CN1206505C - 借助于膨胀冷却液化天然气的方法 - Google Patents

借助于膨胀冷却液化天然气的方法 Download PDF

Info

Publication number
CN1206505C
CN1206505C CNB008171874A CN00817187A CN1206505C CN 1206505 C CN1206505 C CN 1206505C CN B008171874 A CNB008171874 A CN B008171874A CN 00817187 A CN00817187 A CN 00817187A CN 1206505 C CN1206505 C CN 1206505C
Authority
CN
China
Prior art keywords
air
flow
forced air
liquefaction
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008171874A
Other languages
English (en)
Other versions
CN1409812A (zh
Inventor
摩西·明塔
罗纳德·R·鲍恩
约翰·B·斯通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Publication of CN1409812A publication Critical patent/CN1409812A/zh
Application granted granted Critical
Publication of CN1206505C publication Critical patent/CN1206505C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • F17C2265/017Purifying the fluid by separating different phases of a same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Abstract

本发明涉及液化一富含甲烷的加压气流的方法。在该方法的第一步中,一加压供气流,最好是压力高于11000kPa的供气流的第一部分(13)被抽出并绝热膨胀(70)到一较低的压力,以便冷却并至少部分液化该抽出的第一部分气流。该供气流的第二部分(12)借助于与该膨胀过的第一部分气流(15)的间接热交换(61)进行冷却。该第二部分气流(17)实质上膨胀(72)到一更低的压力,因此可以使该第二部分供气流(17)至少部分被液化。液化的第二部分供气流(37)从该过程中抽出,作为一温度高于-112℃压力等于或大于其气泡压力加压产品。

Description

借助于膨胀冷却液化天然气的方法
发明的技术领域
本发明涉及液化天然气和其他富甲烷气流的方法,更具体地说,涉及一种生产加压液体天然气(PLNG)的方法。
现有技术的描述
因其清洁燃烧的品质和方便性,近年来,天然气已经得到广泛的使用。许多天然气气源都处于遥远的地方,距天然气的商业使用市场具有非常长的距离。有时利用一管道将生产的天然气输送到商业应用市场。当利用输气管输送不可行时,为了便于输送到市场上,生产的天然气常常加工成液化天然气(称之为“LNG”)。
在一LNG站的设计中,最重要的考虑之一是将天然气供气流转化成LNG的方法。最常用的液化方法利用某些形式的制冷系统。
LNG制冷系统非常昂贵,原因在于需要制冷液化的天然气太多。一种典型的天然气流进入一LNG站时,压力大约为4830kPa(700psia)到大约7600kPa(1100psia),温度大约为20℃(68°F)到40℃(104°F)。天然气主要是甲烷,如用作能量使用目的那样,它不能只简单地借助于增加温度来进行液化。甲烷的临界温度是-82.5℃(-116.5°F)。这就意味着不管施加的压力是多少,甲烷都只能在该温度之下进行液化。由于天然气是一种气体混合物,因此它在一温度范围内进行液化。天然气的临界温度处于大约-85℃(-121°F)和-62℃(-80°F)之间。典型地,处于大气压下的各天然气组分将在大约-165℃(-265°F)和-155℃(-247°F)之间的温度范围液化。由于制冷设备占居该LNG设施成本的非常大的部分,因此人们作出的相当大的努力是为了降低制冷成本,并降低海面使用的液化过程的设备重量。这样作的动力是为了使液化设备的重量尽可能低,以便在结构方面降低液化站用的结构支撑要求。
尽管许多制冷循环已经被用来液化天然气,现今在LNG站最常用的三种循环是:(1),“级联的循环(cascade cycle)”,这种循环在热交换器中使用多种单一的分制冷剂(,以便将气体温度逐步降低到液化温度;2),“多级分制冷循环”,该循环在一特别设计的热交换器中使用多种分制冷剂;(3),“膨胀循环”,该循环使气体从高压膨胀到低压,同时温度相应地降低。绝大部分天然气制冷循环都使用这三种基本形式的变形或结合。
该级联的系统通常使用两级或多级制冷回路,其中从一级来的膨胀制冷剂用于冷凝下一级中的压缩制冷剂。每个连续的级都使用一种轻的易挥发的制冷剂,当膨胀时,该制冷剂提供一低水平的制冷,因此可冷却至低温。为了降低压缩机消耗的功率,每个制冷循环通常被分成几个压力级(通常为三级或四级)。各压力级具有将制冷工作分成几个温度级的作用。通常使用的制冷剂为丙烷,乙烷,乙烯和甲烷。由于丙烷可由空气冷却器和水冷却器在相当低的温度下进行冷凝,因此丙烷通常是第一级的制冷剂。乙烷或乙烯可用作第二级的制冷剂。冷凝从乙烷压缩机流出的乙烷需要一低温冷却剂。丙烷可提供这种低温冷却剂功能。相似的,如果甲烷用作最后一级的冷却剂,则乙烷用来冷凝从甲烷压缩机中流出的甲烷。因此,丙烷制冷系统用于冷却供给的气体,并冷却乙烷制冷剂,而乙烷又用来进一步冷却该供给气体,并冷凝甲烷制冷剂。
通常在利用丙烷进行预冷却到大约-35℃(-31°F)后,一混合制冷剂系统促成一多级分制冷流循环。一典型的多级分系统包括甲烷,乙烯,丙烷和任选的其他轻混合物。如果没有丙烷预冷,则诸如丁烷和戊烷之类的重混合物也包括在该多级分制冷剂中。该分制冷剂循环的特点是在该制冷流程中的热交换器必须例行处理两相制冷剂。这需要使用大的专用热交换器。各个分制冷剂在一温度范围内具有理想的特性,这允许热交换系统的设计可根据热力学进行,从而使这种设计比纯的混合物制冷剂系统更有效。
该膨胀系统根据这样的原理运行,即,气体可压缩到一选择的压力,进行冷却,通常是一外部制冷,然后,允许通过一膨胀涡轮进行膨胀,因此做功并降低该气体的温度。在这样的膨胀中可以液化一部分气体。然后,该低温气体进行热交换,从而影响该供给气体的液化。因膨胀获得的功率通常用来提供制冷循环中用的部分主压缩功率。用于制造LNG的典型膨胀循环以大约6895kPa(1000psia)的压力运行。借助于使受热气流的组分进行多级膨胀做功,冷却已经变得更有效了。
近来,人们已经建议以高于-112℃(-170°F)的温度和足以使液体保持在其始沸温度或低于该始沸温度的压力来输送天然气。对大部分天然气组分来说,温度高于-112℃的天然气的压力将处于大约1380kPa(200psia)和大约4480kPa(650psia)之间。这种加压液化天然气称之为PLNG,以便与LNG区分开,这种天然气以近似大气压和大约-162℃(-260°F)的温度运输。生产PLNGd方法公开在US5950453(由R.R.Bowen等提出),US5956971(由E.T.Cole等提出),US6023942(由E.R.Thomas等提出),和US6016665(由E.T.Cole等提出)等美国专利中。
由Thomas等人提出的US6023942公开了一种借助于使富含甲烷的供气流进行膨胀而生产PLNG的方法。该供气流的初始压力高于3100kPa(450psia)。该气体由合适的液化装置进行液化,从而生产一液化产品,该液化产品的温度高于大约-112℃(-170°F),压力足以使该液化产品处于始沸温度或低于始沸温度。膨胀之前,该气体可由没有液化并流过该膨胀装置的再循环蒸汽冷却。一个相分离器将PLNG产品和没有由该膨胀装置液化的气体分离开。尽管美国专利US6023942的方法可以有效地生产PLNG,但在工业上不断地要求用更有效的方法来生产PLNG。
发明内容
本发明的目的是提供一种改进的用于液化一富含甲烷的加压气流方法。
为实现本发明的目的,本发明提供了一种液化富含甲烷的加压气流的方法,其包括下列步骤:(a),抽出第一部分加压气流,并将该抽出的第一部分加压气流进行绝热膨胀到一较低的压力以便冷却并至少部分液化该抽出的第一部分加压气流;(b),利用与膨胀过的第一部分气流进行间接热交换而冷却抽出第一部分气流后留下的一个第二部分加压气流;(c),使第二部分加压气流膨胀到一较低的压力,从而至少部分液化该第二部分加压气流;及(d),从该过程中将该液化的第二部分流体作为一温度高于-112℃及压力等于或大于其气泡压力的加压产品去除。
为实现本发明的目的,本发明还提供了一种液化富含甲烷的加压气体的方法,其包括下列步骤:(a),抽出第一部分加压气流,并使该抽出的第一部分气流膨胀到一较低的压力以便冷却该抽出的第一部分气流;(b),利用与膨胀过的第一部分气流进行间接热交换而冷却一第二部分加压气流;(c),从该第二部分气流中抽出一第三部分气流,从而保留该加压气流的第四部分气流,使抽出的第三部分加压气流膨胀到一较低的压力,从而冷却并至少部分液化该第三部分加压气流;(d),借助于与该至少部分液化的第三部分气流的间接热交换使该第四部分加压气流在一第二热交换器中冷却;(e),在一第三热交换器中进一步冷却步骤(d)的第四部分气流;(f),使该第四部分气流膨胀到一较低的压力,从而至少部分液化该第四部分加压气流;(g),使步骤(f)的第四部分膨胀过的气流流到一相分离器中,该相分离器可以将膨胀步骤(f)产生的气体与该膨胀产生的液体分离开;(h),从该相分离器中去除气体,并使气体依次流过第三、第二和第一热交换器;(i),将第一热交换器中出来的气体压缩并冷却,并使被压缩和冷却过的气流返回到分成几部分前的加压流中以便进行再循环;(j),从该相分离器中将该液化的第四部分气流作为一温度高于-112℃压力等于或大于其气泡压力的加压产品去除。
为实现本发明的目的,本发明还提供了一种液化富含甲烷的加压气体的方法,其包括下列步骤:(a),从该加压气流中抽出一第一部分气流,并使该抽出的第一部分气流流过一第一热交换器,以便冷却该第一部分气流;(b),从该压力气流中抽出一第二部分气流,从而保留该加压气流的第三部分气流,使抽出的第二部分气流膨胀到一较低的压力,从而冷却该第二部分气流;(c),借助于与该冷却的第二部分气流的间接热交换使该第三部分加压气流在一第二热交换器中冷却;(d),从该冷却的第三部分气流中抽出一第四部分气流,从而保留该加压气流的第五部分气流,使抽出的第四部分气流膨胀到一较低的压力,从而冷却并至少部分液化该第四部分加压气流;(e),借助于与膨胀过的第四部分气流的间接热交换使该第五部分气流在一第三热交换器中冷却;(f),使冷却的第一部分气流和第五部分气流的压力膨胀到一较低的压力,从而至少部分液化该冷却的第一部分和第五部分气流,并使膨胀过的第一部分和第五部分气流流过一相分离器,该相分离器将该膨胀产生的气体与该膨胀产生的液体分离开;(g),从该相分离器中去除气体,并使气体流过第一热交换器以便提供对该抽出的第一部分气流的冷却;(h),从该相分离器中将液体作为一温度高于-112℃压力等于或大于其气泡压力的产品流去除。
为实现本发明的目的,本发明还提供了一种液化富含甲烷的加压气体的方法,其包括下列步骤:(a),从该加压气流中抽出一第一部分气流,并使该抽出的第一部分气流流过一第一热交换器,以便冷却该第一部分气流;(b),从该压力气流中抽出一第二部分气流,从而保留该加压气流的第三部分气流,使抽出的第二部分气流膨胀到一较低的压力,从而冷却该第二部分气流;(c),借助于与该冷却的第二部分气流的间接热交换使该第三部分加压气流在一第二热交换器中冷却;(d),从该冷却的第三部分气流中抽出一第四部分气流,从而保留该加压气流的第五部分流体,使抽出的第四部分气流膨胀到一较低的压力,从而冷却并至少部分液化该第四部分加压气流;(e),借助于与膨胀过的第四部分气流的间接热交换使该第五部分气流在一第三热交换器中冷却;(f),将冷却过的第一部分气流和第五部分气流结合起来形成一个结合流;(g),使该结合流的压力膨胀到一较低的压力,从而至少部分液化该结合流,并使膨胀过的结合流流过一相分离器,该相分离器将该膨胀产生的气体与该膨胀产生的液体分离开;(h),从该相分离器中去除气体,并使气体流过第一热交换器以便提供对该抽出的第一部分气流的冷却;(i),从该相分离器中将液体作为一温度高于-112℃且压力等于或大于其气泡压力的产品流去除。
附图的简要说明
本发明及其优点可参见下列详细说明和各附图得到更好的理解,附图中:
图1是一个根据本发明的方法生产PLNG的实施例的流程示意图;
图2是一个类似于图1所述方法生产PLNG的第二实施例的流程示意图,但其中的外部制冷使用对进入的气流进行预冷;
图3是一个根据本发明的方法生产PLNG的第三实施例的流程示意图,其中使用三个膨胀级和三个热交换器将气体冷却到PLNG的状态;
图4是一个根据本发明的方法生产PLNG的第四实施例的流程示意图,其中使用四个膨胀级和四个热交换器将气体冷却到PLNG的状态;
图5是一个根据本发明的方法生产PLNG的第五实施例的流程示意图;
图6是一个对图3所示类型的天然气液化站进行冷却并加热的曲线图,其中的天然气以较高的压力运行。
各附图表示实施本发明的方法的具体实施例。各附图并不是有意将其他实施例排除在本发明的范围之外,这些其他的实施例是各具体实施例的正常且希望的变型的结果。
发明的详细说明
本发明是一种利用压力膨胀来液化天然气从而生产一种富含甲烷的液体产品的改进方法,该液体产品的温度为大于大约-112℃(-170°F),压力足以使该液体产品处于其始沸温度或始沸温度之下。在该说明书中,这种富含甲烷的产品有时称之为加压液化天然气(PLNG)。在本发明的广义概念上讲,一种或多种组分的富含甲烷的高压气体进行膨胀,从而对该富含甲烷的气体的其他组分提供冷却。在本发明的液化过程中,对欲被液化的天然气加压到非常高的压力,最好大于11032kPa(1600psia)。本发明人已经发现:利用液化天然气来制造PLNG,在热力学上利用开式循环制冷是很有效的,在天然气因压力膨胀液化之前,以相当高的压力对天然气进行预冷。在本发明之前,现有技术还不能利用开式循环制冷作为最初的预冷过程来有效地制造PLNG。
本说明书中用的术语“始沸温度”意味着液体开始转化为气体的温度和压力。例如,如果一定体积的PLNG保持为恒压,但其温度增加,则PLNG中开始形成气体气泡的温度即为始沸温度。相似地,如果一定体积的PLNG保持为恒温,但压力降低,则开始形成气体的压力构成了该温度处的始沸温度压力。在该始沸温度处,液化气是饱和的液体。对大部分天然气组分来说,该天然气在温度为大于-112℃(-170°F)时的始沸温度压力将高于大约1380kPa(200psia)。本说明书中用的术语“天然气”意味着适合于制造PLNG的库存供给气体。该天然气包括从原油井(相关的气体)中获得气体和从一天然气井中(不相关的气体)获得的气体。天然气的个组分可明显变化。如本文所用的那样,一天然气流主要成分是甲烷(C1)。该天然气通常也含有一些乙烷(C2),更高的碳氢化合物(C3+),和少量的杂质,例如水、二氧化碳、硫化氢、氮、脏物、硫化铁、石蜡和原油。这些杂质的可溶性随温度,压力和组分而变化。如果天然气流含有在液化期间可结冰的重碳氢化合物,或者该重碳氢化合物在PLNG中因其组分或冷凝值是不希望的,则该重的碳氢化合物通常在天然气液化之前由诸如分馏的分离方法分离掉。在PLNG的工作压力和温度时,由于在PLNG时氮可以保持处于液体状态,因此天然气中含有适当量的氮是可以允许的。由于在给定压力处的PLNG的始沸温度温度随氮的含量的增加而降低,因此通常希望制造PLNG时具有相对较低的氮浓度。
参见图1,进入液化过程的加压天然气供汽流10通常需要由一级或多级压缩进一步加压,从而获得高于11032kPa(1600psia)的优化压力,和高于13800kPa的更优化压力。然而,应该懂得:如果供给的天然气具有高于12410kPa的压力,则这样的压缩级将不需要。每个压缩级之后,被压缩的蒸汽都被冷却,最好由一个或多个通常的空冷器或水冷却器进行冷却。为了便于图示说明本发明,图1只示出了一级压缩(压缩机50)及随后的一冷却器(冷却器90)。
气流12的主要部分通过热交换器61。被压缩的蒸汽流的次要部分被抽出作为气流13,并流过一膨胀装置70,从而降低气流13的压力和温度,因此产生为至少部分液化气的冷却流15。冷却流15流过热交换器61并从该热交换器排出作为气流24。在流过热交换器61时,冷却流15因间接热交换而冷却该加压气流12,因此从热交换器61出来的气流17实质上比气流12更冷。
每一级之后,随着冷却气流24都由一个或多个压缩级压缩。图1中,当气体由压缩机51压缩时,该被压缩的气流25借助于与加压的供给气流结合,最好是借助于与冷却器90上游的气流11结合进行再循环。
气流17通过膨胀装置72用于降低气流17的压力。从该膨胀装置72出来的流体流36最好流到一个或多个将液化天然气与没有被膨胀装置72液化的任何气体分离开的相分离器中。该相分离器的工作对本技术领域的普通技术人员来说是公知的。然后,该液化气作为温度高于-112℃(-170°F)压力等于或大于始沸温度压力的产品流37流到一合适的储存器或运输装置中(未示出),并且从一相分离器(气流38)来的气相物质可用作燃料或再循环到过程中液化。
图2是本发明的另一个实施例的示意图,该实施例类似于图1所述实施例,其中与图1相同的元件已经用相同的标号表示。图2所示方法与图1所述方法的原则区别在于图2的方法中(1):从分离器80顶部出来的蒸汽流38由压缩装置73进行一级或多级压缩,其压力接近蒸汽11的压力,并且压缩气流39与供给流11结合;和(2):气流12由间接热交换器冷却,与热交换器60中的闭式循环制冷剂相对。当气流12流过热交换器60时,它由连接到常规的闭式循环制冷系统91上的气流16冷却。一单一的、多分元的或级联的制冷系统91可以使用。一级联的制冷系统可包括至少两个闭路制冷循环。该闭路制冷循环例如可以使用诸如甲烷、乙烷、丙烷、丁烷、戊烷、二氧化碳、硫化氢和氮之类的制冷剂,但这并不作为对本发明的限制。最好,该闭式制冷系统91使用丙烷作为主要制冷剂。一浓缩的蒸汽流40可有选择地引入该液化过程中,用来再液化从PLNG中产生的浓缩蒸汽。图2还表示一燃料流44,该燃料流44可选择地从蒸汽流38中抽出。
图3表示根据本发明的方法用于生产PLNG的第三实施例的流程示意图,该实施例使用三个膨胀级和三个热交换器来将气体冷却至PLNG状态。在该实施例中,一供给气流110由一个或多个压缩级压缩,在每一压缩级后具有一个或多个后冷却器。为了简化,图3表示一压缩机150和一后冷却器190。在制冷流134由膨胀装置172膨胀并流入一常规相分离器180中之前,该高压气流112的主要部分依次流过三个热交换器161、162和163。这三个热交换器161、162和163每一个都由开式制冷循环冷却,没有一个的冷却受闭式循环制冷影响。气流112的少部分被抽出作为气流113(留下气流114进入热交换器161)。气流113流过一常规膨胀装置170,从而产生膨胀流115,然后,该膨胀流流过热交换器161,从而为冷却流114提供制冷负荷。气流115从该热交换器161流出作为气流124,然后流过一级或多级压缩,图3所示的两个压缩级,压缩机151和152带有常规的后冷却器192和196。
将从热交换器161出来的一部分气流117抽出作为气流118(留下气流119进入热交换器162),并且气流118由一膨胀装置171膨胀。从该膨胀装置171出来的膨胀气流121流过热交换器162、161和一级或多级压缩。两压缩级如图3所示,使用带有在常规冷却器193和196中进行后冷的压缩机153和154。
在图3所示实施例中,从相分离器180出来的过热蒸汽流138也用来对热交换器163、162和161提供冷却。
在天然气的储存、运输和处理过程中,具有相当量的从液化天然气蒸发来的蒸汽,该蒸汽通常称之为“浓缩”蒸汽。本发明的方法可有选择地使富含甲烷的浓缩蒸汽再液化。参见图3,浓缩蒸汽流140最好在穿过热交换器163之前与蒸汽流138结合。取决于该浓缩蒸汽的压力,该浓缩蒸汽需要由一个或多个压缩机或膨胀器(未示出)进行压力调节,以便与浓缩蒸汽进入液化过程的地方的压力配合。
蒸汽流141是气流138和140的结合,该气流流过热交换器163,以便为气流120提供冷却。热蒸汽流(气流142)从热交换器163流过热交换器162,此时蒸汽被进一步加热,然后作为气流143流过热交换器161。从热交换器161中出来后,一部分气流128从该液化过程中抽出,作为燃料(气流144)。剩余部分气流128流过压缩机155、156和157,这些压缩机每一级后具有由冷却器194、195和196进行的后冷却。尽管冷却器196为一个与冷却器190分离的分离冷却器,但借助于将气流133导流到冷却器190上游的气流11处,可取消冷却器196。
图4表示本发明的另一个实施例的示意图,其中与图3相同的元件具有相同的标号。在图4所示实施例中,使用膨胀装置170、171和173的三个膨胀循环,和四个热交换器161、162、163和164在天然气供气流由膨胀装置172液化之前对该天然气进行预冷。图4所示实施例除了增加的膨胀循环外,具有与图3相似的过程。参见图4,将一部分气流120抽出作为气流116,并且由膨胀装置173使压力膨胀至一低压气流123。然后,气流123相继流过热交换器164,162和161。从热交换器161出来的气流129由压缩机158、159和后冷却器197及196压缩并冷却。
图5表示根据本发明的方法用于生产PLNG的一第四实施例的示意图,该实施例使用三个膨胀级和三个热交换器,但它们与图3所示的结构不同。参见图5,一气流210流过带有常规后冷却器290和291这种形式的后冷的压缩机250和251。从后冷却器291出来的气流214的主要部分流过热交换器260。将气流214的第一次要部分抽出作为气流242,并流过热交换器262。将气流214的第二次要部分抽出作为气流212,并流过一常规膨胀装置270。从膨胀装置270出来的膨胀气流220流过热交换器260,从而为流过热交换器260的气流214的主要部分提供部分冷却。排出热交换器260之后,热气流226由带有由后冷却器292和293进行的常规后冷的压缩机252和253进行压缩。将从热交换器260排出的气流部分223抽出作为气流224,并流过膨胀装置271。排出膨胀装置271的膨胀气流225流过热交换器261和260,从而提供为热交换器260和261提供另外的冷却负荷。从热交换器260排出后,热气流227由带有由后冷却器295和296进行的常规后冷却的压缩机254和255进行压缩。当气流226和227被压缩到大约为气流214的压力并进行合适的后冷却后,气流226和227借助于与气流214结合而再循环。尽管图5表示气流226和227的最后一级后冷却是在后冷却器293和296中进行的,但该技术领域的普通技术人员应该认识到:如果气流226和227引到加压蒸汽流中,则后冷却器293和296可以由一个或多个后冷却器291取代。
当从热交换器261中排出后,气流230流过膨胀装置272,并且将膨胀的气流作为气流231引入一常规的相分离器280中。当温度高于-112℃和压力足以使液体处于或低于始沸温度始沸温度时,PLNG作为气流255从该相分离器280的较低端去除。如果膨胀装置272不能液化所有气流230,则蒸汽将作为气流238从该相分离器280的顶部去除。
借助于将浓缩蒸汽流239流过热交换器262之前引入蒸汽流238中,可有选择地将浓缩蒸汽流引入该液化系统中。该浓缩蒸汽流239的压力可以为或近似为要被引入的蒸汽流238的压力。
蒸汽流238流过热交换器262,以便为流过热交换器262的气流242提供冷却。从热交换器262出来的受热气流240在与气流214结合进行再循环之前,由带有由常规的后冷却器295和297进行的后冷的压缩机256和257进行压缩。
本发明的液化过程的效率涉及该绝热膨胀的高压气体的复合冷却流的焓/温度加热曲线如何才能接近被液化的气体的冷却曲线。这两曲线之间的“配合”将决定该膨胀气流为该液化过程提供制冷负荷的好坏程度。然而,使用这种配合存在一些实际的考虑。例如,希望在冷却和加热气流之间的热交换器中避免形成温度“收缩”(温差太小)。这种收缩需要禁止性的大量的传热面积来获得理想的热传递。此外,由于热交换器中的能量损耗取决于进行热交换的液体的温差,因此应该避免非常大的温差。大的能量损耗又与热交换的不可逆或低效相关,这将浪费近似等熵膨胀气体的制冷势能。
膨胀装置(图1和2中的膨胀装置70;图3中的膨胀装置170和171;及图4中的膨胀装置170和171;和图5中的膨胀装置270和271)被控制得尽可能使该冷却曲线和加温曲线进行实质性的配合。借助于实施本发明,该膨胀气体的加热和冷却曲线与该天然气的良好配合可以在热交换器中获得,所以用相当小的温差就可完成热交换,因此实现能量守恒的运行。例如参见图3,膨胀装置170和171的输出压力被控制得在气流121和115中产生这样的压力,即,可以确保热交换器161和162用的平行冷却/加热曲线形成实质性的配合。本发明者已经发现:本发明用于生产PLNG的高热力学效率来源于对液化加压气体的预冷,该加压气体的压力相当高,并且膨胀气体的排气压力比过去用的膨胀流体的压力明显高。在本发明中,用来对部分加压气体进行预冷的膨胀装置(例如,图3中的膨胀装置170和171)的排气压力将超过1380kPa(200psia),并且更好的是,将超过2400kPa(350psia)。参见图3所示的方法,从热力学上讲,本发明的方法比常规的天然气液化技术更有效,该常规的技术的压力处于6895kPa(1000psia)下,原因是本发明提供:(1),各冷却曲线的更好配合,这可以借助于独立调节膨胀气流115和112的压力来保证密切的配合,热交换器161和162中各流体用的平行冷却曲线;(2),因各热交换器中所有流体的估算压力的原因,可以改善热交换器161和162中各流体之间的热传递,及(3),因天然气供气流114压力和膨胀气流(再循环流124,126和128)压力之间的压力比较低而使压缩过程的功率降低,并且降低膨胀气流的流量。
在设计按本发明的方法工作的液化站时,各个分离的膨胀级将取决于技术和经济上的各种考虑,例如考虑进气供给压力、产品压力、设备成本、可获得的冷却介质及其温度。增加膨胀级数可以改善热力学性能,但会增加设备的成本。本技术领域的普通技术人员可根据该说明书的教导进行这样的优化。
本发明并不限于任何类型的热交换器,但由于经济上的原因,最好使用处于一冷却箱中的翅板式和螺旋缠绕式热交换器,它们全都利用间接热交换进行冷却。在本说明书和权利要求书中用的术语“间接热交换”意味着使两种流体流在没有任何物理接触或彼此不相互混合的情况下保持热交换关系。最好输送到各热交换器中的、既包含液相又包含气相的流体,其液相和气相在它们进入的通道的横截面区域范围内均匀分布。为了实现这一点,本技术领域的普通技术人员可以提供各种分布设备以便用于单一的气相流和液相流。当需要将流动分开成气相流和液相流时,各分离器(各附图中没有示出)可以添加到图1和2所示的多相流15中。相似地,各分离器(也没有示出)可以添加到图3的多相流121和图4中的多相流225中。
在图1-5中,膨胀装置72、172和272可以是任何减压装置或适于控制流动和/或降低线路中的压力的装置,例如是涡轮膨胀器形式的装置,是一种Joule-Thomson阀,或两者的结合,例如Joule-Thomson阀和涡轮膨胀器并列设置,这样就提供了单独使用或同时使用Joule-Thomson阀和涡轮膨胀器的能力。
除Joule-Thomson阀外,图1-5所示的膨胀装置70、170、171、173、270和271优选是涡轮膨胀器形式的,以便改善综合热效率。本发明中用的各膨胀器可以利用连轴装置连接到合适的压缩机、泵或发动机上,使从各膨胀器中得出的功转换为合适的机械和/电能,因此使整个系统节约相当多的能量。
实例
在图3所示的实施例中示出了一种仿真的质量和能量平衡,其结果示出在下表中。这些数据是利用一种可从市场上获得的所谓的HYSYSTM(可从加拿大Calgary的Hyprotech有限公司获得)过程模拟程序得到的;然而也可以使用其他的可从市场上获得的过程模拟程序,例如包括对本技术领域的普通技术人员很熟悉的HYSYSTM、PROIITM、和ASPEN PLUSTM程序来开发数据。提供表中列出的数据是为了更好地理解图3所述实施例,但并不能解析为是对本发明的限制。根据其中的各种教导,温度、压力、成分和流量都具有许多变化。该实例假定天然气供气流10具有下列按摩尔百分数计的成分:C1:94.3%;C2:3.9%;C3:0.3% C4:1.1% C5:0.4%。
图6是一个图3所示类型的热天气液化站用的冷却和加热曲线的曲线图。曲线300代表一条由热交换器161中的膨胀气流115,122和143构成的复合气流的加热曲线,曲线301代表一条天然气(气流114)流过这些热交换器161中时的冷却曲线。曲线300和301是相对平行的,这些曲线之间的温差是大约2.8℃(5°F)。
一个本技术领域的普通技术人员,特别是获得该专利的这些教导的技术人员,将认识到从上述公开的具体实施例中可得出许多修改和变型。例如,根据本发明,取决于该系统的综合设计和供气的成分,可以采用不同的温度和压力。此外,为了获得优化和有效的热交换条件,根据综合设计要求,可增补或重新构造供气冷却链。另外,借助于添加与图中所述装置可互换的装置来完成一些过程步骤。如上所述,公开的具体实施例和实例并不是为了限定或限制本发明的范围,本发明的范围由下述各权利要求和其等效物确定。
                                            表
    气流            温度            压力           流量
    #     ℃     °F     kPa     psia     Kgmol/hr     mmscfd
    110     26.7     80     5516     800     36360     730
    112     18.3     65     20684     3000     36360     730
    113     18.3     65     20684     3000     45973     923
    114     18.3     65     20684     3000     69832     1402
    115     -40.0     -40     7033     1020     45973     923
    117     -37.2     -35     20643     2994     69832     1402
    118     -37.2     -35     20643     2994     21866     439
    119     -37.2     -35     20643     2994     47966     963
    120     -56.7     -70     20615     2990     47966     963
    121     -59.4     -75     8584     1245     21866     439
    122     -40.0     -40     8570     1243     21866     439
    124     15.5     60     7019     1018     45973     923
    126     15.6     60     8556     1241     21866     439
    128     15.6     60     2820     409     13149     264
    133     18.3     65     20684     3000     79495     1596
    134     -63.9     -83     20608     2989     47966     963
    135     -95.0     -139     2861     415     47966     963
    137     -95.0     -139     2861     415     37805     759
    138     -95.0     -139     2861     415     10161     204
    140     -90.0     -130     2861     415     2989     60
    141     -93.9     -137     2861     415     13149     264
    142     -59.4     -75     2848     413     13149     264
    143     -40.0     -40     2834     411     13149     264
    144     15.6     80     2820     409     1494     30

Claims (24)

1.一种液化富含甲烷的加压气流的方法,其包括下列步骤:
(a),抽出第一部分加压气流,并将该抽出的第一部分加压气流进行绝热膨胀到一较低的压力以便冷却并至少部分液化该抽出的第一部分加压气流;
(b),利用与膨胀过的第一部分气流进行间接热交换而冷却抽出第一部分气流后留下的一个第二部分加压气流;
(c),使第二部分加压气流膨胀到一较低的压力,从而至少部分液化该第二部分加压气流;及
(d),从该过程中将该液化的第二部分流体作为一温度高于-112℃及压力等于或大于其气泡压力的加压产品去除。
2.如权利要求1所述的液化富含甲烷的加压气流的方法,其特征在于:所述的富含甲烷的加压气流的压力高于11032kPa。
3.如权利要求1所述的液化富含甲烷的加压气流的方法,其特征在于:该第二部分加压气流相对于第一部分加压气流的冷却是在一个或多个热交换器中进行的。
4.如权利要求1所述的液化富含甲烷的加压气流的方法,其特征在于:步骤(a)之前还包括另外的步骤,即,抽出一部分加压气流并将该抽出的加压气流绝热膨胀到一较低的压力,以便冷却该抽出的部分,并借助于与该膨胀过的部分的间接热交换来冷却该加压气流的剩余部分。
5.如权利要求4所述的液化富含甲烷的加压气流的方法,其特征在于:在所述的步骤(a)之前抽出并绝热膨胀一部分加压气流的步骤是在两个分离并相继的级,也就是第一级和第二级中反复进行的。
6.如权利要求5所述的液化富含甲烷的加压气流的方法,其特征在于:第二部分加压气流的间接冷却是在一个第一热交换器中进行一个在第一级中的间接冷却,和在一个第二热交换器中进行在第二级中的间接冷却。
7.如权利要求1所述的液化富含甲烷的加压气流的方法,其特征在于还包括:膨胀过的第一部分加压气流对第二部分加压气流进行冷却后的另外的步骤,该另外步骤压缩并冷却该膨胀过的第一部分加压气流,此后,借助于使该第一部分加压气流在步骤(b)之前的一位置处与分成两部分前的加压气流结合而进行再循环。
8.如权利要求1所述的液化富含甲烷的加压气流的方法,其特征在于还包括使步骤(c)的膨胀过的第二部分气流流过一相分离器从而形成一汽相和一液相的步骤,所述液相是步骤(d)的产品流。
9.如权利要求1所述的液化富含甲烷的加压气流的方法,其特征在于:所述膨胀过的第一部分气流的压力超过1380kPa。
10.如权利要求1所述的液化富含甲烷的加压气流的方法,其特征在于还包括:控制该膨胀过的第一部分气流的压力从而在该膨胀过的第一部分气流利用间接热交换冷却该第二部分气流时,使该膨胀过的第一部分气流的加热曲线与该第二部分气流的冷却曲线相一致的步骤。
11.如权利要求1所述的液化富含甲烷的加压气流的方法,其特征在于:该加压气体的所有冷却和液化实质上都是由该加压气体的至少两个膨胀作功过程进行的。
12.如权利要求1所述的液化富含甲烷的加压气流的方法,其特征在于还包括在步骤(a)之前的另外步骤,这一步骤是相对一闭式循环制冷系统的制冷剂对分成两部分前的加压气流进行预冷。
13.如权利要求12所述的液化富含甲烷的加压气流的方法,其特征在于:制冷剂是丙烷。
14.一种液化富含甲烷的加压气体的方法,其包括下列步骤:
(a),抽出第一部分加压气流,并使该抽出的第一部分气流膨胀到一较低的压力以便冷却该抽出的第一部分气流;
(b),利用与膨胀过的第一部分气流进行间接热交换而冷却一第二部分加压气流;
(c),从该第二部分气流中抽出一第三部分气流,从而保留该加压气流的第四部分气流,使抽出的第三部分加压气流膨胀到一较低的压力,从而冷却并至少部分液化该第三部分加压气流;
(d),借助于与该至少部分液化的第三部分气流的间接热交换使该第四部分加压气流在一第二热交换器中冷却;
(e),在一第三热交换器中进一步冷却步骤(d)的第四部分气流;
(f),使该第四部分气流膨胀到一较低的压力,从而至少部分液化该第四部分加压气流;
(g),使步骤(f)的第四部分膨胀过的气流流到一相分离器中,该相分离器可以将膨胀步骤(f)产生的气体与该膨胀产生的液体分离开;
(h),从该相分离器中去除气体,并使气体依次流过第三、第二和第一热交换器;
(i),将第一热交换器中出来的气体压缩并冷却,并使被压缩和冷却过的气体返回到分成几部分前的加压流中以便进行再循环;
(j),从该相分离器中将该液化的第四部分气流作为一温度高于-112℃压力等于或大于其气泡压力的加压产品去除。
15.如权利要求14所述的液化富含甲烷的加压气流的方法,其特征在于:该方法还包括下列步骤:在气流流过第三热交换器之前将浓缩气流引入从该相分离器中去除的气流中。
16.如权利要求14所述的液化富含甲烷的加压气流的方法,其特征在于还包括另外的步骤:即,在膨胀过的第一部分气流冷却第二部分气流之后,压缩并冷却该膨胀过的第一部分气流,此后借助于使该压缩的第一部分气流在该方法中的步骤(b)之前的一位置处与分成几部分前的加压气流结合而进行再循环。
17.如权利要求14所述的液化富含甲烷的加压气流的方法,其特征在于:该方法还包括下列步骤:即,在第三部分气流流过第二热交换器之后,使该第三部分气流流过第一热交换器,此后压缩并冷却该第三部分气流,并将该压缩过和冷却过的第三部分气流引入到分成几部分前的加压气流中以便进行再循环。
18.如权利要求14所述的液化富含甲烷的加压气流的方法,其特征在于:该加压气流的压力高于11032kPa。
19.一种液化富含甲烷的加压气体的方法,其包括下列步骤:
(a),从该加压气流中抽出一第一部分气流,并使该抽出的第一部分气流流过一第一热交换器,以便冷却该第一部分气流;
(b),从该压力气流中抽出一第二部分气流,从而保留该加压气流的第三部分气流,使抽出的第二部分气流膨胀到一较低的压力,从而冷却该第二部分气流;
(c),借助于与该冷却的第二部分气流的间接热交换使该第三部分加压气流在一第二热交换器中冷却;
(d),从该冷却的第三部分气流中抽出一第四部分气流,从而保留该加压气流的第五部分气流,使抽出的第四部分气流膨胀到一较低的压力,从而冷却并至少部分液化该第四部分加压气流;
(e),借助于与膨胀过的第四部分气流的间接热交换使该第五部分气流在一第三热交换器中冷却;
(f),使冷却的第一部分气流和第五部分气流的压力膨胀到一较低的压力,从而至少部分液化该冷却的第一部分和第五部分气流,并使膨胀过的第一部分和第五部分气流流过一相分离器,该相分离器将该膨胀产生的气体与该膨胀产生的液体分离开;
(g),从该相分离器中去除气体,并使气体流过第一热交换器以便提供对该抽出的第一部分气流的冷却;
(h),从该相分离器中将液体作为一温度高于-112℃压力等于或大于其气泡压力的产品流去除。
20.一种液化富含甲烷的加压气体的方法,其包括下列步骤:
(a),从该加压气流中抽出一第一部分气流,并使该抽出的第一部分气流流过一第一热交换器,以便冷却该第一部分气流;
(b),从该压力气流中抽出一第二部分气流,从而保留该加压气流的第三部分气流,使抽出的第二部分气流膨胀到一较低的压力,从而冷却该第二部分气流;
(c),借助于与该冷却的第二部分气流的间接热交换使该第三部分加压气流在一第二热交换器中冷却;
(d),从该冷却的第三部分气流中抽出一第四部分气流,从而保留该加压气流的第五部分气流,使抽出的第四部分气流膨胀到一较低的压力,从而冷却并至少部分液化该第四部分加压气流;
(e),借助于与膨胀过的第四部分气流的间接热交换使该第五部分气流在一第三热交换器中冷却;
(f),将冷却过的第一部分气流和第五部分气流结合起来形成一个结合流;
(g),使该结合流的压力膨胀到一较低的压力,从而至少部分液化该结合流,并使膨胀过的结合流流过一相分离器,该相分离器将该膨胀产生的气体与该膨胀产生的液体分离开;
(h),从该相分离器中去除气体,并使气体流过第一热交换器以便提供对该抽出的第一部分气流的冷却;
(i),从该相分离器中将液体作为一温度高于-112℃且压力等于或大于其气泡压力的产品流去除。
21.如权利要求20所述的液化富含甲烷的加压气流的方法,其特征在于还包括下列步骤:膨胀的第二部分气流在该第二热交换器中冷却第三部分气流后,压缩并冷却该第二部分气流,然后,将该第二部分气流引入分成几部分前的加压气流中,以便进行再循环。
22.如权利要求20所述的液化富含甲烷的加压气流的方法,其特征在于还包括下列步骤:当膨胀的第四部分气流在第三热交换器中冷却第五部分气流后,使该第四部分加压气流流过该第二热交换器,然后压缩并冷却该第四部分加压气流,再后,将该第四部分加压气流引入分成几部分前的加压气流中,以便进行再循环。
23.如权利要求20所述的液化富含甲烷的加压气流的方法,其特征在于还包括下列步骤:在该气流流过该第一热交换器之前,将浓缩的气体引入从相分离器中抽出的该气流中。
24.如权利要求20所述的液化富含甲烷的加压气流的方法,其特征在于:所述的富含甲烷的加压气流的压力高于13790kPa。
CNB008171874A 1999-12-17 2000-12-12 借助于膨胀冷却液化天然气的方法 Expired - Fee Related CN1206505C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17254899P 1999-12-17 1999-12-17
US60/172,548 1999-12-17

Publications (2)

Publication Number Publication Date
CN1409812A CN1409812A (zh) 2003-04-09
CN1206505C true CN1206505C (zh) 2005-06-15

Family

ID=22628176

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008171874A Expired - Fee Related CN1206505C (zh) 1999-12-17 2000-12-12 借助于膨胀冷却液化天然气的方法

Country Status (22)

Country Link
US (1) US6378330B1 (zh)
EP (1) EP1248935A4 (zh)
JP (1) JP2003517561A (zh)
KR (1) KR20020066331A (zh)
CN (1) CN1206505C (zh)
AR (1) AR026989A1 (zh)
AU (1) AU777060B2 (zh)
BR (1) BR0016439A (zh)
CA (1) CA2394193C (zh)
CO (1) CO5200813A1 (zh)
DZ (1) DZ3303A1 (zh)
EG (1) EG22687A (zh)
MX (1) MXPA02005895A (zh)
MY (1) MY122625A (zh)
NO (1) NO20022846L (zh)
OA (1) OA12115A (zh)
PE (1) PE20010905A1 (zh)
RU (1) RU2253809C2 (zh)
TN (1) TNSN00243A1 (zh)
TR (1) TR200201576T2 (zh)
TW (1) TW498151B (zh)
WO (1) WO2001044735A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582792A (zh) * 2011-06-15 2014-02-12 盖斯康萨特有限公司 用于天然气液化的方法
CN106471102A (zh) * 2014-01-28 2017-03-01 德雷瑟-兰德公司 用于生产液化天然气的系统和方法

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412302B1 (en) * 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
US7591150B2 (en) * 2001-05-04 2009-09-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US6581409B2 (en) * 2001-05-04 2003-06-24 Bechtel Bwxt Idaho, Llc Apparatus for the liquefaction of natural gas and methods related to same
US20070107465A1 (en) * 2001-05-04 2007-05-17 Battelle Energy Alliance, Llc Apparatus for the liquefaction of gas and methods relating to same
US7219512B1 (en) 2001-05-04 2007-05-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US7594414B2 (en) * 2001-05-04 2009-09-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US20070137246A1 (en) * 2001-05-04 2007-06-21 Battelle Energy Alliance, Llc Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium
US6564578B1 (en) 2002-01-18 2003-05-20 Bp Corporation North America Inc. Self-refrigerated LNG process
US6691531B1 (en) * 2002-10-07 2004-02-17 Conocophillips Company Driver and compressor system for natural gas liquefaction
US6591632B1 (en) * 2002-11-19 2003-07-15 Praxair Technology, Inc. Cryogenic liquefier/chiller
NO20026189D0 (no) * 2002-12-23 2002-12-23 Inst Energiteknik System for kondensering ved ekspansjon av ubehandlet brönnström fra et gass- eller gasskondensatfelt til havs
JP2004358592A (ja) * 2003-06-03 2004-12-24 Suncreo Corp 手動工具
US7237391B1 (en) 2003-07-10 2007-07-03 Atp Oil & Gas Corporation Method for processing and transporting compressed natural gas
US7240499B1 (en) 2003-07-10 2007-07-10 Atp Oil & Gas Corporation Method for transporting compressed natural gas to prevent explosions
US7240498B1 (en) 2003-07-10 2007-07-10 Atp Oil & Gas Corporation Method to provide inventory for expedited loading, transporting, and unloading of compressed natural gas
US7155918B1 (en) 2003-07-10 2007-01-02 Atp Oil & Gas Corporation System for processing and transporting compressed natural gas
MXPA06014854A (es) * 2004-06-18 2008-03-11 Exxonmobil Upstream Res Co Planta de gas natural licuado de capacidad escalable.
EP1861478B1 (en) * 2005-03-16 2012-02-22 Fuelcor LLC Systems and methods for production of synthetic hydrocarbon compounds
US7673476B2 (en) * 2005-03-28 2010-03-09 Cambridge Cryogenics Technologies Compact, modular method and apparatus for liquefying natural gas
RU2406949C2 (ru) * 2005-08-09 2010-12-20 Эксонмобил Апстрим Рисерч Компани Способ ожижения природного газа для получения сжиженного природного газа
CN101228405B (zh) * 2005-08-09 2010-12-08 埃克森美孚上游研究公司 生产lng的天然气液化方法
CN100392052C (zh) * 2005-09-27 2008-06-04 华南理工大学 一种用于燃气调峰和轻烃回收的天然气液化方法
CA2536075C (en) * 2006-01-31 2011-03-22 Expansion Power Inc. Method of conditioning natural gas in preparation for storage
US8578734B2 (en) * 2006-05-15 2013-11-12 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
US20080016910A1 (en) * 2006-07-21 2008-01-24 Adam Adrian Brostow Integrated NGL recovery in the production of liquefied natural gas
US20080128029A1 (en) * 2006-12-05 2008-06-05 Walter T. Gorman Llc Method, system and computer product for ensuring backup generator fuel availability
CA2572932C (en) * 2006-12-14 2015-01-20 Jose Lourenco Method to pre-heat natural gas at gas pressure reduction stations
US8616021B2 (en) * 2007-05-03 2013-12-31 Exxonmobil Upstream Research Company Natural gas liquefaction process
FR2915791B1 (fr) * 2007-05-04 2009-08-21 Air Liquide Procede et appareil de separation d'un melange d'hydrogene, de methane et de monoxyde de carbonne par distillation cryogenique
WO2009010558A2 (en) * 2007-07-19 2009-01-22 Shell Internationale Research Maatschappij B.V. Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream
JP5725856B2 (ja) * 2007-08-24 2015-05-27 エクソンモービル アップストリーム リサーチ カンパニー 天然ガス液化プロセス
US9254448B2 (en) 2007-09-13 2016-02-09 Battelle Energy Alliance, Llc Sublimation systems and associated methods
US9574713B2 (en) 2007-09-13 2017-02-21 Battelle Energy Alliance, Llc Vaporization chambers and associated methods
US9217603B2 (en) 2007-09-13 2015-12-22 Battelle Energy Alliance, Llc Heat exchanger and related methods
US8899074B2 (en) 2009-10-22 2014-12-02 Battelle Energy Alliance, Llc Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
US8061413B2 (en) 2007-09-13 2011-11-22 Battelle Energy Alliance, Llc Heat exchangers comprising at least one porous member positioned within a casing
US8555672B2 (en) * 2009-10-22 2013-10-15 Battelle Energy Alliance, Llc Complete liquefaction methods and apparatus
FR2921470B1 (fr) * 2007-09-24 2015-12-11 Inst Francais Du Petrole Procede de liquefaction d'un gaz naturel sec.
US8020406B2 (en) 2007-11-05 2011-09-20 David Vandor Method and system for the small-scale production of liquified natural gas (LNG) from low-pressure gas
JP5683277B2 (ja) 2008-02-14 2015-03-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap 炭化水素流の冷却方法及び装置
GB2462125B (en) * 2008-07-25 2012-04-04 Dps Bristol Holdings Ltd Production of liquefied natural gas
WO2010051617A1 (en) * 2008-11-10 2010-05-14 Jose Lourenco Method to increase gas mass flow injection rates to gas storage caverns using lng
CN101539364B (zh) * 2009-04-17 2012-07-18 惠生工程(中国)有限公司 一种轻烃顺序分离流程的裂解气压缩系统改进方法
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US20120168137A1 (en) * 2011-01-03 2012-07-05 Osvaldo Del Campo Compressed natural gas (cng) sub-cooling system for cng-filling stations
US20130160487A1 (en) * 2011-12-20 2013-06-27 Conocophillips Company Liquefying natural gas in a motion environment
CA2772479C (en) 2012-03-21 2020-01-07 Mackenzie Millar Temperature controlled method to liquefy gas and a production plant using the method.
CN102660341B (zh) * 2012-04-27 2014-05-07 新地能源工程技术有限公司 利用天然气压力能部分液化天然气的工艺和装置
CA2790961C (en) 2012-05-11 2019-09-03 Jose Lourenco A method to recover lpg and condensates from refineries fuel gas streams.
US10655911B2 (en) 2012-06-20 2020-05-19 Battelle Energy Alliance, Llc Natural gas liquefaction employing independent refrigerant path
CA2787746C (en) 2012-08-27 2019-08-13 Mackenzie Millar Method of producing and distributing liquid natural gas
CA2798057C (en) 2012-12-04 2019-11-26 Mackenzie Millar A method to produce lng at gas pressure letdown stations in natural gas transmission pipeline systems
CN103017480B (zh) * 2012-12-07 2015-05-06 中国科学院理化技术研究所 一种利用管道压力能生产lng的液化系统
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
MY190894A (en) 2013-03-15 2022-05-18 Chart Energy & Chemicals Inc Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
CA2813260C (en) 2013-04-15 2021-07-06 Mackenzie Millar A method to produce lng
US20150033792A1 (en) * 2013-07-31 2015-02-05 General Electric Company System and integrated process for liquid natural gas production
DE102013018341A1 (de) * 2013-10-31 2015-04-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Regelung des Drucks in einem Flüssigerdgasbehälter
CA2958091C (en) 2014-08-15 2021-05-18 1304338 Alberta Ltd. A method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations
EP3438049B1 (en) * 2014-09-09 2021-11-03 8 Rivers Capital, LLC Method of production of low pressure liquid carbon dioxide from a power production system
NO20141176A1 (no) 2014-09-30 2016-03-31 Global Lng Services As Fremgangsmåte og anlegg for fremstilling av LNG
JP6415329B2 (ja) * 2015-01-09 2018-10-31 三菱重工エンジニアリング株式会社 ガス液化装置及びガス液化方法
KR101714672B1 (ko) * 2015-06-03 2017-03-09 대우조선해양 주식회사 저장탱크를 포함하는 선박
KR101714673B1 (ko) * 2015-06-04 2017-03-09 대우조선해양 주식회사 저장탱크를 포함하는 선박
KR101714675B1 (ko) * 2015-06-09 2017-03-09 대우조선해양 주식회사 저장탱크를 포함하는 선박
KR101714677B1 (ko) * 2015-06-18 2017-03-09 대우조선해양 주식회사 저장탱크를 포함하는 선박
US10072889B2 (en) 2015-06-24 2018-09-11 General Electric Company Liquefaction system using a turboexpander
AR105277A1 (es) 2015-07-08 2017-09-20 Chart Energy & Chemicals Inc Sistema y método de refrigeración mixta
GB2541464A (en) * 2015-08-21 2017-02-22 Frederick Skinner Geoffrey Process for producing Liquefied natural gas
WO2017045055A1 (en) 2015-09-16 2017-03-23 1304342 Alberta Ltd. A method of preparing natural gas at a gas pressure reduction stations to produce liquid natural gas (lng)
CN108369060B (zh) * 2015-12-14 2020-06-19 埃克森美孚上游研究公司 用液氮增强的基于膨胀器的lng生产方法
CN105674686B (zh) * 2016-01-15 2018-09-14 成都赛普瑞兴科技有限公司 一种膨胀制冷富甲烷气液化的方法及装置
GB201601878D0 (en) 2016-02-02 2016-03-16 Highview Entpr Ltd Improvements in power recovery
WO2017162566A1 (en) * 2016-03-21 2017-09-28 Shell Internationale Research Maatschappij B.V. Method and system for liquefying a natural gas feed stream
CN109070977B (zh) * 2016-03-31 2021-03-30 大宇造船海洋株式会社 船只以及汽化气体再液化方法
DE102016004606A1 (de) * 2016-04-14 2017-10-19 Linde Aktiengesellschaft Verfahrenstechnische Anlage und Verfahren zur Flüssiggasherstellung
US20190257579A9 (en) * 2016-05-27 2019-08-22 Jl Energy Transportation Inc. Integrated multi-functional pipeline system for delivery of chilled mixtures of natural gas and chilled mixtures of natural gas and ngls
US10753676B2 (en) 2017-09-28 2020-08-25 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process
US10852059B2 (en) * 2017-09-28 2020-12-01 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling system
EP3688391A1 (en) * 2017-09-29 2020-08-05 ExxonMobil Upstream Research Company Natural gas liquefaction by a high pressure expansion process
JP6366870B1 (ja) * 2018-01-17 2018-08-01 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ボイルオフガス再液化装置およびそれを備えるlng供給システム
KR102025787B1 (ko) * 2018-04-17 2019-09-26 한국조선해양 주식회사 가스 처리 시스템 및 이를 포함하는 해양 부유물
RU2749628C1 (ru) * 2020-04-24 2021-06-16 Общество с ограниченной ответственностью "АЭРОГАЗ" (ООО "АЭРОГАЗ") Способ и установка выделения из природного газа целевых фракций
FR3116326B1 (fr) * 2020-11-17 2023-01-27 Technip France Procédé de production de gaz naturel liquéfié à partir de gaz naturel, et installation correspondante

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1574119A (en) 1924-02-21 1926-02-23 Seligmann Arthur Method for the liquefaction and separation of gases with the aid of external work
US2903858A (en) 1955-10-06 1959-09-15 Constock Liquid Methane Corp Process of liquefying gases
US3162519A (en) 1958-06-30 1964-12-22 Conch Int Methane Ltd Liquefaction of natural gas
US3298805A (en) 1962-07-25 1967-01-17 Vehoc Corp Natural gas for transport
DE1626325B1 (de) 1964-11-03 1969-10-23 Linde Ag Verfahren und Einrichtung zum Verfluessigen von tiefsiedenden Gasen
US3358460A (en) 1965-10-08 1967-12-19 Air Reduction Nitrogen liquefaction with plural work expansion of feed as refrigerant
US3349571A (en) 1966-01-14 1967-10-31 Chemical Construction Corp Removal of carbon dioxide from synthesis gas using spearated products to cool external refrigeration cycle
GB1096697A (en) 1966-09-27 1967-12-29 Int Research & Dev Co Ltd Process for liquefying natural gas
US3433026A (en) 1966-11-07 1969-03-18 Judson S Swearingen Staged isenthalpic-isentropic expansion of gas from a pressurized liquefied state to a terminal storage state
US3477509A (en) 1968-03-15 1969-11-11 Exxon Research Engineering Co Underground storage for lng
JPS5440512B1 (zh) * 1968-11-04 1979-12-04
US3677019A (en) 1969-08-01 1972-07-18 Union Carbide Corp Gas liquefaction process and apparatus
US3735600A (en) 1970-05-11 1973-05-29 Gulf Research Development Co Apparatus and process for liquefaction of natural gases
US3724226A (en) 1971-04-20 1973-04-03 Gulf Research Development Co Lng expander cycle process employing integrated cryogenic purification
US4147525A (en) 1976-06-08 1979-04-03 Bradley Robert A Process for liquefaction of natural gas
US4157904A (en) 1976-08-09 1979-06-12 The Ortloff Corporation Hydrocarbon gas processing
DE2852078A1 (de) 1978-12-01 1980-06-12 Linde Ag Verfahren und vorrichtung zum abkuehlen von erdgas
GB2052717B (en) 1979-06-26 1983-08-10 British Gas Corp Storage and transport of liquefiable gases
GB2106623B (en) * 1981-06-19 1984-11-07 British Gas Corp Liquifaction and storage of gas
US4456459A (en) 1983-01-07 1984-06-26 Mobil Oil Corporation Arrangement and method for the production of liquid natural gas
GB8321073D0 (en) * 1983-08-04 1983-09-07 Boc Group Plc Refrigeration method
JPS6060463A (ja) 1983-09-14 1985-04-08 株式会社日立製作所 液化ガス発生装置
US4548629A (en) 1983-10-11 1985-10-22 Exxon Production Research Co. Process for the liquefaction of natural gas
US4541852A (en) 1984-02-13 1985-09-17 Air Products And Chemicals, Inc. Deep flash LNG cycle
US4563201A (en) 1984-07-16 1986-01-07 Mobil Oil Corporation Method and apparatus for the production of liquid gas products
GB8418840D0 (en) 1984-07-24 1984-08-30 Boc Group Plc Gas refrigeration
US4698081A (en) 1986-04-01 1987-10-06 Mcdermott International, Inc. Process for separating hydrocarbon gas constituents utilizing a fractionator
US4687499A (en) 1986-04-01 1987-08-18 Mcdermott International Inc. Process for separating hydrocarbon gas constituents
US4778497A (en) 1987-06-02 1988-10-18 Union Carbide Corporation Process to produce liquid cryogen
US4727723A (en) 1987-06-24 1988-03-01 The M. W. Kellogg Company Method for sub-cooling a normally gaseous hydrocarbon mixture
US4894076A (en) 1989-01-17 1990-01-16 Air Products And Chemicals, Inc. Recycle liquefier process
US5036671A (en) 1990-02-06 1991-08-06 Liquid Air Engineering Company Method of liquefying natural gas
GB9103622D0 (en) 1991-02-21 1991-04-10 Ugland Eng Unprocessed petroleum gas transport
US5271231A (en) 1992-08-10 1993-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for gas liquefaction with plural work expansion of feed as refrigerant and air separation cycle embodying the same
JPH06159928A (ja) 1992-11-20 1994-06-07 Chiyoda Corp 天然ガス液化方法
FR2714722B1 (fr) 1993-12-30 1997-11-21 Inst Francais Du Petrole Procédé et appareil de liquéfaction d'un gaz naturel.
AUPM485694A0 (en) 1994-04-05 1994-04-28 Bhp Petroleum Pty. Ltd. Liquefaction process
US5473900A (en) 1994-04-29 1995-12-12 Phillips Petroleum Company Method and apparatus for liquefaction of natural gas
US5615561A (en) 1994-11-08 1997-04-01 Williams Field Services Company LNG production in cryogenic natural gas processing plants
NO180469B1 (no) 1994-12-08 1997-05-12 Statoil Petroleum As Fremgangsmåte og system for fremstilling av flytendegjort naturgass til havs
MY117899A (en) 1995-06-23 2004-08-30 Shell Int Research Method of liquefying and treating a natural gas.
MY113626A (en) 1995-10-05 2002-04-30 Bhp Petroleum Pty Ltd Liquefaction apparatus
US5600969A (en) 1995-12-18 1997-02-11 Phillips Petroleum Company Process and apparatus to produce a small scale LNG stream from an existing NGL expander plant demethanizer
DE19609489A1 (de) 1996-03-11 1997-09-18 Linde Ag Verfahren und Vorrichtung zur Verflüssigung eines tiefsiedenden Gases
US5669234A (en) 1996-07-16 1997-09-23 Phillips Petroleum Company Efficiency improvement of open-cycle cascaded refrigeration process
US5755114A (en) 1997-01-06 1998-05-26 Abb Randall Corporation Use of a turboexpander cycle in liquefied natural gas process
US5836173A (en) 1997-05-01 1998-11-17 Praxair Technology, Inc. System for producing cryogenic liquid
DZ2533A1 (fr) 1997-06-20 2003-03-08 Exxon Production Research Co Procédé perfectionné de réfrigération à constituants pour la liquéfaction de gaz naturel.
TW396253B (en) 1997-06-20 2000-07-01 Exxon Production Research Co Improved system for processing, storing, and transporting liquefied natural gas
TW366411B (en) * 1997-06-20 1999-08-11 Exxon Production Research Co Improved process for liquefaction of natural gas
DZ2534A1 (fr) 1997-06-20 2003-02-08 Exxon Production Research Co Procédé perfectionné de réfrigération en cascade pour la liquéfaction du gaz naturel.
TW359736B (en) 1997-06-20 1999-06-01 Exxon Production Research Co Systems for vehicular, land-based distribution of liquefied natural gas
FR2764972B1 (fr) 1997-06-24 1999-07-16 Inst Francais Du Petrole Procede de liquefaction d'un gaz naturel a deux etages interconnectes
TW366409B (en) 1997-07-01 1999-08-11 Exxon Production Research Co Process for liquefying a natural gas stream containing at least one freezable component
US5799505A (en) 1997-07-28 1998-09-01 Praxair Technology, Inc. System for producing cryogenic liquefied industrial gas
JP2002508498A (ja) * 1997-12-16 2002-03-19 ロッキード・マーティン・アイダホ・テクノロジーズ・カンパニー 純度の異なるガスの冷却、液化及び分離装置及びその方法
TW432192B (en) 1998-03-27 2001-05-01 Exxon Production Research Co Producing power from pressurized liquefied natural gas
US6269656B1 (en) * 1998-09-18 2001-08-07 Richard P. Johnston Method and apparatus for producing liquified natural gas
MY115506A (en) * 1998-10-23 2003-06-30 Exxon Production Research Co Refrigeration process for liquefaction of natural gas.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582792A (zh) * 2011-06-15 2014-02-12 盖斯康萨特有限公司 用于天然气液化的方法
CN103582792B (zh) * 2011-06-15 2016-06-22 盖斯康萨特有限公司 用于天然气液化的方法
CN106471102A (zh) * 2014-01-28 2017-03-01 德雷瑟-兰德公司 用于生产液化天然气的系统和方法

Also Published As

Publication number Publication date
CA2394193A1 (en) 2001-06-21
NO20022846L (no) 2002-08-12
TW498151B (en) 2002-08-11
AU2092801A (en) 2001-06-25
MY122625A (en) 2006-04-29
EP1248935A1 (en) 2002-10-16
CA2394193C (en) 2008-09-16
CO5200813A1 (es) 2002-09-27
TNSN00243A1 (fr) 2002-05-30
OA12115A (en) 2006-05-04
CN1409812A (zh) 2003-04-09
DZ3303A1 (fr) 2001-06-21
BR0016439A (pt) 2002-10-01
AU777060B2 (en) 2004-09-30
WO2001044735A1 (en) 2001-06-21
KR20020066331A (ko) 2002-08-14
US6378330B1 (en) 2002-04-30
TR200201576T2 (tr) 2002-12-23
RU2253809C2 (ru) 2005-06-10
JP2003517561A (ja) 2003-05-27
NO20022846D0 (no) 2002-06-14
PE20010905A1 (es) 2001-08-30
AR026989A1 (es) 2003-03-05
MXPA02005895A (es) 2002-10-23
EG22687A (en) 2003-06-30
EP1248935A4 (en) 2004-12-01
RU2002118819A (ru) 2004-02-10

Similar Documents

Publication Publication Date Title
CN1206505C (zh) 借助于膨胀冷却液化天然气的方法
CN1262808C (zh) 改进的闭合回路单混合制冷剂工艺
US5473900A (en) Method and apparatus for liquefaction of natural gas
US5139547A (en) Production of liquid nitrogen using liquefied natural gas as sole refrigerant
US6751985B2 (en) Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
US5600969A (en) Process and apparatus to produce a small scale LNG stream from an existing NGL expander plant demethanizer
JP4980051B2 (ja) ガス液化用一体型多重ループ冷却方法
RU2395765C2 (ru) Установка и способ для сжижения природного газа
US11774173B2 (en) Arctic cascade method for natural gas liquefaction in a high-pressure cycle with pre-cooling by ethane and sub-cooling by nitrogen, and a plant for its implementation
US6898949B2 (en) Method for refrigerating liquefied gas and installation therefor
US3347055A (en) Method for recuperating refrigeration
CN1145000C (zh) 用于多组分原料流的蒸馏方法
WO2007021351A1 (en) Natural gas liquefaction process for lng
CN1615421A (zh) 自冷却的lng工艺
JPH05149678A (ja) 極低温空気分離で生成される窒素流れの液化法
CN101228405B (zh) 生产lng的天然气液化方法
CN112179048B (zh) 一种贫氦天然气轻烃回收与提氦的联产系统和方法
CN101351680A (zh) 低温空气分离法
US7096688B2 (en) Liquefaction method comprising at least a coolant mixture using both ethane and ethylene
EP0990108B1 (en) Two staged refrigeration cycle using a multiconstituant refrigerant
CA2273003C (en) Process and apparatus to produce lng
MXPA99006305A (en) Use of a turboexpander cycle in liquefied natural gas process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee