CN101107425B - 用于利用废热产生电力的方法和设备 - Google Patents

用于利用废热产生电力的方法和设备 Download PDF

Info

Publication number
CN101107425B
CN101107425B CN2005800471259A CN200580047125A CN101107425B CN 101107425 B CN101107425 B CN 101107425B CN 2005800471259 A CN2005800471259 A CN 2005800471259A CN 200580047125 A CN200580047125 A CN 200580047125A CN 101107425 B CN101107425 B CN 101107425B
Authority
CN
China
Prior art keywords
condenser
turbogenerator
feed pump
vaporizer
refrigeration agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800471259A
Other languages
English (en)
Other versions
CN101107425A (zh
Inventor
T·N·森德尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of CN101107425A publication Critical patent/CN101107425A/zh
Application granted granted Critical
Publication of CN101107425B publication Critical patent/CN101107425B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K1/00Steam accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

根据本发明,提供了一种用于在船舶上产生电力的方法和设备。该方法包括步骤:(a)提供兰金循环装置,该兰金循环装置包括蒸发器、涡轮发电机、冷凝器和制冷剂进给泵中的每一种中的至少一个,该涡轮发电机包括同发电机连接的涡轮机;(b)在该船舶的动力装置的排气管道内设置一个或多个蒸发器;(c)运行该动力装置;和(d)选择性泵送制冷剂经过该兰金循环装置,其中,离开该蒸发器的制冷剂向涡轮机提供动力,该涡轮机又向发电机提供动力,以便产生电力。

Description

用于利用废热产生电力的方法和设备
发明背景
1.技术领域
本发明大体涉及用于利用来自动力装置的废热产生电力的方法和设备,并且特别涉及那些利用有机兰金循环(Rankine cycle)的方法和设备。
2.背景信息
海洋和陆基动力装置可产生温度范围为350至1850华氏度(°F)的废气产物。在多数应用中,废气产物排放到外界,而散失了热能。然而,在一些情况下,热能被进一步利用。例如,来自工业燃气轮机(IGT)的废气的热能已经用作驱动兰金循环系统的能源。
兰金循环系统可包括连接到发电机上的涡轮机、冷凝器、泵和蒸气发生器上。蒸气发生器受热源(如地热能源)的控制。来自热源的能量传递到经过蒸气发生器的流体。赋予能量的流体随后向涡轮机提供动力。在离开涡轮机后,流体流经冷凝器并随后泵送回到蒸气发生器中。在陆基应用中,冷凝器典型地包括多个气流热交换器,气流热交换器将热能从水中转移到外界空气中。
在二十世纪七十年代和八十年代,美国海军研究了一种兰金循环系统的海洋应用,称为兰金循环能量回收(RACER)系统。RACER系统采用高压蒸气作为工作介质并且连接到驱动系统上,以便增大驱动马力。由于连接到驱动系统上,RACER不能用来向任何附件提供动力;也就是说,如果驱动系统没有运行,则RACER系统也是如此。RACER系统从未充分地执行,并且该方案因与在海洋应用中使用高压蒸气的相关难题而取消。
所需要的是一种能在海洋环境中使用的且用于利用来自动力装置的废热产生电力的方法和设备,以及一种克服了与现有技术系统相关的难题的方法和设备。
发明概述
根据本发明,提供了一种用于在船舶上产生电力的方法和设备。该方法包括步骤:(a)提供兰金循环装置,该装置包括蒸发器、涡轮发电机、冷凝器和制冷剂进给泵中的每一种中的至少一个,涡轮发电机包括同发电机相连接的涡轮机;(b)在船舶的动力装置的排气管道内设置一个或多个蒸发器;(c)运行动力装置;和(d)选择性地泵送制冷剂经过兰金循环装置,其中离开蒸发器的制冷剂向涡轮机提供动力,涡轮机又向发电机提供动力,以便产生电能。
本方法和设备提供了重要的优点。例如,燃烧其动力装置内液体矿物燃料的船舶的航程典型地受到其所能携带的燃料储备的制约。在多数现代船舶中,一部分燃料储备用来运行产生电能的发电装置。因此,驱动需求和电能需求都动用了燃料储备。本方法和设备通过利用船舶动力装置产生的废热而不是矿物燃料来发电,降低了燃料储备的要求。因此,船舶能够携带较少燃料而具有相同的航程,或者携带相同量的燃料而具有较大的航程。此外,较少的燃料等同于较轻的重量,而较轻的重量能提高船舶速度。
如果考虑将被要求用于产生电能的矿物燃料的量,该电能可由本发明通过废热产生,则很明显的是,本发明提供了几个其它的优点。例如,利用船舶现有的主要动力装置或辅助动力装置来产生“N”单位电功率所需的燃料重量远远超过能通过废热产生相同的“N”单位电功率的现有ORC装置的重量。此外,液体燃料的消耗改变了船舶的浮力特性。现有ORC装置的重量保持恒定,从而方便了船舶的浮力控制。
对于那些利用放置在冷凝器内的回热式热交换器的实施方式,本发明向设置在相对紧凑单元内的ORC装置提供了增加效率的额外益处。
本发明的又一个优点,起因于自船舶动力装置的废气中排除的热能。废气的质量流量是体积流量和废气密度的函数。本方法和设备使得废气较大地冷却并因此增大废气密度。从而,充分地降低了质量流量,并且充分地减少了船舶动力装置排气管道的要求尺寸。
根据对本发明附图所示的最佳实施方式的具体介绍,将会清楚本发明的这些以及其它目的、特点和优点。
附图简要说明
图1是本发明ORC装置的实施例的图解透视图,该ORC装置具有单个涡轮发电机。
图2是本发明ORC装置的实施例的图解透视图,该ORC装置具有一对涡轮发电机。
图3是本发明ORC装置的实施例的图解透视图,该ORC装置具有三个涡轮发电机和单个冷凝器。
图4是本发明ORC装置的实施例的图解透视图,该ORC装置具有三个涡轮发电机和一对冷凝器。
图5是冷凝器的剖视平面视图。
图6是蒸发器的图解透视图。
图7是ORC装置的示意图,该ORC装置包括单个涡轮发电机。
图8是ORC装置的示意图,该ORC装置包括一对涡轮发电机。
图9是ORC装置的示意图,该ORC装置包括三个涡轮发电机。
图10是ORC装置的示意图,该ORC装置包括三个涡轮发电机和一对冷凝器。
图11是说明兰金循环的压力和焓曲线简图。
发明详述
参照图1至图6,利用了废热的本方法包括用于废热利用的有机兰金循环(ORC)装置20。ORC装置20包括下列各种中的至少一个:1)与发电机连接的涡轮机(下文中共同称为“涡轮发电机22”);2)冷凝器24;3)制冷剂进给泵26;4)蒸发器28;和5)控制系统。优选的是,ORC装置20是不带有流体补给的闭合“密封”系统。如果泄漏时,或者不可冷凝物从装置20中自动排放,或者装入料从制冷剂汽缸中手动补充。
ORC装置20利用市场上可买到的制冷剂作为工作介质。可接受的工作介质的示例是R-245fa(1,1,1,3,3,五氟代丙烷)。R-245fa是不易燃的、不消耗臭氧的液体。R-245fa具有邻近300°F的饱和温度和300磅/平方英寸表压(PSIG),表压允许在很宽的IGT废气温度范围内吸收废热。
现在参照图1至图4,涡轮发电机包括典型地以约18000转/分(rpm)的转速运行的单级径向流入涡轮机30、带有整体润滑系统的变速箱32和以3600rpm的转速运行的感应发电机34。变速箱32包括润滑系统。在某些情形下,变速箱润滑系统同变速箱32形成为一体。
在一个实施例中,涡轮发电机22来自从市场上可买到的制冷剂压缩机-马达单元;例如,Carrier Corporation公司的型号为19XR的压缩机-马达。作为涡轮机,压缩机运行时的旋转方向同其作为压缩机时运行的旋转方向相反。进行将压缩机变更成涡轮机的改动包括:1)用马达替代叶轮,该马达具有为用于涡轮机应用而成形的动叶片;2)改变轮盖以影响动叶片的几何形状;3)变更扩散器的流动面积,以便使其在既定运行条件下作为喷嘴使用;和4)除去入口导流叶片,该叶片在压缩机模式中用来调整制冷剂的流动。19XR压缩机内具有最高运行温度低于涡轮机30的运行温度的部件,就该方面来说,那些元件被替代或更改成适应涡轮机30的较高的运行温度。
在一些实施例中,涡轮发电机22包括外围部件,如油冷却器36(示意性地显示在图7至图10中)和油回收喷射器(未示出)。油冷却器36和喷射器以及同它们相关联的管路都连到涡轮发电机22上。
参照图6,大量不同的蒸发器28可与ORC装置20一起使用。单一压力的单程蒸发器28是可接受类型的蒸发器28,单程蒸发器28带有竖直的热气流和水平的制冷剂流,制冷剂经过由竖直集管维护的翅片管平行环路。可接受的蒸发器管道材料的示例包括带有碳钢片的碳钢管道和带有碳钢片的不锈钢管道,这两种管道都在高达900°F的废气流中成功地得到验证。其它的蒸发器管道材料可作为选择。入口集管流喷嘴被用来促进制冷剂的流动分布。可应用经过蒸发器28的不同制冷剂流动配置;例如,同向流动、同向-逆向流动、同向流动锅炉/过热器和逆向流动预热器等。本蒸发器28不限于任何特定的流动配置。
在所有的蒸发器28实施例中,如同锅炉部分入口的低温冷却一样,鉴于需要的热气出口温度,可选择预热器管道的数量和交叉点。分别放置在蒸发器28的对立末端的一对竖直管板38支撑蒸发器盘管。带有便于清洗的可移动平板的隔热箱40包围整个蒸发器28。
蒸发器28的数量可根据应用情况而决定。例如,如果有多于一个的排气管道,则蒸发器28可设置在每个排气管道内。设置在特定管道内的多于一个的蒸发器28也提供了冗余性优点和处理大范围的废气质量流速的能力。在较低废气流速下,单个蒸发器28可提供充分的冷却,同时还提供向涡轮发电机22供以动力所需的能量。在较高废气流速下,多个蒸发器28可用来提供充分的冷却和以向涡轮发电机22供给动力所需的能量。
参照图1至图5,冷凝器24是壳体加管道型单元,其尺寸设定为可满足ORC装置的要求。冷凝器24包括外壳42和设置在外壳42内的多个管道44(下文中称为“管组”)。外壳42包括工作介质入口46、工作介质出口48、冷却剂入口50和冷却剂出口52。冷却剂入口和出口50、52同管组44相连接,以便使得冷却流体进入冷凝器24的外壳中,流经管组44,并随后离开冷凝器外壳42。同样地,工作介质入口和出口46、48同冷凝器外壳42相连接,以便使得工作介质进入外壳42中,经过管组44周围,并随后离开外壳42。在一些实施例中,一个或多个扩散板54(参见图5)位于邻近工作介质入口46处,以便促进冷凝器24内工作介质的分布。在图1至图4所示的实施例中,外壳42在其每一轴向末端包括可移动的通道面板56。在优选的实施例中,通道面板56中的一个可枢轴转动地连接到外壳42的一个圆周侧,并且通过可选择性操作的插销(未示出)可连接到其对立圆周侧,使得通道面板56可容易地枢轴转动,以提供对管组44的接近。
在一些实施例中,不可冷凝物排放单元58(示意性地显示在图7至图9中)连接到冷凝器24上。排放单元58可用来抽取空气和水蒸汽,以便减小或消除它们的油水解或部件腐蚀作用,该空气和水蒸汽可聚集在冷凝器壳体42的蒸汽区内。仅当系统控制器热动地识别存在不可冷凝的气体时,排放单元58才运行。
参照图5,在一些实施例中,ORC装置20包括回热式热交换器60,以在工作介质进入蒸发器28之前对其预热。回热式热交换器60可用来接收来自离开涡轮发电机22的工作介质的至少一部分的热能,并且使用它来对进入蒸发器28的工作介质预热。在图5所示的实施例中,回热式热交换器60包括设置在冷凝器24的外壳42内的多个管道62。管道62串联(inline)连接在冷凝器24的工作介质出口48的下游和蒸发器28的上游。隔板64部分地包围回热式热交换器管道62,以将其从冷凝器24的余下部分隔开。工作介质通过工作介质入口46进入冷凝器24,并在进入冷凝器24余下部分之前流经回热式热交换器60。一个或多个扩散器54可设置在回热式热交换器内,以促进回热式热交换器60内工作介质的分布。将回热式热交换器60放置在冷凝器24内,方便地减小了ORC装置20的尺寸。然而,将回热式热交换器60设置在冷凝器24的外部可作为备选进行使用。
参照图1至图4,ORC装置20包括一个或多个变速制冷剂进给泵26,以将液态制冷剂供给到蒸发器28中。在一个实施例中,制冷剂进给泵26是涡轮再生泵,该再生泵以相对低的净泵吸入压头(NPSH)将液态制冷剂供给到蒸发器28中。这种设计同相对低的系统压力差相结合而允许了进给泵26和冷凝器24安装到相同高度,并消除了对分离冷凝物和进给泵的需要。在备选的实施例中,制冷剂进给泵26可以是侧通路离心泵或者是轴向入口离心泵。制冷剂进给泵26配备有变极器,以在全部的排气条件范围内允许全比例地变速操作。其它的泵控制器可作为备选使用。采用两个或多个制冷剂进给泵26的应用提供了冗余性的优点。在一些实施例中,直接设置在进给泵26的每一个的后部的管路74通过跨接管路部分76彼此连接。多个制冷剂进给泵26和跨接部分76通过在冷凝器24的不同位置处收集工作介质增强了ORC装置20适应具有显著颠簸摇晃(pitchand roll)的海洋环境的能力。具有多于一个的涡轮发电机22和多于一个的制冷剂进给泵26的ORC配置装备有阀66(如图7至图10所示),使得每一涡轮发电机22或者进给泵26可选地从工作介质流动模式中移除。或者,进给泵26可同每一涡轮发电机22相关联,并且关联进给泵26的选择性启动可用于同关联的涡轮发电机22相接合/脱离。
图7至图10所示的ORC装置20配置各自包括在海洋应用中使用的冷却回路68,其中,冷却介质(如海水)自冷却介质源70(如船舶周围环境的水域)进入,曲折地经过冷凝器24(经由冷却剂入口和出口50、52),并返回到冷却介质源70中。在备选实施例中,冷却回路68包括从冷却介质中除去热能的热交换器(如冷却塔)。
ORC装置20配置示意性地显示在图7至图10中。这些配置代表了ORC装置20配置的实例,但并不能解释成可能在本发明内的唯一配置。箭头表示每一配置中的工作介质流动模式。
参照图7所示的第一种配置,自一对制冷剂进给泵26开始,将工作介质朝向蒸发器28泵送。在图7所示的实施例中,在进入蒸发器28之前,工作介质流经回热式热交换器60,其中,工作介质被预热。在海洋应用中,蒸发器28设置在排气管道内,排气管道接收来自船舶的动力装置的废气产物。离开蒸发器28的工作介质随后向涡轮发电机22行进。设置在蒸发器28和涡轮发电机22之间的旁通阀72使得工作介质在涡轮发电机22周围并向冷凝器24进行选择性的分流。喷嘴73设置在旁通阀72的下游,以起到流动限制作用。如同以下将要讨论的一样,旁通阀72可在涡轮发电机22周围使工作介质完全地绕行。或者,旁通阀72可促使选择性地改变导入到涡轮发电机22中的工作介质的量。假定工作介质的一些或全部没有在涡轮发电机22周围进行分流,则工作介质进入涡轮发电机22的涡轮机30部分,并提供向涡轮发电机22供以动力所需的能量。一旦经过涡轮发电机22,工组介质便向冷凝器24行进。在涡轮发电机22周围分流的工作介质也向冷凝器24行进。图1所示的是没有蒸发器28的ORC装置20配置的透视图。
图8所示意性地显示的第二种ORC装置20配置包括一对涡轮发电机22。涡轮入口同来自蒸发器28的进给管道连接。涡轮入口阀66a直接设置在每一涡轮发电机22的上游。在一些实施例中,涡轮出口阀66b直接设置在每一涡轮发电机22的下游。在那些实施例中,提供了连接到ORC装置低压侧的安全压力泄口。第二种ORC装置20配置也包括多个蒸发器28。蒸发器入口阀78直接设置在每一蒸发器28的上游。在一些实施例中,蒸发器出口阀80直接设置在每一蒸发器28的下游。图2所示的是没有蒸发器28的ORC装置20配置的透视图。
图9所示意性地显示的第三种ORC装置20配置包括三个涡轮发电机22。图3所示的是没有蒸发器28的ORC装置20配置的一部分的透视图。
图10所示意性地显示的第四种ORC装置20配置包括三个涡轮发电机22和一对冷凝器24。图4所示的是没有蒸发器28的ORC装置20配置的一部分的透视图。
在所有的配置中,ORC控制器通过使用闭合密封环境中的变速进给泵26,沿高预测性的程序涡轮入口过热/压力曲线对ORC装置20进行维护。图11示出了该种曲线的一个示例。
冷凝器负载通过进给泵26进行调节,以在系统负载变化时维持冷凝压力。除初始的进给泵速度/过热控制回路外,ORC控制器也可用于控制:1)净输出动力产生,其取决于应用通过控制热气鼓风机的速度或者旁通阀72的位置;2)发电机34和变速箱32油流的可选级数;和3)排放单元58的启动。ORC控制器也可用于监控所有ORC系统传感器和估算是否超出任何系统运行设置点范围。示警和警报以类似于市场上可买到的冷凝器运行的方式产生和记录,同时控制系统在出现警报时启动保护关闭程序(并且可能地重启锁定)。ORC控制器的特定细节将取决于相关的特定配置和手边的应用。本发明的ORC装置20可设计成带有适当预测和诊断水平的全自动无人看管运行。
ORC装置20可配备有系统启动的继电器(system enable relay),该继电器可由ORC控制器激发或使用热气传感器进行自我启动。在启动ORC装置20后,系统将等待启动信号以开始自动启动程序。一旦触发自动启动程序,在冷凝器的负载与系统负载相匹配的同时,供给到蒸发器28的液体以受控速度逐渐增加,以开始累积通过旁通阀72的压力。当控制系统确定涡轮过热处于控制中时,涡轮油泵启动,将发电机34当作感应马达供以能量。涡轮速度因此锁定到不要求频率同步的电网频率(grid frequency)。随着涡轮的飞快运行,涡轮入口阀66a自动打开,进入发电机的动力流完全连续地转换成电力发电。
ORC装置20的停机同样地简单。当经过蒸发器28的废气产物温度下降到运行界限以下时,或如果过热不能维持最小动力时,ORC控制系统启动自动停机程序。在发电机34仍然同电网连接时,涡轮入口阀66a关闭,而涡轮旁通阀72打开。发电机34再次成为马达(与发电机相对应),并在动力消除和单元逐渐停止之前迅速汲取动力。在冷凝器24继续拒绝加载的同时,制冷剂进给泵26继续运行以冷却蒸发器28,最后产生贯穿系统的连续的小规族液体循环。只要系统温度和压力适于停机,制冷剂进给泵26、涡轮油泵和冷凝器24都是安全的,并且系统作好下次启动信号的准备。
当完成自动启动程序时,控制系统启动持续的过热控制和警报监控。控制系统将跟踪特定极限负载比内的所有热气负载变化。非常迅速的负载变化都能被跟踪到。在负载上升期间,可采用有效的过热超调,直到系统达到新的平衡为止。在负载下降期间,系统可暂时地转换到涡轮旁路,直到重新建立过热控制。如果供给的热负载变得过高或过低,过热将超出合格界限,系统将会(通常)停止运行。自该种状态,如果蒸发器呈现高温,ORC装置20将在短暂延迟后再次启动自动启动程序。
尽管关于本发明的具体实施例示出和描述了本发明,但本领域技术人员所将了解的是,可对其形式和细节上作出各种变化,而不脱离本发明的精神和范围。

Claims (9)

1.一种用于利用海洋动力装置排出的废气产生电力的设备,所述设备包括:
蒸发器,所述蒸发器是可操作的用以设置在所述海洋动力装置排出的废气内;
涡轮发电机,所述涡轮发电机包括同发电机连接的涡轮机;
冷凝器,所述冷凝器具有设置在外壳内的多个管道,其中所述管道在所述外壳内形成闭路,所述闭路的尺寸设定为允许冷却剂流进入和流出所述冷凝器;
一对可操作以泵送制冷剂的制冷剂进给泵,所述进给泵中的一个在邻近所述冷凝器第一纵向末端同所述冷凝器连接,并且所述进给泵中的另一个在邻近所述冷凝器第二纵向末端同所述冷凝器连接,所述第二纵向末端同所述第一纵向末端相对;
跨接管路部分,与所述进给泵中的每一个相连的管路通过所述跨接管路部分连接;和
环境中的水,所述环境中的水提供流进和流出所述冷凝器的所述冷却剂流。
2.如权利要求1所述的设备,其特征在于,进一步包括可选择性操作的旁通阀,所述旁通阀设置在所述设备内并定位成用以在所述蒸发器和所述冷凝器之间提供通道,使得制冷剂可选择地绕过所述涡轮发电机。
3.如权利要求1所述的设备,其特征在于,进一步包括设置在所述冷凝器内的回热式热交换器,并且所述回热式热交换器定位在所述设备内,使得来自所述制冷剂进给泵的制冷剂进入所述回热式热交换器,而离开所述回热式热交换器的制冷剂进入所述蒸发器。
4.如权利要求1所述的设备,其特征在于,所述涡轮发电机为多个。
5.如权利要求1所述的设备,其特征在于,所述冷凝器具有附着在所述外壳的第一纵向末端的选择性可移动的通道面板,其中所述通道面板的移动允许接近所述多个管道。
6.一种用于在船舶上产生电力的方法,包括步骤:
提供兰金循环装置,所述兰金循环装置包括蒸发器、涡轮发电机、冷凝器和制冷剂进给泵中的每一种中的至少一个,所述涡轮发电机包括同发电机连接的涡轮机;
在所述船舶的动力装置的排气管道内设置所述一个或多个蒸发器;
将所述冷凝器设置成由环境中的水冷却;
操作所述动力装置;和
选择性泵送制冷剂经过所述兰金循环装置;
其中,所述制冷剂进给泵是一对,所述进给泵中的一个在邻近所述冷凝器第一纵向末端同所述冷凝器连接,并且所述进给泵中的另一个在邻近所述冷凝器第二纵向末端同所述冷凝器连接,所述第二纵向末端同所述第一纵向末端相对,与所述进给泵中的每一个相连的管路通过跨接管路部分连接。
7.如权利要求6所述的方法,其特征在于,进一步包括步骤:
设置可选择性操作的旁通阀,所述旁通阀设置在所述兰金循环装置内,并且定位成用以在所述蒸发器和所述冷凝器之间提供通道;和
选择性操作所述旁通阀,以将所述制冷剂流的至少一部分绕过所述涡轮发电机。
8.如权利要求7所述的方法,其特征在于,在所述兰金循环装置启动期间和所述兰金循环装置关闭期间,所述旁通阀选择性操作,以将制冷剂绕过所述涡轮发电机。
9.如权利要求7所述的方法,其特征在于,当所述涡轮发电机不能操作时,所述旁通阀选择性操作,以将制冷剂绕过所述涡轮发电机。
CN2005800471259A 2004-11-30 2005-11-22 用于利用废热产生电力的方法和设备 Expired - Fee Related CN101107425B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/000,112 2004-11-30
US11/000,112 US20060112693A1 (en) 2004-11-30 2004-11-30 Method and apparatus for power generation using waste heat
PCT/US2005/042441 WO2006060253A1 (en) 2004-11-30 2005-11-22 Method and apparatus for power generation using waste heat

Publications (2)

Publication Number Publication Date
CN101107425A CN101107425A (zh) 2008-01-16
CN101107425B true CN101107425B (zh) 2010-05-26

Family

ID=36565361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800471259A Expired - Fee Related CN101107425B (zh) 2004-11-30 2005-11-22 用于利用废热产生电力的方法和设备

Country Status (9)

Country Link
US (1) US20060112693A1 (zh)
EP (1) EP1828550B1 (zh)
JP (1) JP2008522081A (zh)
KR (1) KR100844634B1 (zh)
CN (1) CN101107425B (zh)
CA (1) CA2589781C (zh)
HK (1) HK1116848A1 (zh)
NO (1) NO20073280L (zh)
WO (1) WO2006060253A1 (zh)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764487A1 (de) * 2005-09-19 2007-03-21 Solvay Fluor GmbH Arbeitsfluid für einen ORC-Prozess
EP2044318A1 (en) * 2006-07-26 2009-04-08 Turner, Geoffrey Russell Energy supply system
US8245491B2 (en) * 2006-11-15 2012-08-21 Modine Manufacturing Company Heat recovery system and method
WO2009017471A1 (en) * 2007-07-27 2009-02-05 Utc Power Corporation Oil removal from a turbine of an organic rankine cycle (orc) system
WO2010030271A1 (en) * 2008-09-10 2010-03-18 Utc Power Corporation Refrigerant powered valve for a geothermal power plant
KR101025050B1 (ko) * 2008-09-26 2011-03-25 현대중공업 주식회사 선박 폐열을 이용한 발전장치
US8596067B2 (en) * 2008-12-19 2013-12-03 Spx Corporation Cooling tower apparatus and method with waste heat utilization
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
MX2012000059A (es) 2009-06-22 2012-06-01 Echogen Power Systems Inc Sistema y metodo para manejar problemas termicos en uno o mas procesos industriales.
WO2011017476A1 (en) 2009-08-04 2011-02-10 Echogen Power Systems Inc. Heat pump with integral solar collector
US20110061388A1 (en) * 2009-09-15 2011-03-17 General Electric Company Direct evaporator apparatus and energy recovery system
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8794002B2 (en) 2009-09-17 2014-08-05 Echogen Power Systems Thermal energy conversion method
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
IT1397145B1 (it) * 2009-11-30 2013-01-04 Nuovo Pignone Spa Sistema evaporatore diretto e metodo per sistemi a ciclo rankine organico.
US8813498B2 (en) 2010-06-18 2014-08-26 General Electric Company Turbine inlet condition controlled organic rankine cycle
WO2012000002A2 (de) * 2010-07-01 2012-01-05 Psw Systems Ag Anordnung zum umwandeln thermischer energie und vorrichtung zum erwärmen und kühlen eines mediums
DE102010038314A1 (de) * 2010-07-23 2012-01-26 Bayerische Motoren Werke Aktiengesellschaft Antriebssystem für ein Fahrzeug
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
KR101291170B1 (ko) * 2010-12-17 2013-07-31 삼성중공업 주식회사 선박용 폐열회수장치
IT1403297B1 (it) 2011-01-04 2013-10-17 Exergy Orc S R L Ora Exergy S P A Turbina di espansione
IT1404174B1 (it) 2011-02-18 2013-11-15 Exergy Orc S R L Ora Exergy S P A Impianto e processo per la produzione di energia tramite ciclo rankine organico
ITMI20110243A1 (it) * 2011-02-18 2012-08-19 Exergy Orc S R L Impianto e processo co-generativo per la produzione di energia tramite ciclo rankine organico
FR2972761A1 (fr) * 2011-03-14 2012-09-21 Helios Energy Partners Procede de transformation en energie mecanique d'une energie thermique basse temperature, et dispositif faisant application
JP5596606B2 (ja) * 2011-03-24 2014-09-24 株式会社神戸製鋼所 発電装置
ITCO20110013A1 (it) * 2011-03-29 2012-09-30 Nuovo Pignone Spa Sistemi di chiusura per turboespansori da usare in cicli rankine organici
US8601814B2 (en) * 2011-04-18 2013-12-10 Ormat Technologies Inc. Geothermal binary cycle power plant with geothermal steam condensate recovery system
KR101259028B1 (ko) * 2011-05-13 2013-04-29 삼성중공업 주식회사 선박용 폐열회수 시스템
JP5597597B2 (ja) * 2011-06-09 2014-10-01 株式会社神戸製鋼所 発電装置
US8813500B2 (en) * 2011-08-03 2014-08-26 Dresser-Rand Company Combined heat exchanger expander mounting system
JP5460663B2 (ja) * 2011-09-07 2014-04-02 株式会社神戸製鋼所 発電装置
WO2013055391A1 (en) 2011-10-03 2013-04-18 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
CN102628412A (zh) * 2012-04-20 2012-08-08 江苏科技大学 基于有机朗肯循环的船用柴油机余热发电系统
US9145865B2 (en) 2012-06-29 2015-09-29 General Electric Company Electric fluid pump
US9115603B2 (en) * 2012-07-24 2015-08-25 Electratherm, Inc. Multiple organic Rankine cycle system and method
JP2015528083A (ja) * 2012-08-03 2015-09-24 テーエルイー−オー−ヘン・グループ・ベスローテン・フェンノートシャップTri−O−Gen Group B.V. 複数の熱源から有機ランキンサイクル(orc)を通じてエネルギーを回収するためのシステム
WO2014031526A1 (en) 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9118226B2 (en) * 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
CA2899163C (en) 2013-01-28 2021-08-10 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
AU2014225990B2 (en) 2013-03-04 2018-07-26 Echogen Power Systems, L.L.C. Heat engine systems with high net power supercritical carbon dioxide circuits
US9926811B2 (en) * 2013-09-05 2018-03-27 Echogen Power Systems, Llc Control methods for heat engine systems having a selectively configurable working fluid circuit
CN104594965B (zh) * 2013-10-31 2016-06-01 北京华航盛世能源技术有限公司 一种有机朗肯循环发电系统
JP6326430B2 (ja) * 2014-01-23 2018-05-16 三菱日立パワーシステムズ株式会社 復水器
DE102014203121B4 (de) * 2014-02-20 2017-03-02 Siemens Aktiengesellschaft Vorrichtung und Verfahren für einen ORC-Kreisprozess mit mehrstufiger Expansion
EP2918795B1 (de) * 2014-03-12 2017-05-03 Orcan Energy AG Regelung für ORC Stack-Systeme
JP6262040B2 (ja) * 2014-03-19 2018-01-17 三菱日立パワーシステムズ株式会社 復水器及びタービン設備
CN103993919A (zh) * 2014-06-11 2014-08-20 林冠坤 一种循环式节能蒸汽驱动发动机
JP6254918B2 (ja) * 2014-09-08 2017-12-27 株式会社神戸製鋼所 エネルギー回収装置および船舶、並びに、エネルギー回収装置の設置方法
WO2016073252A1 (en) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
AU2016211197A1 (en) * 2015-01-30 2017-09-21 Claudio Filippone Waste heat recovery and conversion
JP2017014986A (ja) * 2015-06-30 2017-01-19 アネスト岩田株式会社 バイナリー発電システムおよびバイナリー発電方法
JP6778475B2 (ja) * 2015-07-01 2020-11-04 アネスト岩田株式会社 発電システムおよび発電方法
DE102016216303A1 (de) * 2016-08-30 2018-03-01 Robert Bosch Gmbh Abwärmerückgewinnungssystem
WO2018124253A1 (ja) * 2016-12-26 2018-07-05 株式会社ティラド ニッケルろうで接合された構造体
EP3669120A1 (en) * 2017-08-18 2020-06-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Method and system for heat recovery
JP2019190280A (ja) * 2018-04-18 2019-10-31 株式会社神戸製鋼所 熱エネルギ回収装置及び熱エネルギ回収装置の設置方法
US10883388B2 (en) 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
CN110411232B (zh) * 2019-06-13 2020-09-25 南京康立瑞生物科技有限公司 一种改进型冷凝装置
FR3099206B1 (fr) * 2019-07-26 2022-03-11 Air Liquide Procédé de production d’énergie électrique utilisant plusieurs cycles de Rankine combinés
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
WO2022125816A1 (en) 2020-12-09 2022-06-16 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11187185B1 (en) * 2021-04-05 2021-11-30 Cummins Inc. Waste heat recovery lube oil management
NO346447B1 (no) * 2021-07-16 2022-08-22 Skomsvold Aage Joergen Anordning for å frembringe høyere trykk og temperatur av en gass
US20230160317A1 (en) * 2021-11-24 2023-05-25 Enviro Power, Inc. Turbo generator with separable shroud
CN114439561A (zh) * 2021-12-20 2022-05-06 华电电力科学研究院有限公司 一种锅炉烟气余热回收发电系统及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593527A (en) * 1984-01-13 1986-06-10 Kabushiki Kaisha Toshiba Power plant
US6698423B1 (en) * 1997-06-16 2004-03-02 Sequal Technologies, Inc. Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator
WO2004043606A2 (en) * 2002-11-13 2004-05-27 Utc Power, Llc Organic rankine cycle waste heat applications

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB595668A (en) * 1942-02-05 1947-12-12 Werkspoor Nv Improvements in and relating to steam power plants for the propulsion of vessels
DE685009C (de) * 1936-05-09 1939-12-09 Kloeckner Humboldt Deutz Akt G Durch Motorabgase beheizte Dampferzeugungsanlage zum Betrieb der Hilfsdampfmaschinen auf durch Generatorgasmotoren betriebenen Schiffen
GB669945A (en) * 1949-09-15 1952-04-09 Vickers Electrical Co Ltd Improvements in or relating to marine propulsion power plant
GB743037A (en) * 1953-08-27 1956-01-04 Oscar Johnson Baggerud Improvements in or relating to marine power plants
US3220229A (en) * 1963-12-13 1965-11-30 Gen Motors Corp Clothes washer and dryer
US3302401A (en) * 1965-01-26 1967-02-07 United Aircraft Corp Underwater propulsion system
GB1159090A (en) * 1968-05-20 1969-07-23 Warnowwerft Warnemuende Veb Combined Propulsion Plant for Ships.
US3613368A (en) * 1970-05-08 1971-10-19 Du Pont Rotary heat engine
US3873817A (en) * 1972-05-03 1975-03-25 Westinghouse Electric Corp On-line monitoring of steam turbine performance
US4342200A (en) * 1975-11-12 1982-08-03 Daeco Fuels And Engineering Company Combined engine cooling system and waste-heat driven heat pump
JPS53129749A (en) * 1977-04-19 1978-11-13 Mitsubishi Heavy Ind Ltd Exhaust heat recovery unit for ship motor
JPS543220A (en) * 1977-06-08 1979-01-11 Kawasaki Heavy Ind Ltd Exhausttgas turbogenerator for vessel
US4166361A (en) * 1977-09-12 1979-09-04 Hydragon Corporation Components and arrangement thereof for Brayton-Rankine turbine
NL7800077A (nl) * 1978-01-03 1979-07-05 Thomassen Holland Bv Gasturbine-installatie.
US4276747A (en) * 1978-11-30 1981-07-07 Fiat Societa Per Azioni Heat recovery system
FR2483009A1 (fr) * 1980-05-23 1981-11-27 Inst Francais Du Petrole Procede de production d'energie mecanique a partir de chaleur utilisant un melange de fluides comme agent de travail
JPS5724406A (en) * 1980-07-19 1982-02-09 Ishikawajima Harima Heavy Ind Co Ltd Method of controlling turbine-driven electricity generator directly coupled to main engine
US4407131A (en) * 1980-08-13 1983-10-04 Battelle Development Corporation Cogeneration energy balancing system
US4386499A (en) * 1980-11-24 1983-06-07 Ormat Turbines, Ltd. Automatic start-up system for a closed rankine cycle power plant
DE3245351A1 (de) * 1982-12-08 1984-06-14 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Antriebsvorrichtung fuer ein hilfsenergieerzeugungssystem eines schiffes
US4590384A (en) * 1983-03-25 1986-05-20 Ormat Turbines, Ltd. Method and means for peaking or peak power shaving
US4760705A (en) * 1983-05-31 1988-08-02 Ormat Turbines Ltd. Rankine cycle power plant with improved organic working fluid
JPS6088806A (ja) * 1983-10-21 1985-05-18 Mitsui Eng & Shipbuild Co Ltd 内燃機関の廃熱回収装置
US4604714A (en) * 1983-11-08 1986-08-05 Westinghouse Electric Corp. Steam optimization and cogeneration system and method
US4617808A (en) * 1985-12-13 1986-10-21 Edwards Thomas C Oil separation system using superheat
JPS62184108A (ja) * 1986-02-10 1987-08-12 Asahi Chem Ind Co Ltd 高分子多孔質中空糸
JPS63134867A (ja) * 1986-11-27 1988-06-07 Mitsubishi Heavy Ind Ltd 海洋温度差発電装置
JPH073166B2 (ja) * 1987-02-12 1995-01-18 川崎重工業株式会社 排ガスタ−ボ発電機とデイ−ゼル発電機の並列運転制御方法
JP2595232B2 (ja) * 1987-03-03 1997-04-02 株式会社日阪製作所 熱回収装置の最適運転方法
US4753077A (en) * 1987-06-01 1988-06-28 Synthetic Sink Multi-staged turbine system with bypassable bottom stage
US4901531A (en) * 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
JP2558520B2 (ja) * 1989-04-10 1996-11-27 鹿島建設株式会社 バイナリー・サイクル動力回収装置
JP2680674B2 (ja) * 1989-04-12 1997-11-19 財団法人電力中央研究所 海洋・廃熱温度差発電システム
US5038567A (en) * 1989-06-12 1991-08-13 Ormat Turbines, Ltd. Method of and means for using a two-phase fluid for generating power in a rankine cycle power plant
US5119635A (en) * 1989-06-29 1992-06-09 Ormat Turbines (1965) Ltd. Method of a means for purging non-condensable gases from condensers
US5000003A (en) * 1989-08-28 1991-03-19 Wicks Frank E Combined cycle engine
FR2661453B1 (fr) * 1990-04-26 1994-07-08 Bertin & Cie Generateur autonome d'energie thermique et module energetique sous-marin comprenant un tel generateur.
US5174120A (en) * 1991-03-08 1992-12-29 Westinghouse Electric Corp. Turbine exhaust arrangement for improved efficiency
US5113927A (en) * 1991-03-27 1992-05-19 Ormat Turbines (1965) Ltd. Means for purging noncondensable gases from condensers
NZ248799A (en) * 1992-10-26 1996-03-26 Ormat Ind Ltd Power plant, using heat from geothermal steam and brine, with recuperator to transfer heat from organic vapor exiting turbine to organic fluid exiting condenser
US5339632A (en) * 1992-12-17 1994-08-23 Mccrabb James Method and apparatus for increasing the efficiency of internal combustion engines
US5598706A (en) * 1993-02-25 1997-02-04 Ormat Industries Ltd. Method of and means for producing power from geothermal fluid
US5860279A (en) * 1994-02-14 1999-01-19 Bronicki; Lucien Y. Method and apparatus for cooling hot fluids
US6167706B1 (en) * 1996-01-31 2001-01-02 Ormat Industries Ltd. Externally fired combined cycle gas turbine
US5632143A (en) * 1994-06-14 1997-05-27 Ormat Industries Ltd. Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
US5509466A (en) * 1994-11-10 1996-04-23 York International Corporation Condenser with drainage member for reducing the volume of liquid in the reservoir
TR199501702A2 (tr) * 1994-12-29 1997-03-21 Ormat Ind Ltd Jeotermal akiskandan güc üretmek icin usul ve cihaz.
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
US5640842A (en) * 1995-06-07 1997-06-24 Bronicki; Lucien Y. Seasonally configurable combined cycle cogeneration plant with an organic bottoming cycle
US5664414A (en) * 1995-08-31 1997-09-09 Ormat Industries Ltd. Method of and apparatus for generating power
US5647221A (en) * 1995-10-10 1997-07-15 The George Washington University Pressure exchanging ejector and refrigeration apparatus and method
US5884323A (en) * 1995-10-13 1999-03-16 3Com Corporation Extendible method and apparatus for synchronizing files on two different computer systems
US5843214A (en) * 1995-10-31 1998-12-01 California Energy Commission Condensable vapor capture and recovery in industrial applications
US5761921A (en) * 1996-03-14 1998-06-09 Kabushiki Kaisha Toshiba Air conditioning equipment
US5799484A (en) * 1997-04-15 1998-09-01 Allied Signal Inc Dual turbogenerator auxiliary power system
US6009711A (en) * 1997-08-14 2000-01-04 Ormat Industries Ltd. Apparatus and method for producing power using geothermal fluid
JPH11223106A (ja) * 1998-02-03 1999-08-17 Mayekawa Mfg Co Ltd 一体構造の駆動体内蔵タービンを備えた発電装置を含む動力発生装置
US6101813A (en) * 1998-04-07 2000-08-15 Moncton Energy Systems Inc. Electric power generator using a ranking cycle drive and exhaust combustion products as a heat source
US6052997A (en) * 1998-09-03 2000-04-25 Rosenblatt; Joel H. Reheat cycle for a sub-ambient turbine system
JP2000111278A (ja) * 1998-10-06 2000-04-18 Usui Internatl Ind Co Ltd 多管式熱交換器
US6571548B1 (en) * 1998-12-31 2003-06-03 Ormat Industries Ltd. Waste heat recovery in an organic energy converter using an intermediate liquid cycle
JP2001164907A (ja) * 1999-12-10 2001-06-19 Honda Motor Co Ltd 多気筒内燃機関の廃熱回収装置
DE10008721A1 (de) * 2000-02-24 2001-08-30 Siemens Ag Gas- und Dampfturbinenantrieb für ein Schiff
US6622470B2 (en) * 2000-05-12 2003-09-23 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
US6539720B2 (en) * 2000-11-06 2003-04-01 Capstone Turbine Corporation Generated system bottoming cycle
JP2002162178A (ja) * 2000-11-21 2002-06-07 Mitsubishi Heavy Ind Ltd 熱交換器および熱交換器の邪魔体
US20020148225A1 (en) * 2001-04-11 2002-10-17 Larry Lewis Energy conversion system
US6539718B2 (en) * 2001-06-04 2003-04-01 Ormat Industries Ltd. Method of and apparatus for producing power and desalinated water
DE10227709B4 (de) * 2001-06-25 2011-07-21 Alstom Technology Ltd. Dampfturbinenanlage sowie Verfahren zu deren Betrieb
US6598397B2 (en) * 2001-08-10 2003-07-29 Energetix Micropower Limited Integrated micro combined heat and power system
US7281379B2 (en) * 2002-11-13 2007-10-16 Utc Power Corporation Dual-use radial turbomachine
US6880344B2 (en) * 2002-11-13 2005-04-19 Utc Power, Llc Combined rankine and vapor compression cycles
US7254949B2 (en) * 2002-11-13 2007-08-14 Utc Power Corporation Turbine with vaned nozzles
US6892522B2 (en) * 2002-11-13 2005-05-17 Carrier Corporation Combined rankine and vapor compression cycles
US7146813B2 (en) * 2002-11-13 2006-12-12 Utc Power, Llc Power generation with a centrifugal compressor
US20030167769A1 (en) * 2003-03-31 2003-09-11 Desikan Bharathan Mixed working fluid power system with incremental vapor generation
US7320221B2 (en) * 2004-08-04 2008-01-22 Oramt Technologies Inc. Method and apparatus for using geothermal energy for the production of power
US7121906B2 (en) * 2004-11-30 2006-10-17 Carrier Corporation Method and apparatus for decreasing marine vessel power plant exhaust temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593527A (en) * 1984-01-13 1986-06-10 Kabushiki Kaisha Toshiba Power plant
US6698423B1 (en) * 1997-06-16 2004-03-02 Sequal Technologies, Inc. Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator
WO2004043606A2 (en) * 2002-11-13 2004-05-27 Utc Power, Llc Organic rankine cycle waste heat applications

Also Published As

Publication number Publication date
CA2589781C (en) 2014-08-05
KR20070086244A (ko) 2007-08-27
EP1828550B1 (en) 2013-08-21
CN101107425A (zh) 2008-01-16
KR100844634B1 (ko) 2008-07-07
EP1828550A1 (en) 2007-09-05
NO20073280L (no) 2007-08-30
CA2589781A1 (en) 2006-06-08
WO2006060253A1 (en) 2006-06-08
HK1116848A1 (en) 2009-01-02
EP1828550A4 (en) 2010-12-08
JP2008522081A (ja) 2008-06-26
US20060112693A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
CN101107425B (zh) 用于利用废热产生电力的方法和设备
US7665304B2 (en) Rankine cycle device having multiple turbo-generators
US10472994B2 (en) Systems and methods for controlling the pressure of a working fluid at an inlet of a pressurization device of a heat engine system
US7121906B2 (en) Method and apparatus for decreasing marine vessel power plant exhaust temperature
EP3631173B1 (en) System and method for controlling the pressure of a working fluid at an inlet of a pressurization device of a heat engine system
CN102003285A (zh) 涡轮排气再循环的改进
KR20160040135A (ko) 초임계 작동 유체 회로용 질량 관리 시스템
KR101247762B1 (ko) 선박의 폐열을 이용한 저항 감소 장치
WO2012074911A2 (en) Heat engine cycles for high ambient conditions
EP3093456B1 (en) Heat energy recovery system
CN101603466A (zh) 用于回收涡轮机辅助系统所产生的废热的系统
CA2768347C (en) Gas turbine exhaust gas cooling system
EP3835208B1 (en) Bootstrap air cycle with vapor power turbine
JP2011074897A (ja) 流体機械駆動システム
JP5951593B2 (ja) 排熱回収装置、排熱回収型船舶推進装置および排熱回収方法
KR20180083444A (ko) 열 교환기, 에너지 회수 장치 및 선박
US9540961B2 (en) Heat sources for thermal cycles
CN203796340U (zh) 利用燃气轮机排气余热的有机朗肯循环发电装置
RU2266414C2 (ru) Теплоэнергетическая установка для утилизации теплоты выхлопных газов газотурбинного двигателя
CN220451995U (zh) 一种利用闪蒸汽回收发电装置
JP2013104336A (ja) 排熱回収型船舶推進装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1116848

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1116848

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: UNITED TECHNOLOGIES CORP. (US) 1, FINANCIAL PLAZA

Free format text: FORMER OWNER: CARRIER CORP.

Effective date: 20130507

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130507

Address after: American Connecticut

Patentee after: United Technologies Corporation

Address before: American New York

Patentee before: Carrier Corp.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100526

Termination date: 20141122

EXPY Termination of patent right or utility model