US3477509A - Underground storage for lng - Google Patents

Underground storage for lng Download PDF

Info

Publication number
US3477509A
US3477509A US713538A US3477509DA US3477509A US 3477509 A US3477509 A US 3477509A US 713538 A US713538 A US 713538A US 3477509D A US3477509D A US 3477509DA US 3477509 A US3477509 A US 3477509A
Authority
US
United States
Prior art keywords
lng
gas
water
storage
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US713538A
Inventor
Harry S Arendt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Application granted granted Critical
Publication of US3477509A publication Critical patent/US3477509A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/005Underground or underwater containers or vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G5/00Storing fluids in natural or artificial cavities or chambers in the earth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/044Methods for emptying or filling by purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0128Storage in depth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0155Type of cavity by using natural cavities

Definitions

  • Liquefied gas such as liquefied natural gas (LNG), ethane, ethylene, etc. is injected into the gas bubble whereupon freezing of the surrounding water in the aquifier occurs.
  • LNG liquefied natural gas
  • the non-vaporized portion can be withdrawn in liquid form and vaporized in the usual revaporization facilities.
  • This invention relates to improvements in methods of storing and vaporizing liquefied gas in general and in particular to an improved low cost method of storing and partially vaporizing LNG delivered at 2S9 F. and atmospheric pressure or under pressure at more moderate temperatures.
  • the cost of providing LNG storage can be drastically reduced.
  • the initial step is the selection of an underground sane reservoir at a suitable depth and having adequate porosity, permeability and thickness. While a sand reservoir is preferred, a suitable limestone or other aquifier layer can be used.
  • gas such as natural gas, air, flue gas, etc.
  • the displacement of the mobile portion of the formation water is done before LNG is injected to prevent the extreme cold of the LNG from causing an almost immediate freeze-up and immobilization of the formation water with consequent loss of injectivity.
  • Many aquifiers i.e. water bearing soil strata, are sufiiciently permeable and extensive so that the displaced water can be forced out into the surrounding aquifier.
  • the displaced water may be produced through wells located around the approximate periphery of the planned storage area. The use of producing wells to produce the displaced water will add somewhat to the cost but permits better control of the configuration of the storage bubble as well as minimizing pressure build-up in the aquifier to permit use of less extensive or less permeable formations.
  • LNG injection is initiated as soon as a sufficiently large gas slug has been injected so that the gas slug moving ahead of the LNG displaces the formation down to about connate water and insures separation of the mobile water phase and the LNG.
  • LNG injection is started after a volume of purge gas equal to approximately /3 to /2 of the ultimate storage volume has been displaced.
  • an LNG cargo from an incoming ship may be injected through suitable injection wells to refill the portion of the reservoir which previous to the ship arrival had been partially voided of liquefied gas by a combination of natural revaporization and withdrawals in liquid form.
  • a further object of the invention is to provide a liquefied gas storage facility which is extremely safe and non-hazardous to the surrounding environment.
  • a further object of the invention is to provide a low cost storage facility for LNG which has a substantial heat gain sutficient to vaporize a major portion of the LNG as required.
  • a further object of the invention is to sufficiently reduce the unit cost of storage so that very large volumes can be stored thus providing security of supply in the event of interruption of deliveries.
  • the larger storage will also permit use of larger ships and also the optimum scheduling of ships.
  • FIG. 1 is a vertical cross sectional view of an underground storage reservoir made in accordance with the method of the invention.
  • FIG. 2 is a horizontal cross sectional view of the reservoir of FIG. 1 taken along line 2 -2 of FIG. 1.
  • FIG. 1 a water bearing permeable layer 14 is shown immediately below an impervious rock layer 12 and adjacent an underlying similar impervious rock layer 16. Layer comprises all of the formations between layer 12 and the surface.
  • the aquifer layer 14 while preferably being a water bearing sand may also be of a porous limestone from which the water may be similarly purged by a gas under pressure prior to the introduction of liquefied natural gas.
  • the formation comprising the layers 10, 12, and 14 is penetrated by numerous injection and producing wells.
  • a central injection well is shown at 18 extending downwardly through the rock layer 12 and terminating in the upper portion of the aquifer layer 14.
  • injection well 18 After a small bubble of purge gas has been created around injection well 18, other injection wells 22 may be added in relatively close proximity to well 18 to increase the purge gas injection rate as well as future LNG injection capacity.
  • the number of producing and injection wells and their relative spacing can be optimized for the conditions of the specific reservoir and project through well-known reservoir engineering principles. Although a center to periphery pattern is shown for convenience, this is not the only suitable pattern as individual reservoir conditions or project requirements may suggest the use of an end-toend pattern, a five-spot pattern, line-drive pattern, or any other suitable arrangement.
  • a plurality of producing wells 20 are arranged peripherally about the central purge gas injection well 18. All of the wells 18, 20 and 22 are provided with suitable control valves and will be understood to be connected to suitable pumping means (not shown) as required.
  • any suitable gas is injected downwardly under pressure through the well 18 at sufiicient pressure to displace the water from the aquifer layer 14.
  • the displacing gas must be above the freezing temperatures of the formation water.
  • the producing wells 20 during the formation of the storage bubble.
  • gas and water will be simultaneously produced, with the ratio of gas to water gradually increasing.
  • the relative advance of the gas towards the individual segments of the periphery can be controlled by controlling the relative rates of water production from individual wells or groups of wells. Subsequently, the control can be maintained by controlling the relative production rates of individual wells or groups of wells or by selectively shutting wells 20.
  • the injection of purge gas may be continued until the desired storage bubble has been completed. Alternatively, however, after a sufficient purge gas volume has been injected to create a pre-determined bubble size indicated by the dotted line 26 (perhaps one-third to one-half the ultimate storage volume), injection can be shifted to LNG.
  • the LNG will displace the purge gas ahead of it, with the purge gas continuing to act as a buffer between the waterbeing displaced and the extremely cold LNG, and thus avoid the freezing of displaceable water. It is noted that of the water will not be displaced as some water will be left behind as residual water, which will, of course, be frozen as soon as contacted by the LNG. However, this residual water saturation is low and does not appreciably impair the permeability of the formation. The heat contained in this residual water and the reservoir rock itself will vaporize the initial LNG injected and this vaporized gas will serve as an additional buffer between the LNG and displaceable waters.
  • Heat will flow indefinitely into the cold sink from the overlying and underlying formations although at a gradually diminishing rate.
  • the undisplaced water will be frozen to surround the gas bubble with an impervious ice containment layer 24 of reservoir rock with pores completely filled with ice. In time, this layer will be many hundreds of feet thick.
  • the bubble is ready for usage.
  • LNG is injected intermittentlyas ships arrive, with more or less continuing withdrawals as needed.
  • sufiicient heat will be gained from the surrounding strata (predominately from the overlying and underlying forma tions) so that a portion of the injected LNG will be vaporized and natural gas vapor as well as LNG will be produced through the producing wells 20 as desired.
  • the mixture of gas and liquid natural gas can be separated through gas liquid separation facilities.
  • the gaseous portion can be warmed to acceptable distribution temperatures and routed directly to the gas distribution system.
  • the liquid portion can be sent to conventional revaporization facilities and thence to the distribution system.
  • the LNG may also be withdrawn from the injection wells 18 and 22 to increase the amount of LNG available.
  • the ratio of liquid LNG to revaporized gas withdrawn on a given day can also be controlled by production of selected wells including backflowing of injection wells.
  • vaporized LNG may, if desired, be retained in the reservoir so that surface revaporization equipment may be operated at near capacity.
  • An improved method of storing liquefied natural gas at cryogenic temperatures comprising the steps of introducing a purge gas into a subterranean water bearing stratum at suificient pressure to displace the water from a predetermined area of stratur'n and at a temperature above the freezing point of the formation water, and thereafter introducing the liquefied natural gas into the predetermined area to thereby freeze the water surrounding the predetermined area and form an' impermeable barrier to thereby prevent escape of regasified natural gas vapors emerging from said liquefied natural gas.
  • the method of claim 1 including the step of producing said displaced water from at least one well in said stratum at a point remote from the point of introduction of said purge gas, and sensing the presence of purge gas at the remote water producing well to ascertain and control the shape of said predetermined area.
  • a method of storing and vaporizing super-cool liquefied gas comprising the steps of creating a storage void in an aquifier by introducing a purge gas therein to displace the water from a predetermined area of said aquifer, introducing the super-cool liquefied gas into said storage void to thereby freezeithe water in the aquifer surrounding said predetermined area, and withdrawing vapors of said liquefied gas from said predetermined area after sufiicient heat has been absorbed by said liquefied gas from the aquifer surrounding said predetermined area.
  • the method of storing and vaporizing liquefied natural gas (LNG) delivered in 'ifa ship to a consuming area at 259 F. and atmospheric pressure comprising the steps of, drilling a first injection well through a relatively impervious rock layer into water bearing sand stratum immediately therebelow, drilling a plurality of producing wells through said rock stratum into said sand stratum to approximately the same'gg jepth as said injection well, said producing wells being drilled in a substantially circular pattern concentric to and spaced from said injection well, drilling one or more LNG injection wells in close proximity to said first injecition well, injecting a purge gas at a temperature abov *32" F.
  • LNG liquefied natural gas
  • step of injecting purge gas is done at a ratesufficiently slow to create a large diameter predetermined area of minimum depth free of water immediately below, said impervious rock layer, whereby maximum dissipatin of LNG cold will occur in the radial movement of LNG outward from the LNG injection wells to the gas iproducing wells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Nov. 11, 1969 H. s. ARENDT UNDERGROUND STORAGE FOR LNG Filed March 15, 1968 20 1:11. 2 Y 22 +10 ll '3 *3 *3 '3 v v v"'|"'4 v v L.NG.OUT 4 ms. INJECTION j LNG. INJECTION 4 WELL WELL INITIAL GAS /|NJECT|ON TO a v PURGE WATER ATTOR United States Patent US. Cl. 166252 8 Claims ABSTRACT OF THE DISCLOSURE An underground liquefied gas storage and vaporization chamber is formed by injecting a purge gas under sufficient pressure into an aquifier or water bearing sand reservoir to displace the water and create a gas bubble. Liquefied gas, such as liquefied natural gas (LNG), ethane, ethylene, etc. is injected into the gas bubble whereupon freezing of the surrounding water in the aquifier occurs. There is appreciable heat flow to the stored liquefied gas from the overlying and underlying formations which vaporizes a portion of the gas which may be withdrawn in gaseous form at positions remote from the injection wells. The non-vaporized portion can be withdrawn in liquid form and vaporized in the usual revaporization facilities.
Background of the invention This invention relates to improvements in methods of storing and vaporizing liquefied gas in general and in particular to an improved low cost method of storing and partially vaporizing LNG delivered at 2S9 F. and atmospheric pressure or under pressure at more moderate temperatures.
In the transportation of natural gas in liquefied form from a point of production to a point of consumption a major cost factor in the capital investment is the cost of the storage facilities. Conventional types of atmospheric pressure storage cost in the range of $8.00 per barrel of capacity. Recent proposals havesuggested shipments of liquefied natural gas in the 200. p.s.i. pressure range in order to avoid the extreme low temperatures required at atmospheric pressure. The cost of 200 p.s.i. conventional pressure storage soars to approximately $45.00 per barrel. With the large storage volumes required in ship movements of LNG even the $8.00 per barrel cost is a major capital investmentland a $45.00 per barrel cost approaches a prohibitive level. Accordingly, the incentives for developing a low cost storage technique for liquefied gases are great.
Initial LNG projects were for peak shaving with a relatively small volume of gas being liquefied on a daily basis and stored for an extended period for use during winter peaks. Under these conditions minimum heat flow was critical. Although the new base load LNG projects in which large volumes of LNG are revaporized each day could not only tolerate but actually benefit from appreciable heat flow in the storage facilities. Despite this, the same type of minimum heat flow storage developed for peak shaving projects has been adopted for the new base load projects.
In accordance with the present invention the cost of providing LNG storage, either at atmospheric or an elevated pressure such as the aforementioned 200 p.s.i., can be drastically reduced. In accordance with the invention, the initial step is the selection of an underground sane reservoir at a suitable depth and having adequate porosity, permeability and thickness. While a sand reservoir is preferred, a suitable limestone or other aquifier layer can be used. Once a suitable underground formation has Patented Nov. 11, 1969 ice been selected, injection of gas (such as natural gas, air, flue gas, etc.) equivalent to the desired storage volume or slightly greater to displace the mobile water out of the storage volume is initiated. The displacement of the mobile portion of the formation water is done before LNG is injected to prevent the extreme cold of the LNG from causing an almost immediate freeze-up and immobilization of the formation water with consequent loss of injectivity. Many aquifiers, i.e. water bearing soil strata, are sufiiciently permeable and extensive so that the displaced water can be forced out into the surrounding aquifier. In other cases, the displaced water may be produced through wells located around the approximate periphery of the planned storage area. The use of producing wells to produce the displaced water will add somewhat to the cost but permits better control of the configuration of the storage bubble as well as minimizing pressure build-up in the aquifier to permit use of less extensive or less permeable formations. In one form of the novel method of the invention. LNG injection is initiated as soon as a sufficiently large gas slug has been injected so that the gas slug moving ahead of the LNG displaces the formation down to about connate water and insures separation of the mobile water phase and the LNG. Under this procedure LNG injection is started after a volume of purge gas equal to approximately /3 to /2 of the ultimate storage volume has been displaced.
As the injected LNG ,cools the reservoir, the formation water surrounding the storage volume freezes, effectively creating an impermeable wall about the storage area and confining the LNG without any dependence on structural closure. It is contemplated with the storage reservoir thus formed that an LNG cargo from an incoming ship may be injected through suitable injection wells to refill the portion of the reservoir which previous to the ship arrival had been partially voided of liquefied gas by a combination of natural revaporization and withdrawals in liquid form.
As the stored LNG moves through the reservoir from the injection wells to the producing wells, a substantial amount of heat is absorbed from the formation and a proportionate amount of LNG will be vaporized during the precooling of the reservoir. Substantially all of the initial LNG will be vaporized as the reservoir rock or sand itself is cooled, as well as the overlying and underlying formations. After this precooling phase, the major though not exclusive source of heat will be the overlying and underlying formations which will continue to supply substantial heat at gradually diminishing rates as the cooling extends outward from the reservoir itself. Although this absorption of heat is very undesirable in an operation in which LNG is used solely for peak shaving, it is quite acceptable, in fact desirable, where LNG is used in a base load operation. Thus, it is a specific feature and advantage of the present invention in providing a system not only for storage of LNG but in also providing a system for vaporizing a portion of the LNG into gas at the same time. This feature of applicants underground storage (substantial heat flow from the surrounding rock formations) therefore reduces the amount of specific vaporization equipment needed at the point of LNG delivery and consumption.
Accordingly, it is the principal object of the invention to provide a new and novel method for storing and vaporizing large quantities of liquefied gases such as liquefied natural gases.
A further object of the invention is to provide a liquefied gas storage facility which is extremely safe and non-hazardous to the surrounding environment.
A further object of the invention is to provide a low cost storage facility for LNG which has a substantial heat gain sutficient to vaporize a major portion of the LNG as required.
A further object of the invention is to sufficiently reduce the unit cost of storage so that very large volumes can be stored thus providing security of supply in the event of interruption of deliveries. The larger storage will also permit use of larger ships and also the optimum scheduling of ships.
These and other objects and advantages of the invention will become apparent and the invention will be fully understood from the following description and drawings in which FIG. 1 is a vertical cross sectional view of an underground storage reservoir made in accordance with the method of the invention; and
FIG. 2 is a horizontal cross sectional view of the reservoir of FIG. 1 taken along line 2 -2 of FIG. 1.
Referring to the drawings in particular, a better understanding of the novel method of LNG storage and vaporization system may be had. In FIG. 1 a water bearing permeable layer 14 is shown immediately below an impervious rock layer 12 and adjacent an underlying similar impervious rock layer 16. Layer comprises all of the formations between layer 12 and the surface. The aquifer layer 14 while preferably being a water bearing sand may also be of a porous limestone from which the water may be similarly purged by a gas under pressure prior to the introduction of liquefied natural gas. The formation comprising the layers 10, 12, and 14 is penetrated by numerous injection and producing wells. A central injection well is shown at 18 extending downwardly through the rock layer 12 and terminating in the upper portion of the aquifer layer 14. After a small bubble of purge gas has been created around injection well 18, other injection wells 22 may be added in relatively close proximity to well 18 to increase the purge gas injection rate as well as future LNG injection capacity. The number of producing and injection wells and their relative spacing can be optimized for the conditions of the specific reservoir and project through well-known reservoir engineering principles. Although a center to periphery pattern is shown for convenience, this is not the only suitable pattern as individual reservoir conditions or project requirements may suggest the use of an end-toend pattern, a five-spot pattern, line-drive pattern, or any other suitable arrangement. A plurality of producing wells 20 are arranged peripherally about the central purge gas injection well 18. All of the wells 18, 20 and 22 are provided with suitable control valves and will be understood to be connected to suitable pumping means (not shown) as required.
In accordance with the novel method of the invention any suitable gas is injected downwardly under pressure through the well 18 at sufiicient pressure to displace the water from the aquifer layer 14. Obviously, to prevent freezing of the displaced water from the aquifer the displacing gas must be above the freezing temperatures of the formation water. As the purge gas is injected through the well 18 an increased hydrostatic pressure is created which tends to cause flow of the water within the area encompassed by the producing wells 20 outward into the surrounding aquifer. If this aquifer is extensive, all or a major portion of the water within the planned storage area can be displaced in this manner. However, pressure differentials can be minimized and the configuration of the storage bubble can be controlled by production of water from. the producing wells 20 during the formation of the storage bubble. When the injected gas reaches an individual producing well, gas and water will be simultaneously produced, with the ratio of gas to water gradually increasing. Prior to gas breakthrough, the relative advance of the gas towards the individual segments of the periphery can be controlled by controlling the relative rates of water production from individual wells or groups of wells. Subsequently, the control can be maintained by controlling the relative production rates of individual wells or groups of wells or by selectively shutting wells 20.
Since the injected gas is less dense than the formation water, gravity effects will tend to cause this gas to partially override the water in the formation and, at very slow rates of injection, the gas would displace water from only the top few feet of the formation, leaving water in the bottom portion. At high injection rates, however, the pressure differentials created will outweigh the gravity effects and water can be displaced from the entire vertical section, This relationship between vertical displacement and injection rates permits control of the vertical thickness of the bubble and thus the'ratio of volume to area. Since the flow of heat into the stored LNG is a direct functionof area, selection of gas injection rate can roughly optimize the rate of revaporization.
The injection of purge gas may be continued until the desired storage bubble has been completed. Alternatively, however, after a sufficient purge gas volume has been injected to create a pre-determined bubble size indicated by the dotted line 26 (perhaps one-third to one-half the ultimate storage volume), injection can be shifted to LNG. The LNG will displace the purge gas ahead of it, with the purge gas continuing to act as a buffer between the waterbeing displaced and the extremely cold LNG, and thus avoid the freezing of displaceable water. It is noted that of the water will not be displaced as some water will be left behind as residual water, which will, of course, be frozen as soon as contacted by the LNG. However, this residual water saturation is low and does not appreciably impair the permeability of the formation. The heat contained in this residual water and the reservoir rock itself will vaporize the initial LNG injected and this vaporized gas will serve as an additional buffer between the LNG and displaceable waters.
Heat will flow indefinitely into the cold sink from the overlying and underlying formations although at a gradually diminishing rate. As the injected LNG approaches the periphery of the bubble, the undisplaced water will be frozen to surround the gas bubble with an impervious ice containment layer 24 of reservoir rock with pores completely filled with ice. In time, this layer will be many hundreds of feet thick.
After the storage bubble is created and the peripheral walls frozen, the bubble is ready for usage. LNG is injected intermittentlyas ships arrive, with more or less continuing withdrawals as needed. Preferably sufiicient heat will be gained from the surrounding strata (predominately from the overlying and underlying forma tions) so that a portion of the injected LNG will be vaporized and natural gas vapor as well as LNG will be produced through the producing wells 20 as desired.
The mixture of gas and liquid natural gas can be separated through gas liquid separation facilities. The gaseous portion can be warmed to acceptable distribution temperatures and routed directly to the gas distribution system. The liquid portion can be sent to conventional revaporization facilities and thence to the distribution system. During peak demand periods, the LNG may also be withdrawn from the injection wells 18 and 22 to increase the amount of LNG available.
Since the revaporized gas will tend to seek the top of the formation and the heavier LNG the bottom, some control can be exercised over the ratio of gas to liquid that is produced from a given well on any given day by utilizing selective completions. This would involve dual sets of perforations through the lower end of the well casing (one set near the top and one near the bottom of the formation) with an appropriate packer and sliding sleeve, dual tubing as other conventional arrangement (not shown).
The ratio of liquid LNG to revaporized gas withdrawn on a given day can also be controlled by production of selected wells including backflowing of injection wells.
In this manner vaporized LNG may, if desired, be retained in the reservoir so that surface revaporization equipment may be operated at near capacity.
While specific methods in accordance with the invention have been illustrated and described in detail to teach the application of the inventive principles, it will be understood that the invention may be practiced in other ways without depa ing from such principles.
What is claimed is:
1. An improved method of storing liquefied natural gas at cryogenic temperatures comprising the steps of introducing a purge gas into a subterranean water bearing stratum at suificient pressure to displace the water from a predetermined area of stratur'n and at a temperature above the freezing point of the formation water, and thereafter introducing the liquefied natural gas into the predetermined area to thereby freeze the water surrounding the predetermined area and form an' impermeable barrier to thereby prevent escape of regasified natural gas vapors emerging from said liquefied natural gas.
2. The method of claim 1 wherein said last mentioned step is started after a volume of purge gas equal to onethird to one-half of the ultimate storage volume has been introduced.
3. The method of claim 1 including the step of producing said displaced water from at least one well in said stratum at a point remote from the point of introduction of said purge gas, and sensing the presence of purge gas at the remote water producing well to ascertain and control the shape of said predetermined area.
4. The method of claim 3 indluding withdrawing natural gas in a gaseous state from said stratum after sulficient heat has been absorbed by said liquefied natural gas from the stratum surrounding said predetermined area.
5. A method of storing and vaporizing super-cool liquefied gas comprising the steps of creating a storage void in an aquifier by introducing a purge gas therein to displace the water from a predetermined area of said aquifer, introducing the super-cool liquefied gas into said storage void to thereby freezeithe water in the aquifer surrounding said predetermined area, and withdrawing vapors of said liquefied gas from said predetermined area after sufiicient heat has been absorbed by said liquefied gas from the aquifer surrounding said predetermined area.
6. The method of claim 5 wherein the stepfof introducing the super-cool liquefied gas is-commenced after a volume of purge gas equal to one-third to one-half of the ultimate storage volume of the storage void has been produced.
7. The method of storing and vaporizing liquefied natural gas (LNG) delivered in 'ifa ship to a consuming area at 259 F. and atmospheric pressure comprising the steps of, drilling a first injection well through a relatively impervious rock layer into water bearing sand stratum immediately therebelow, drilling a plurality of producing wells through said rock stratum into said sand stratum to approximately the same'gg jepth as said injection well, said producing wells being drilled in a substantially circular pattern concentric to and spaced from said injection well, drilling one or more LNG injection wells in close proximity to said first injecition well, injecting a purge gas at a temperature abov *32" F. through said first injection well to displace th ater from the sand stratum and at the same time produfiing water from said producing wells to thereby create la predetermined area in said sand stratum free of waterffclosing said producing wells upon change of production from water to purge gas, introducing liquefied natural gas through said LNG injection wells to thereby freeze the water in said stratum surrounding said predetermined' area, and withdrawing gasified natural gas from said plurality of producing wells.
8. The method of claim wherein the step of injecting purge gas is done at a ratesufficiently slow to create a large diameter predetermined area of minimum depth free of water immediately below, said impervious rock layer, whereby maximum dissipatin of LNG cold will occur in the radial movement of LNG outward from the LNG injection wells to the gas iproducing wells.
References Cited UNITED STATES PATENTS 3,275,078 9/1966 Rieljer 166-305 3,296,805 1/1967 Graham 166-305 3,301,326 1/1967 McNamer 166-285 X 3,304,725 2/1967 Faul coner 61--.5 3,306,354 2/1967 OBfiien 166-305 3,344,607 10/1967 Vigjovich 61.5 3,393,738 7/1968 Ber 'ard et a1. l66305 X OTHER REFERENCES STEPHEN J. NOVOSAD, Primary Examiner US. Cl. X.R.
US713538A 1968-03-15 1968-03-15 Underground storage for lng Expired - Lifetime US3477509A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71353868A 1968-03-15 1968-03-15

Publications (1)

Publication Number Publication Date
US3477509A true US3477509A (en) 1969-11-11

Family

ID=24866531

Family Applications (1)

Application Number Title Priority Date Filing Date
US713538A Expired - Lifetime US3477509A (en) 1968-03-15 1968-03-15 Underground storage for lng

Country Status (2)

Country Link
US (1) US3477509A (en)
ES (1) ES364813A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815957A (en) * 1972-09-11 1974-06-11 Kennecott Copper Corp Controlled in-situ leaching of mineral values
US3834461A (en) * 1972-12-22 1974-09-10 Texaco Inc Tertiary recovery operation
US3878891A (en) * 1972-12-22 1975-04-22 Texaco Inc Tertiary recovery operation
US5511905A (en) * 1993-10-26 1996-04-30 Pb-Kbb, Inc. Direct injection of cold fluids into a subterranean cavern
US5950453A (en) * 1997-06-20 1999-09-14 Exxon Production Research Company Multi-component refrigeration process for liquefaction of natural gas
US5956971A (en) * 1997-07-01 1999-09-28 Exxon Production Research Company Process for liquefying a natural gas stream containing at least one freezable component
US6016665A (en) * 1997-06-20 2000-01-25 Exxon Production Research Company Cascade refrigeration process for liquefaction of natural gas
US6023942A (en) * 1997-06-20 2000-02-15 Exxon Production Research Company Process for liquefaction of natural gas
US6047747A (en) * 1997-06-20 2000-04-11 Exxonmobil Upstream Research Company System for vehicular, land-based distribution of liquefied natural gas
US6058713A (en) * 1997-06-20 2000-05-09 Exxonmobil Upstream Research Company LNG fuel storage and delivery systems for natural gas powered vehicles
US6085528A (en) * 1997-06-20 2000-07-11 Exxonmobil Upstream Research Company System for processing, storing, and transporting liquefied natural gas
US6112528A (en) * 1998-12-18 2000-09-05 Exxonmobil Upstream Research Company Process for unloading pressurized liquefied natural gas from containers
US6192705B1 (en) 1998-10-23 2001-02-27 Exxonmobil Upstream Research Company Reliquefaction of pressurized boil-off from pressurized liquid natural gas
US6202707B1 (en) 1998-12-18 2001-03-20 Exxonmobil Upstream Research Company Method for displacing pressurized liquefied gas from containers
US6203631B1 (en) 1997-06-20 2001-03-20 Exxonmobil Upstream Research Company Pipeline distribution network systems for transportation of liquefied natural gas
US6209350B1 (en) 1998-10-23 2001-04-03 Exxonmobil Upstream Research Company Refrigeration process for liquefaction of natural gas
US6212891B1 (en) * 1997-12-19 2001-04-10 Exxonmobil Upstream Research Company Process components, containers, and pipes suitable for containing and transporting cryogenic temperature fluids
US6257017B1 (en) 1998-12-18 2001-07-10 Exxonmobil Upstream Research Company Process for producing a displacement gas to unload pressurized liquefied gas from containers
US6378330B1 (en) 1999-12-17 2002-04-30 Exxonmobil Upstream Research Company Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
US20030098098A1 (en) * 2001-11-27 2003-05-29 Petersen Clifford W. High strength marine structures
US6843237B2 (en) 2001-11-27 2005-01-18 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
US20100189508A1 (en) * 2006-06-06 2010-07-29 Jose Lourenco Method of increasing storage capacity of natural gas storage caverns
US20110214839A1 (en) * 2008-11-10 2011-09-08 Jose Lourenco Method to increase gas mass flow injection rates to gas storage caverns using lng

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275078A (en) * 1963-07-29 1966-09-27 Interstate Service Corp Method for displacement of fluids in underground storage of gases
US3296805A (en) * 1963-12-26 1967-01-10 Eastman Kodak Co Method of storing butyraldehydes
US3301326A (en) * 1963-12-31 1967-01-31 Eline Acid Co Method for selectively increasing the porosity and permeability of subterranean geologic formations
US3304725A (en) * 1963-08-19 1967-02-21 Phillips Petroleum Co Preparing a reservoir for storage of volatile liquids
US3306354A (en) * 1964-06-05 1967-02-28 Union Oil Co Method for storing fluids in a subterranean formation
US3344607A (en) * 1964-11-30 1967-10-03 Phillips Petroleum Co Insulated frozen earth storage pit and method of constructing same
US3393738A (en) * 1967-01-30 1968-07-23 Union Oil Co Method for storing gas in subterranean formations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275078A (en) * 1963-07-29 1966-09-27 Interstate Service Corp Method for displacement of fluids in underground storage of gases
US3304725A (en) * 1963-08-19 1967-02-21 Phillips Petroleum Co Preparing a reservoir for storage of volatile liquids
US3296805A (en) * 1963-12-26 1967-01-10 Eastman Kodak Co Method of storing butyraldehydes
US3301326A (en) * 1963-12-31 1967-01-31 Eline Acid Co Method for selectively increasing the porosity and permeability of subterranean geologic formations
US3306354A (en) * 1964-06-05 1967-02-28 Union Oil Co Method for storing fluids in a subterranean formation
US3344607A (en) * 1964-11-30 1967-10-03 Phillips Petroleum Co Insulated frozen earth storage pit and method of constructing same
US3393738A (en) * 1967-01-30 1968-07-23 Union Oil Co Method for storing gas in subterranean formations

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815957A (en) * 1972-09-11 1974-06-11 Kennecott Copper Corp Controlled in-situ leaching of mineral values
US3834461A (en) * 1972-12-22 1974-09-10 Texaco Inc Tertiary recovery operation
US3878891A (en) * 1972-12-22 1975-04-22 Texaco Inc Tertiary recovery operation
US5511905A (en) * 1993-10-26 1996-04-30 Pb-Kbb, Inc. Direct injection of cold fluids into a subterranean cavern
US6016665A (en) * 1997-06-20 2000-01-25 Exxon Production Research Company Cascade refrigeration process for liquefaction of natural gas
US6203631B1 (en) 1997-06-20 2001-03-20 Exxonmobil Upstream Research Company Pipeline distribution network systems for transportation of liquefied natural gas
US6023942A (en) * 1997-06-20 2000-02-15 Exxon Production Research Company Process for liquefaction of natural gas
US6047747A (en) * 1997-06-20 2000-04-11 Exxonmobil Upstream Research Company System for vehicular, land-based distribution of liquefied natural gas
US6058713A (en) * 1997-06-20 2000-05-09 Exxonmobil Upstream Research Company LNG fuel storage and delivery systems for natural gas powered vehicles
US6085528A (en) * 1997-06-20 2000-07-11 Exxonmobil Upstream Research Company System for processing, storing, and transporting liquefied natural gas
US5950453A (en) * 1997-06-20 1999-09-14 Exxon Production Research Company Multi-component refrigeration process for liquefaction of natural gas
US5956971A (en) * 1997-07-01 1999-09-28 Exxon Production Research Company Process for liquefying a natural gas stream containing at least one freezable component
US6212891B1 (en) * 1997-12-19 2001-04-10 Exxonmobil Upstream Research Company Process components, containers, and pipes suitable for containing and transporting cryogenic temperature fluids
US6192705B1 (en) 1998-10-23 2001-02-27 Exxonmobil Upstream Research Company Reliquefaction of pressurized boil-off from pressurized liquid natural gas
US6209350B1 (en) 1998-10-23 2001-04-03 Exxonmobil Upstream Research Company Refrigeration process for liquefaction of natural gas
US6202707B1 (en) 1998-12-18 2001-03-20 Exxonmobil Upstream Research Company Method for displacing pressurized liquefied gas from containers
US6112528A (en) * 1998-12-18 2000-09-05 Exxonmobil Upstream Research Company Process for unloading pressurized liquefied natural gas from containers
US6257017B1 (en) 1998-12-18 2001-07-10 Exxonmobil Upstream Research Company Process for producing a displacement gas to unload pressurized liquefied gas from containers
US6378330B1 (en) 1999-12-17 2002-04-30 Exxonmobil Upstream Research Company Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
US20030098098A1 (en) * 2001-11-27 2003-05-29 Petersen Clifford W. High strength marine structures
US6843237B2 (en) 2001-11-27 2005-01-18 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
US6852175B2 (en) 2001-11-27 2005-02-08 Exxonmobil Upstream Research Company High strength marine structures
US20100189508A1 (en) * 2006-06-06 2010-07-29 Jose Lourenco Method of increasing storage capacity of natural gas storage caverns
US8128317B2 (en) * 2006-06-06 2012-03-06 Jose Lourenco Method of increasing storage capacity of natural gas storage caverns
US20110214839A1 (en) * 2008-11-10 2011-09-08 Jose Lourenco Method to increase gas mass flow injection rates to gas storage caverns using lng

Also Published As

Publication number Publication date
ES364813A1 (en) 1971-02-01

Similar Documents

Publication Publication Date Title
US3477509A (en) Underground storage for lng
US3559737A (en) Underground fluid storage in permeable formations
US5511905A (en) Direct injection of cold fluids into a subterranean cavern
US3613792A (en) Oil well and method for production of oil through permafrost zone
US3807181A (en) Underground storage of gas
US3042114A (en) Process for recovering oil from underground reservoirs
CA1134258A (en) Carbon dioxide fracturing process
US3662832A (en) Insulating a wellbore in permafrost
US3916993A (en) Method of producing natural gas from a subterranean formation
EP2588712B1 (en) Methods for storing carbon dioxide compositions in subterranean geological formations and arrangements for use in such methods
CN205778790U (en) Stratified Waterflooding and injection and extraction system
US3171479A (en) Method of forward in situ combustion utilizing air-water injection mixtures
US3113616A (en) Method of uniform secondary recovery
US3137344A (en) Minimizing loss of driving fluids in secondary recovery
US3354654A (en) Reservoir and method of forming the same
US3920072A (en) Method of producing oil from a subterranean formation
US4224992A (en) Method for enhanced oil recovery
US3788398A (en) Oil recovery process
US3344607A (en) Insulated frozen earth storage pit and method of constructing same
US3080917A (en) Improved gas drive process for recovering oil
US4418753A (en) Method of enhanced oil recovery employing nitrogen injection
US3442331A (en) Cyclic secondary oil recovery process
CA1139218A (en) Natural gas and thermal energy production from aquafers
US3472320A (en) Secondary recovery method using alternate slugs of gas and water
GB958745A (en) Methods of constructing subterranean storage cavities