第二封闭制冷循环包括以下相继的阶段:
[05](i)在第二热交换器中加热来自所述第一热交换器的保持在低压的制冷流体;
[06](ii)在压缩装置中将来自所述第二热交换器中的制冷流体压缩到高于其临界压力的高压;
[07](iii)在所述第二热交换器中冷却来自所述压缩装置的制冷流体;
[08](iv)在冷透平中使至少一部分的来自所述第二热交换器的制冷流体动态膨胀到一低压;
[09](v)将来自所述冷透平的制冷流体引入所述第一热交换器中。
背景技术
[10]从US-B-6 308 531中了解到一种上述类型的方法,在该方法中,借助利用一种烃类混合物的冷凝和汽化的第一冷却循环将天然气流液化。得到的气体温度大约为-100℃。然后借助称作“反向布雷顿循环(cycle deBrayton inversé)”的第二冷却循环,将产生的GNL过冷到大约-170℃,该第二冷却循环包括一级式压缩机(compresseur àétages)和一气体膨胀式透平。该第二循环中使用的制冷流体为氮。
[11]该方法不能完全令人满意。实际上,该所谓反向布雷顿循环的最大效率限制在大约40%。
发明内容
[12]因此本发明的目的是提出一种过冷液化天然气流的自主方法,该方法的效率得到提高,并且能很容易地在不同结构的设备中使用。
[13]为此,本发明的目的是上述类型的过冷方法,其特征在于,所述制冷流体由含氮的流体混合物形成。
[14]符合本发明的方法可以包括以下特征中的一个或多个,这些特征可以单独或以任何可能的技术组合的方式出现:
[15]-制冷流体包含氮和至少一种烃类;
[16]-制冷流体包含氮和甲烷;
[17]-在所述阶段(iii),使来自所述压缩装置的制冷流体与在所述第二热交换器中流动的二次制冷流体发生热交换,所述二次制冷流体经受第三冷却循环,在该第三冷却循环中,在所述第二热交换器的出口压缩所述二次制冷流体,使该二次制冷流体冷却并使该二次制冷流体至少部分地冷凝,然后在使所述二次制冷流体在所述第二热交换器中汽化之前膨胀;
[18]-所述二次制冷流体包含丙烷;
[19]-在所述阶段(iii)之后:
[20](iii1)将来自所述压缩装置的制冷流体分离成过冷流和二次冷却流;
[21](iii2)使所述二次冷却流在次级透平中膨胀;
[22](iii3)使来自所述次级透平的二次冷却流与来自所述第一热交换器的制冷流体流混合,以便形成制冷混合流;
[23](iii4)使来自所述阶段的过冷流在第三热交换器中与所述制冷混合流进行热交换;
[24](iii5)将来自所述第三热交换器的过冷流引入所述冷透平中;
[25]-所述次级透平与所述压缩装置的压缩机相联结;
[26]-在所述阶段(iv),在所述冷透平中使所述制冷流体保持基本呈气态;
[27]-在所述阶段(iv),在所述冷透平中使所述制冷流体按多于95%的质量液化;
[28]-来自所述第三热交换器的过冷流在其进入所述冷透平内之前,通过与在所述冷透平出口、于所述第一热交换器中流动的制冷流体进行热交换而冷却;
[29]-所述制冷流体包含C2烃;及
[30]-高压高于约70bar,且低压低于约30bar。
[31]本发明的目的还在于将来自包括第一冷却循环的液化设备的液化天然气流过冷的设施,该设施包括:
[32]-液化天然气流的过冷装置,其包括第一热交换器,所述第一热交换器用于使所述液化天然气流与制冷流体进行热交换;及
[33]-第二封闭冷却循环,其独立于所述第一冷却循环并包括:
[34]-第二热交换器,其包括使来自所述第一热交换器的制冷流体流动的装置;
[35]-压缩装置,其压缩来自所述第二热交换器的制冷流体,并能够将所述制冷流体带到一高于其临界压力的高压;
[36]-使来自所述压缩装置的制冷流体在所述第二热交换器中流动的装置;
[37]-冷透平,其使至少一部分的来自所述第二热交换器的制冷流体动态膨胀;及
[38]-将来自所述冷透平的制冷流体引入所述第一热交换器内的装置;
[39]其特征在于,所述制冷流体由含氮的流体混合物形成。
[40]符合本发明的设备可以包括以下特征中的一个或多个,这些特征可以单独或以任何可能的技术组合的方式出现:
[41]-制冷流体包括氮和至少一种烃类;
[42]-制冷流体含有氮和甲烷;
[43]-所述第二热交换器包括使二次制冷流体流动的装置,所述设施包括第三冷却循环,该第三冷却循环相继包括:次级压缩装置,其压缩来自所述第二热交换器的二次制冷流体;冷却装置和膨胀装置,它们使来自所述次级压缩装置的二次制冷流体冷却和膨胀;以及将来自所述膨胀装置的二次制冷流体引入所述第二热交换器内的装置;
[44]-所述二次制冷流体包含丙烷;
[45]-该设施包括:
[46]-分离装置,其使来自所述压缩装置的制冷流体分离,以便形成过冷流和二次冷却流;
[47]-次级透平,其使所述二次冷却流膨胀;
[48]-混合装置,其使来自所述次级透平的二次冷却流与来自所述第一热交换器的制冷流体流混合,以便形成混合流;
[49]-第三热交换器,其用以使来自所述分离装置的过冷流与所述混合流发生热交换;及
[50]-将来自所述第三热交换器的过冷流引入所述冷透平内的装置。
[51]-所述次级透平与所述压缩装置的一压缩机相联结;
[52]-该设备在所述冷透平的上游包括:将来自所述第三热交换器的过冷流引入所述第一热交换器中的装置,以便使该过冷流与在所述冷透平出口、于所述第一热交换器中流动的制冷流体进行热交换;
[53]-所述制冷流体包括C2烃。
附图说明
[54]现在参照附图描述本发明的实施例,附图如下:
[55]-图1是按照本发明的第一设备的运行概图;
[56]-图2是表示图1设备和现有技术设备的第二冷却循环的效率随压缩机出口处制冷流体压力变化的曲线图;
[57]-图3是按照本发明的第一设备的第一变型的与图1类似的图;
[58]-图4是对于图3设备类似于图2曲线的曲线图;
[59]-图5是按照本发明的第一设备的第二变型与图1类似的图;
[60]-图6是按照本发明的第二设施的与图1类似的图;
[61]-图7是按照本发明的第二设施与图2曲线类似的曲线图;
[62]-图8是按照本发明的第三设备与图3类似的示意图;及
[63]-图9是按照本发明的第三设备与图2曲线类似的曲线图。
具体实施方式
[64]图1所示的符合本发明的过冷(sous refroidissement)设施10用于利用温度低于-90℃的初始(départ)液化天然气(GNL)流11,生产温度低于-140℃的过冷液化天然气流12。
[65]如图1所示,初始液化天然气流11由包括第一冷却循环15的天然气液化设备13生产。第一冷却循环15例如包括烃类混合物的冷凝和汽化装置。
[66]设施10包括第一热交换器19和独立于第一冷却循环15的第二封闭制冷循环21。
[67]第二制冷循环21包括第二热交换器23、具有多个压缩级26的级式压缩装置25,每个压缩级26包括一压缩机27和一冷却器29。
[68]第二循环21另外包括与最后压缩级的压缩机27C相联结的膨胀透平31。
[69]在图1所示的例子中,级式压缩装置25包括三个压缩机27。第一和第二压缩机27A和27B被同一外部能源33带动,而第三压缩机27C被膨胀透平31带动。能源33例如是燃气透平类型的马达。
[70]冷却器29被水和/或空气冷却。
[71]下面用同一参考数字表示液流和运输液流的管道,所提到的压力是绝对压力,且所提到的百分率为摩尔百分率。
[72]来自液化设备13的初始液化天然气流11的温度低于-90℃,例如为-110℃。该液化天然气流例如大致包含5%的氮、90%的甲烷和5%的乙烷,且其流量为50 000kmol/h。
[73]-110℃的液化天然气流11进入第一热交换器19中,在该第一热交换器中,所述液化天然气流通过与在第一热交换器19中反向流动的初始制冷流体流41进行热交换,被过冷到低于-150℃的温度,以便产生过冷的液化天然气流12。
[74]初始制冷流体流41包含氮和甲烷的混合物。制冷流体41中甲烷的摩尔含量在5%到15%之间。制冷流体41可以来自氮和液化天然气流12除氮产生的甲烷的混合物,但是所述除氮在设施11的下游采用。在热交换器19的入口,制冷流体41的流量例如为73 336kmol/h,且其温度为-152℃。
[75]来自热交换器19的制冷流体流42经受独立于第一循环15的第二封闭冷却循环21。
[76]呈基本在10bar到30bar之间的低压的制冷流体流42进入第二热交换器23内,并且在该交换器23中被加热,以便形成被加热的制冷流体流43。
[77]制冷流体流43此时相继在三个压缩级26中被压缩,以便形成被压缩的制冷流体流45。在每一压缩级26中,制冷流体流43在压缩机27中被压缩,然后在冷却器29中冷却到35℃的温度。
[78]在第三冷却器29C的出口,被压缩的制冷流体流45具有高于它的临界压力或临界凝结压力的高压。其温度基本为35℃。
[79]高压优选大于70bar,并且在70bar到100bar之间。考虑到管路的机械强度极限,该压力优选尽可能高。
[80]然后被压缩的制冷流体流45进入第二热交换器23内,在该交换器中,所述被压缩的制冷流体流45通过与来自第一热交换器19的反向流动的制冷流体流42进行热交换而冷却。
[81]因此在第二热交换器23的出口,形成被冷却的压缩制冷流体流47。
[82]制冷流体流47在透平31中膨胀到一低压,以便形成初始制冷流体流41。制冷流体流41基本为气态,即它含有少于10%质量(或1%体积)的液体。
[83]此时制冷流体流41进入第一热交换器19内,在该热交换器中它通过与反向流动的液化天然气流11进行热交换而被加热。
[84]由于高压大于超临界压力,制冷流体因而在整个循环21上保持为气态或超临界状态。
[85]因此能够避免在透平31出口处的大量液相,这使得该方法的实施特别简单。热交换器19实际上未配设有液体和蒸汽分配装置。
[86]制冷流体流47在第二热交换器23出口的冷却冷凝限制在少于10%的质量,从而一简单的膨胀透平31用于使被压缩制冷流体流47膨胀。
[87]在图2中,根据高压数值示出本发明的方法和现有技术方法中的循环21各自的效率曲线50和51。在现有技术的方法中,制冷流体只由氮构成。在制冷流体中加入5%到15%摩尔之间的甲烷量,明显提高了所述循环21将-110℃的GNL过冷到-150℃的效率。
[88]考虑压缩机27A、27B的多变性效率(rendement polytropique)等于83%、压缩机27C的多变性效率等于80%,且透平31的绝热效率等于85%,而计算出图2所示的效率。另外,第一热交换器19中流动的流体之间的平均温差保持在大约4℃。第二热交换器23中流动的流体之间的平均温差也保持在大约4℃。
[89]该结果出人意外地在没有改变设施10的情况下得到,并且该结果对于70bar到85bar之间的高压,能够节约大约1000kW。
[90]在图3所示的按照本发明第一方法的第一变型中,设施10另外包括独立于循环15和21的第三封闭冷却循环59。
[91]第三循环59包括一被外部能源33带动的第二压缩机61、第一和第二次级冷却器63A、63B、以及膨胀阀65。
[92]借助液态丙烷形成的二次制冷流体流67实施该循环。制冷流体流67进入第二热交换器23内,与来自热交换器19的制冷流体流42平行,并与被压缩的制冷流体流45逆向。
[93]丙烷流67在第二热交换器23中的汽化通过热交换使制冷流体流45冷却,并产生被加热的丙烷流69。然后该丙烷流69在压缩机61中被压缩,然后在冷却器63A和63B中被冷却和冷凝,以便形成被压缩的液态丙烷流71。该液态丙烷流71在膨胀阀65中膨胀,以形成制冷丙烷流67。
[94]压缩机61所消耗的功率占能源33提供的总功率的大约5%。
[95]但是如图4所示,对于所述方法的第一变型,根据高压的效率曲线73表明:第二种方法中的循环21的效率在所考虑的高压范围内,相对第一种方法增加约5%。
[96]另外,对于80bar的高压,所消耗的总功率相对现有技术的方法减少超过12%。
[97]图5所示的第一设备的第二变型与第一变型的区别在于以下特征。
[98]第三循环59中使用的制冷流体包括至少30%摩尔的乙烷。在所示的例子中,该循环大约包括50%摩尔乙烷和50%摩尔丙烷。
[99]另外,在次级冷却器63B的出口得到的二次制冷流体流71以与膨胀后的制冷流体流67逆向的方式,进入到第二热交换器23内,在该热交换器中,所述二次制冷流体流71被过冷,然后在膨胀阀65中膨胀。
[100]如图4的效率曲线75所示,所述循环21的平均效率相对图3所示的第二变型增加约0.7%。
[101]作为示例,在高压等于80bar情况下的压力、温度及流量的数值列于下表中。
表1
    流体流     温度(℃)     压力(绝对压力,单位:bar)     流量(kmol/h)
    11     -110.0     50.0     50 000
    12     -150.0     49.0     50 000
    41     -152.5     19.3     73 336
    42     -112.2     19.1     73 336
    43     33.6     18.8     73 336
    45     35.0     80.0     73 336
    47     -94.0     79.5     73 336
    67     -46.0     3.5     2300
    69     20.0     3.2     2300
    71     35     31.9     2300
[102]图6所示的按照本发明的第二设施79与第一设施10的区别在于:该设备另外包括插置在第一热交换器19与第二热交换器23之间的第三热交换器81。
[103]压缩装置25另外包括插置在第二压缩级26B与第三压缩级26C之间的第四压缩级26D。
[104]第四压缩级26D的压缩机27D与次级膨胀透平83相联结。
[105]在该第二设施79中应用的按照本发明的第二种方法与第一种方法的区别在于:来自第二冷却器29B的制冷流体流84进入第四压缩机27D内,然后在第四冷却器29D中冷却,再进入第三压缩机27C内。
[106]另外,在第二热交换器23的出口得到的冷却压缩后的制冷流体流47分离成过冷流85和二次冷却流87。过冷流85与二次冷却流87的流量(débit)之比大于1。
[107]过冷流85进入第三热交换器81内,在其中冷却,以形成冷却的过冷流89。此时该过冷流89进入透平31中,在其中膨胀。膨胀后的过冷流90在透平31的出口呈气态。过冷流90进入第一热交换器19内,在其中通过热交换过冷所述液化天然气流11,并形成加热后的过冷流93。
[108]二次冷却流87被带到次级透平83,在其中膨胀,以便形成膨胀后的呈气态的二次冷却流91。二次冷却流91在位于第三热交换器81上游的一点,与来自第一热交换器19的变热的过冷流93混合。这样得到的混合物引入其冷却过冷流85的第三热交换器81内,以便形成制冷流体流42。
[109]作为变型,按照本发明的第二设施79具有含丙烷或以乙烷-丙烷为基础的第三制冷循环59,该第三制冷循环59冷却第二热交换器23。第三制冷循环59在结构上与图3和5分别表示的第三循环59相同。
[110]图7表示图6所示的设施未设有制冷循环时所述循环21随高压的效率曲线95,而曲线97和99表示使用分别含有丙烷或以丙烷和乙烷混合物为基础的第三制冷循环59时所述循环21随压力变化的效率曲线。如图7所示,循环21的效率相对只包括氮作为制冷流体的循环(曲线51)增大。
[111]图8所示的按照本发明的第三设施100与第二设施79的区别在于以下特征。
[112]压缩装置25不包括第三压缩级27C。另外,该设施包括可以使膨胀后的流体液化的动态膨胀透平99。该透平99与发电机99A相联结。
[113]该设施100中实施的按照本发明的第三方法与第二方法的区别在于过冷流85与二次冷却流87的流量之比,该比小于1。
[114]另外,在第三交换器81的出口,冷却的过冷流89进入第一热交换器19内,在其中重新被冷却,然后进入透平99中。来自透平99的膨胀后的过冷流101完全呈液态。
[115]然后,液态过冷流101在第一热交换器19中汽化,并且一方面与待过冷的液态天然气流11反向,而另一方面与第一热交换器19中流动的冷却过冷流89反向。
[116]二次冷却流91在次级透平83的出口为气态。
[117]在该设施中,在第一循环21中流动的制冷流体优选包含氮和甲烷的混合物,该混合物中氮的摩尔百分率小于50%。制冷流体有利地还包括含量低于10%的C2烃,如乙烯。如图9中所述循环21随压力变化的效率曲线103所示,该方法的效率又有提高。
[118]作为变型,图3和5描述的含丙烷或以乙烷-丙烷混合物为基础的第三制冷循环59用于冷却第二热交换器23。对这两个变型,循环21的随压力变化的效率曲线105和107示于图9中,且同样表现出循环21的效率在考虑的高压范围内增加。
[119]因此,符合本发明的方法可以具有灵活的、且容易在生产GNL的设施中实施的过冷方法,其中GNL或作为主要产品,例如在GNL生产设备中,或作为副产品,例如在天然气液体(LGN)提取设备中。
[120]为过冷GNL而在反向布雷顿循环中使用包括氮的制冷流体混合物,极大地提高了该循环的效率,这就降低了设施中GNL的生产成本。
[121]在绝热压缩之前使用次级冷却循环以便冷却制冷流体,会显著地提高设施效率。
[122]利用第一热交换器19中大于或等于4℃的平均温差来计算出所得到的效率值。但是,通过减小该平均温差,反向布雷顿循环的效率可以超过50%,这与以传统的方式使用烃类混合物的冷凝和汽化循环以液化并过冷GNL的效率相当。

Claims (24)

1.将利用第一制冷循环(15)冷却所获的液化天然气流(11)过冷的方法,该方法包括以下步骤:
(a)将温度低于-90℃的液化天然气流(11)引入第一热交换器(19)中;
(b)在所述第一热交换器(19)中通过与制冷流体(41)进行热交换,过冷所述液化天然气流(11);
(c)使所述制冷流体(41)经受独立于所述第一制冷循环(15)的第二封闭制冷循环(21),所述第二封闭制冷循环(21)包括以下相继的阶段:
(i)在第二热交换器(23)中加热来自所述第一热交换器(19)的保持在低压的制冷流体(42);
(ii)在压缩装置(25)中将来自所述第二热交换器(23)中的制冷流体(43)压缩到高于其临界压力的高压;
(iii)在所述第二热交换器(23)中冷却来自所述压缩装置(25)的制冷流体(45);
(iv)在冷透平(31;99)中使至少一部分的来自所述第二热交换器(23)的制冷流体(47;85)动态膨胀到一低压;
(v)将来自所述冷透平(31;99)的制冷流体(41;101)引入所述第一热交换器(19)中;
其特征在于,所述制冷流体(41)包括氮和甲烷的混合物。
2.如权利要求1所述的方法,其特征在于,所述制冷流体中甲烷的摩尔含量介于5%到15%之间。
3.如上述权利要求中任一项所述的方法,其特征在于,在所述阶段(iii),使来自所述压缩装置(25)的制冷流体(45)与在所述第二热交换器(23)中流动的二次制冷流体(67)发生热交换,所述二次制冷流体(67)经受第三冷却循环(59),在该第三冷却循环中,在所述第二热交换器(23)的出口压缩所述二次制冷流体(67),使该二次制冷流体冷却并使该二次制冷流体至少部分地冷凝,然后在使所述二次制冷流体在所述第二热交换器(23)中汽化之前膨胀。
4.如权利要求3所述的方法,其特征在于,所述二次制冷流体(67)包含丙烷。
5.如权利要求4所述的方法,其特征在于,所述二次制冷流体包含乙烷和丙烷的混合物、特别是具有约50%摩尔乙烷和50%摩尔丙烷的混合物。
6.如上述权利要求中任一项所述的方法,其特征在于,在所述阶段(iii)之后,
(iii1)将来自所述压缩装置(25)的制冷流体(47)分离成过冷流(85)和二次冷却流(87);
(iii2)使所述二次冷却流(87)在次级透平(83)中膨胀;
(iii3)使来自所述次级透平(83)的二次冷却流(91)与来自所述第一热交换器(19)的制冷流体流(93)混合,以便形成制冷混合流;
(iii4)使来自所述阶段(iii1)的过冷流(85)在第三热交换器(81)中与所述制冷混合流进行热交换;
(iii5)将来自所述第三热交换器(81)的过冷流(85)引入所述冷透平(31;99)中。
7.如权利要求6所述的方法,其特征在于,所述次级透平(83)与所述压缩装置(25)的压缩机(27D)相联结。
8.如上述权利要求中任一项所述的方法,其特征在于,在所述阶段(iv),在所述冷透平(31)中使所述制冷流体(47)保持基本呈气态。
9.如权利要求6或7所述的方法,其特征在于,在所述阶段(iv),在所述冷透平(99)中使所述制冷流体(101)按多于95%的质量液化。
10.如权利要求9所述的方法,其特征在于,来自所述第三热交换器(81)的过冷流(85)在其进入所述冷透平(99)内之前,通过与在所述冷透平(99)出口、于所述第一热交换器(19)中流动的制冷流体(101)进行热交换而冷却。
11.如权利要求9或10所述的方法,其特征在于,所述制冷流体包含C2烃。
12.如权利要求9至11中任一项所述的方法,其特征在于,所述制冷流体中氮的摩尔百分率小于50%。
13.如上述权利要求中任一项所述的方法,其特征在于,高压高于约70bar,且低压低于约30 bar。
14.将来自包括第一冷却循环(15)的液化设备(13)的液化天然气流(11)过冷的设施(10;79;100),所述设施(10;79;100)包括:
-液化天然气流(11)的过冷装置,其包括第一热交换器(19),所述第一热交换器用于使所述液化天然气流与制冷流体(41)进行热交换;及
-第二封闭冷却循环(21),其独立于所述第一冷却循环(15)并包括:
-第二热交换器(23),其包括使来自所述第一热交换器(19)的制冷流体(42)流动的装置;
-压缩装置(25),其压缩来自所述第二热交换器(23)的制冷流体,并能够将所述制冷流体带到一高于其临界压力的高压;
-使来自所述压缩装置(25)的制冷流体(45)在所述第二热交换器(23)中流动的装置;
-冷透平(31;99),其使至少一部分(47;85)的来自所述第二热交换器(23)的制冷流体动态膨胀;
-将来自所述冷透平(31;99)的制冷流体(41;101)引入所述第一热交换器(19)内的装置;及
其特征在于,所述制冷流体(41)包括氮和甲烷的混合物。
15.如权利要求14所述的设施(10;79;100),其特征在于,所述制冷流体中甲烷的摩尔含量介于5%到15%之间。
16.如权利要求14或15所述的设施(10;79;100),其特征在于,所述第二热交换器(23)包括使二次制冷流体(67)流动的装置,所述设施(10;79;100)包括第三冷却循环(59),该第三冷却循环相继包括:次级压缩装置(61),其压缩来自所述第二热交换器(23)的二次制冷流体(67);冷却装置(63)和膨胀装置(65),它们使来自所述次级压缩装置(61)的二次制冷流体冷却和膨胀;以及将来自所述膨胀装置(65)的二次制冷流体(67)引入所述第二热交换器(23)内的装置。
17.如权利要求16所述的设施(10;79;100),其特征在于,所述二次制冷流体(67)包含丙烷。
18.如权利要求17所述的设施(10;79;100),其特征在于,所述二次制冷流体包含乙烷和丙烷的混合物、特别是具有50%摩尔乙烷和50%丙烷的混合物。
19.如权利要求14至18中任一项所述的设施(10;79;100),其特征在于,该设施包括:
-分离装置,其使来自所述压缩装置(25)的制冷流体(47)分离,以便形成过冷流(85)和二次冷却流(87);
-次级透平(83),其使所述二次冷却流(87)膨胀;
-混合装置,其使来自所述次级透平(83)的二次冷却流(91)与来自所述第一热交换器(19)的制冷流体流(93)混合,以便形成混合流;
-第三热交换器(81),其用以使来自所述分离装置的过冷流(85)与所述混合流发生热交换;.及
-将来自所述第三热交换器(81)的过冷流(85)引入所述冷透平(31;99)内的装置。
20.如权利要求19所述的设施(10;79),其特征在于,所述次级透平(83)与所述压缩装置(25)的一压缩机(27D)相联结。
21.如权利要求19或20所述的设施,其特征在于,所述冷透平能够使所述制冷流体按多于95%的质量液化。
22.如权利要求21所述的设施,其特征在于,所述制冷流体中氮的摩尔百分率小于50%。
23.如权利要求19至22中任一项所述的设施(100),其特征在于,该设备在所述冷透平(99)的上游包括:将来自所述第三热交换器(81)的过冷流(89)引入所述第一热交换器(19)中的装置,以便使该过冷流与在所述冷透平(99)出口、于所述第一热交换器(19)中流动的制冷流体(101)进行热交换。
24.如权利要求23所述的设施(100),其特征在于,所述制冷流体包括C2烃。
CN2006800176869A 2005-04-11 2006-04-07 将利用第一冷却循环冷却所获gnl流过冷的方法及相关设备 Active CN101180509B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0503575 2005-04-11
FR0503575A FR2884303B1 (fr) 2005-04-11 2005-04-11 Procede de sous-refroidissement d'un courant de gnl par refroidissement au moyen d'un premier cycle de refrigeration et installation associee.
PCT/FR2006/000781 WO2006108952A1 (fr) 2005-04-11 2006-04-07 Procede de sous-refroidissement d'un courant de gnl obtenu par refroidissement au moyen d'un premier cycle de refrigeration, et installation associee

Publications (2)

Publication Number Publication Date
CN101180509A true CN101180509A (zh) 2008-05-14
CN101180509B CN101180509B (zh) 2010-05-19

Family

ID=35447755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800176869A Active CN101180509B (zh) 2005-04-11 2006-04-07 将利用第一冷却循环冷却所获gnl流过冷的方法及相关设备

Country Status (10)

Country Link
US (1) US7552598B2 (zh)
EP (1) EP1869384A1 (zh)
JP (1) JP2008536078A (zh)
KR (1) KR101278960B1 (zh)
CN (1) CN101180509B (zh)
CA (1) CA2604263C (zh)
FR (1) FR2884303B1 (zh)
MX (1) MX2007012622A (zh)
MY (1) MY144069A (zh)
WO (1) WO2006108952A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608859B (zh) * 2008-06-20 2011-08-17 杭州福斯达实业集团有限公司 高低压氮气双膨胀天然气液化方法
TWI452246B (zh) * 2011-11-14 2014-09-11 Ind Tech Res Inst 熱泵熱水系統
CN108369060A (zh) * 2015-12-14 2018-08-03 埃克森美孚上游研究公司 用液氮增强的基于膨胀器的lng生产方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273899B2 (en) 2006-10-11 2016-03-01 Shell Oil Company Method and apparatus for cooling a hydrocarbon stream
JP2010516994A (ja) * 2007-01-25 2010-05-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 炭化水素流の冷却方法及び装置
NO331153B1 (no) * 2007-02-26 2011-10-24 Kanfa Aragon As Fremgangsmåte og system for nedkjøling av gass.
NO329177B1 (no) * 2007-06-22 2010-09-06 Kanfa Aragon As Fremgangsmåte og system til dannelse av flytende LNG
KR100948740B1 (ko) * 2008-03-19 2010-03-22 현대중공업 주식회사 과 냉각과 잠열 교환을 이용한 고효율 해상 액화천연가스생산장치
FR2938903B1 (fr) * 2008-11-25 2013-02-08 Technip France Procede de production d'un courant de gaz naturel liquefie sous-refroidi a partir d'un courant de charge de gaz naturel et installation associee
KR101168270B1 (ko) * 2009-02-27 2012-07-30 삼성중공업 주식회사 부유식 액화천연가스생산 저장설비 테스트 시스템
CN102200370A (zh) * 2011-04-21 2011-09-28 北京工业大学 一种膨胀式可燃气体液化装置及流程
CN102206520B (zh) * 2011-04-21 2013-11-06 北京工业大学 一种天然气直接膨胀式液化方法及装置
CN102628635B (zh) * 2012-04-16 2014-10-15 上海交通大学 带凝华脱除co2的气体膨胀天然气带压液化工艺
KR101396921B1 (ko) * 2013-04-24 2014-05-19 상 욱 김 극저온 정온 제어식 냉각 장치
JP6276000B2 (ja) 2013-11-11 2018-02-07 株式会社前川製作所 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法
RU2563564C2 (ru) * 2013-12-30 2015-09-20 Акционерное общество "Сибирский химический комбинат"(АО"СХК") Способ охлаждения газовой смеси
US20160109177A1 (en) 2014-10-16 2016-04-21 General Electric Company System and method for natural gas liquefaction
CN104845692A (zh) * 2015-04-03 2015-08-19 浙江大学 一种油田伴生气全液化回收系统及其方法
JP6557329B2 (ja) * 2015-05-01 2019-08-07 株式会社前川製作所 冷凍機及び冷凍機の運転方法
FR3045798A1 (fr) * 2015-12-17 2017-06-23 Engie Procede hybride de liquefaction d'un gaz combustible et installation pour sa mise en œuvre
US20190162468A1 (en) * 2017-11-27 2019-05-30 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream
CN112796982A (zh) * 2021-03-24 2021-05-14 刘沿霏 一种天然气压缩设备
JP7038885B1 (ja) * 2021-10-12 2022-03-18 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 二酸化炭素ガスおよび/または液化二酸化炭素の冷却システム、冷却方法、およびその冷却システムを備える液化二酸化炭素貯蔵タンク、その液化二酸化炭素貯蔵タンクを備える船舶

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL113348C (zh) * 1959-10-23 1966-11-15
US3559418A (en) * 1968-08-07 1971-02-02 Mc Donnell Douglas Corp Liquefaction of natural gas containing nitrogen by rectification utilizing internal and external refrigeration
DE2110417A1 (de) * 1971-03-04 1972-09-21 Linde Ag Verfahren zum Verfluessigen und Unterkuehlen von Erdgas
DE2440215A1 (de) * 1974-08-22 1976-03-04 Linde Ag Verfahren zum verfluessigen und unterkuehlen eines tiefsiedenden gases
FR2471567B1 (fr) * 1979-12-12 1986-11-28 Technip Cie Procede et systeme de refrigeration d'un fluide a refroidir a basse temperature
US6082136A (en) * 1993-11-12 2000-07-04 Daido Hoxan Inc. Oxygen gas manufacturing equipment
US6308531B1 (en) * 1999-10-12 2001-10-30 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
JP3624124B2 (ja) * 1999-11-08 2005-03-02 大阪瓦斯株式会社 冷凍装置の冷凍能力調節方法
GB0006265D0 (en) * 2000-03-15 2000-05-03 Statoil Natural gas liquefaction process
FR2829569B1 (fr) * 2001-09-13 2006-06-23 Technip Cie Procede de liquefaction de gaz naturel, mettant en oeuvre deux cycles de refrigeration
US6742357B1 (en) * 2003-03-18 2004-06-01 Air Products And Chemicals, Inc. Integrated multiple-loop refrigeration process for gas liquefaction
US7127914B2 (en) * 2003-09-17 2006-10-31 Air Products And Chemicals, Inc. Hybrid gas liquefaction cycle with multiple expanders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101608859B (zh) * 2008-06-20 2011-08-17 杭州福斯达实业集团有限公司 高低压氮气双膨胀天然气液化方法
TWI452246B (zh) * 2011-11-14 2014-09-11 Ind Tech Res Inst 熱泵熱水系統
CN108369060A (zh) * 2015-12-14 2018-08-03 埃克森美孚上游研究公司 用液氮增强的基于膨胀器的lng生产方法
CN108369060B (zh) * 2015-12-14 2020-06-19 埃克森美孚上游研究公司 用液氮增强的基于膨胀器的lng生产方法

Also Published As

Publication number Publication date
KR20080012262A (ko) 2008-02-11
US20060225461A1 (en) 2006-10-12
CN101180509B (zh) 2010-05-19
CA2604263A1 (fr) 2006-10-19
WO2006108952A1 (fr) 2006-10-19
FR2884303A1 (fr) 2006-10-13
EP1869384A1 (fr) 2007-12-26
FR2884303B1 (fr) 2009-12-04
JP2008536078A (ja) 2008-09-04
US7552598B2 (en) 2009-06-30
KR101278960B1 (ko) 2013-07-02
MY144069A (en) 2011-08-15
CA2604263C (fr) 2014-06-03
MX2007012622A (es) 2008-01-11

Similar Documents

Publication Publication Date Title
CN101180509B (zh) 将利用第一冷却循环冷却所获gnl流过冷的方法及相关设备
CN101313188B (zh) 液化天然气流的处理方法和相关装置
CN102334001B (zh) 液化方法和系统
CN102405390B (zh) 从天然气原料流生产过冷液化天然气流的方法和相关的设备
AU2021201534B2 (en) Pre-cooling of natural gas by high pressure compression and expansion
CN101948706B (zh) 一种混合制冷剂与氮膨胀组合制冷式天然气液化方法
RU2141611C1 (ru) Способ сжижения
CN104520660B (zh) 用于天然气液化的系统和方法
CN1206505C (zh) 借助于膨胀冷却液化天然气的方法
WO2021043182A1 (zh) 一种利用lng冷能的空分装置和方法
US20140083132A1 (en) Process for liquefaction of natural gas
CN101893367A (zh) 一种利用混合制冷剂液化天然气的方法
MX2012004349A (es) Aparato y metodo de licuefaccion completa.
WO2015069138A2 (en) Natural gas liquefaction method and unit
JP2021526625A (ja) 高圧圧縮および膨張による天然ガスの前処理および前冷却
CN102575897B (zh) 液化富烃馏分的方法
JP2016128738A (ja) ガス液化装置及びガス液化方法
CN104019626B (zh) 一种混合冷剂二级制冷制备液化天然气的方法及装置
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
JP2023531232A (ja) 水素冷却のための設備及び方法
RU2062412C1 (ru) Установка снабжения природным газом
CN104412055A (zh) 控制温度以液化气体的方法及使用该方法的制备设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant