CN101045016A - 通过起搏的损伤评估 - Google Patents

通过起搏的损伤评估 Download PDF

Info

Publication number
CN101045016A
CN101045016A CNA2007101006965A CN200710100696A CN101045016A CN 101045016 A CN101045016 A CN 101045016A CN A2007101006965 A CNA2007101006965 A CN A2007101006965A CN 200710100696 A CN200710100696 A CN 200710100696A CN 101045016 A CN101045016 A CN 101045016A
Authority
CN
China
Prior art keywords
signal
pacing
energy
heart
cardiac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101006965A
Other languages
English (en)
Other versions
CN101045016B (zh
Inventor
A·戈瓦里
A·C·阿尔特曼
Y·埃夫拉思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Inc
Original Assignee
Biosense Webster Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Inc filed Critical Biosense Webster Inc
Publication of CN101045016A publication Critical patent/CN101045016A/zh
Application granted granted Critical
Publication of CN101045016B publication Critical patent/CN101045016B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Robotics (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

通过起搏的损伤评估,通过在同时将消融能量引向靶点时而估计起搏信号的捕获来实现几乎实时地对心脏内消融进程的监视。消融的充分性由最大预定起搏电压时信号捕获的失败来指示。心脏导管中的公共电极同时被用于测试起搏捕获并递送消融能量。

Description

通过起搏的损伤评估
技术领域
本发明涉及用于治疗心脏传导障碍的方法和系统。特别地,本发明涉及验证和监视经皮心脏消融过程。
背景技术
心房纤维颤动(atrial fibrillation)是一种熟知的心脏病,其引起血流动力效率降低,在严重的情况下可能导致心脏栓塞、发作、室性心律失常以及其它潜在的致命并发症。经常由心肌内非正常的电传导路径导致心房纤维颤动。通常,电激活信号以有秩序的方式被传导通过心房并进入心室,在每个心搏周期中仅经过心脏中的每个点一次。在考虑从心脏的一个区域到另一个区域的正常传播延迟的情况下,使心脏中不同位置的电激活信号很好地相互关联。响应于局部激活信号,心房肌纤维以适当的同步性收缩,以通过心房泵送血液。然而,在心房纤维颤动中,失去这种有秩序的收缩,认为由于多个变化的、空间无组织的激活子波跨越心房的表面扫描而导致电激活的不规律图案。给定的心房肌纤维被激活以在每个心搏周期中收缩多次,并且纤维颤动代替正常收缩。这种现象在Gregory W.Botteron和Joseph M.Smith的文章“A Technique forMeasurement of the Extent of Spatial Organization of Atrial Activation During AtrialFibrillation in the Intact Human Heart”(IEEE Transactions on BiomedicalEngineering,12(June 1995),pages 579-586)中和在第二篇文章“QuantitativeAssessment of the Spatial Organization of Atrial Fibrillation in the Intact HumanHeart”(Circulation 93(Feb.1,1996),pages 513-518)中进行了详细描述。在此将该两篇文章引入作为参考。
用于如上述治疗心律失常的侵入性心脏消融技术在本领域中是公知的。例如,对Ben-Haim发布的美国专利No.5,443,489和5,480,422描述了用于消融心脏组织的系统。对Mulier等人发布的美国专利No.5,807,395和对Ormsby等人发布的美国专利No.6,190,382描述了用于利用射频能量消融体组织的系统。对Hassett等人发布的美国专利No.6,251,109和6,090,084、对Diederich等人发布的No.6,117,101、对Swartz等人发布的No.5,938,660和6,235,025、对Lesh等人发布的No.6,245,064、Lesh发布的No.6,164,283、6,305,378和5,971,983、对Crowley等人发布的No.6,004,269以及对Haissaguerre等人发布的No.6,064,902描述了治疗心房心律失常的组织消融装置。对Edwards等人发布的美国专利No.5,366,490描述了用于利用导管将破坏性能量施加于靶组织的方法。
通过电解剖标测(electro anatomical mapping)引导、利用多个邻近的圆周点的射频消融在Pappone C等人的文献“Circumferential Radiofrequency Ablationof Pulmonary Vein Ostia:A New Anatomic Approach for Curing Atrial Fibrillation”(Circulation 102:2619-2628(2000))中提出。
对Sanchez等人发布的美国专利No.6,743,225提出在消融治疗过程中测量接近损伤部位的心脏组织的电活动,然后对测量进行比较,以确定损伤在临床上是否有效,以便能够阻断心肌传播。例如,心电图信号幅度的标准偏差已经被用作一种尺度。
对Ben-Haim等人发布的美国专利No.5,954,665的公开在这里被引入作为参考,它描述了一种具有分开间隔的两个电极的心脏导管。在操作中,在正常传导的条件下,在两个电极的激活信号之间存在可测量的传播延迟。操纵该导管以便在所怀疑的非正常传导路径的部位处以与心内膜接触的方式定位消融装置。响应于心脏激活信号,分别从两个电极优选地同时、或可代替地相继接收第一和第二预消融信号。计算第一和第二预消融信号的相关系数。然后激活消融装置,以便优选地通过对其施加射频能量而在该部位消融心内膜。在完成消融并去激活消融装置之后,分别从第一和第二电极接收第一和第二后消融信号,再次计算相关系数。如果预和后消融系数基本相等,则该消融被确定,已不足以中断非正常路径。但是,如果后消融相关系数基本上小于或大于预消融系数,则该消融被视为对中断非正常路径已是有效的。
还已经提出通过利用气囊所传送的超声而产生圆周消融损伤。例如该技术在Natale A等人的如下文献:First Human Experience With Pulmonary VeinIsolation Using a Through-the-Balloon Circumferential Ultrasound Ablation Systemfor Recurrent Atrial Fibrillation(Circulation 102:1879-1882(2000))中进行了描述。
发明内容
通常很难确定为了获得期望的结果而应该在消融过程中施加的能量(例如射频能量)的用量。当用量不足时,非传导损伤不会通过心脏壁延伸足够的深度来中断非正常的传导,使得在该过程完成之后心律失常可能持续或返回。另一方面,过量的用量会对消融部位处或周围的组织产生危险的破坏。适当的用量已知根据如导管的几何形状、心脏壁的厚度、导管电极和心脏壁之间的电接触的质量以及消融部位附近的血流之类的不同因素从一种情况到一种情况而不同。血流将射频能量所产生的热带走。
本发明的公开实施例提供用于几乎实时地监视消融进程的安全、简单的方法,其中对起搏信号的捕获进行估计,而同时将消融能量引向靶点。利用该技术,医师能够确定何时产生充足的损伤,而无需中断消融过程。用于消融的相同的导管和电极同时被用于测试起搏捕获(pacing caprure)。按照本发明的方面,医师立即知道何时停止消融,这通过在预定的最大电压时起搏信号捕获的失去来指示。这样,减轻了过度消融的危险。
本发明的实施例提供了用于在对象的心脏内消融组织的方法,所述方法通过以下来实施:将探针插入心脏的腔室内;将探针放置在腔室中的靶附近用于消融该靶;通过经由探针传输起搏信号而使心脏起搏;并将探针的能量引向该靶以消融其中的组织,直至起搏信号在心脏中不再被捕获为止。
在该方法的一个方面中,同时对心脏起搏并且引导探针的能量。
在该方法的另一方面,以交替的方式反复地对心脏起搏并引导探针的能量。
该方法的又一方面包括,在每次执行对心脏的起搏之后确定起搏信号是否被捕获。
在该方法的一个方面中,引导能量包括通过探针在公共通道上与起搏信号一起传导能量信号。
按照该方法的再一方面,起搏信号和能量信号具有不同的频率。
按照该方法的另一方面,该能量为射频能量。
在该方法的再一方面中,在起搏信号在心脏中不再被捕获之后,起搏信号的幅度增大,直至起搏信号在心脏中被再捕获为止,此后第二次执行引导能量的步骤。
在放置探针之后通过监视在该靶附近的温度来执行该方法的附加方面。
在放置探针之后通过监视心脏的电激活图(electrical activation map)来执行该方法的一个方面。
该方法的再一方面包括通过探针获取靶的超声图像,同时将能量引向该靶。
本发明的实施例提供了一种心脏消融系统,包括导管,所述导管适于插入心脏并具有末梢尖端和其上置于末梢的电极。该系统包括用于产生起搏信号的第一发生器;用于产生消融能量信号的第二发生器;导管中的用于向所述电极传输起搏信号和消融能量信号的导体;和监视器,其可操作以在将消融能量信号施加于该电极时提供由心脏对起搏信号的捕获的指示。
心脏消融系统可以包括导管中的方位传感器、连接于该方位传感器的用于确定导管末梢尖端在心脏内的位置的电路。该电极可以恰好是用于传导起搏信号和消融能量信号的一个公共电极。
附图说明
为了更好地理解本发明,参考本发明的详细描述,例如结合下列附图来阅读本发明的详细描述,其中相同的元件具有相同的参考标号,其中:
图1是按照本发明的公开实施例对活对象的心脏执行消融过程的系统的示意图;
图2是按照本发明的公开实施例的在图1中所示的系统的一部分的方框图,其中射频功率源的输出与起搏信号混合;
图3是表示按照本发明的公开实施例用于对通过心脏内消融所形成的损伤进行评估的方法的流程图;
图4是按照本发明的可替代实施例的在图1所示系统中所用的导管末梢尖端的示意图;
图5是按照本发明的可替代实施例的在图1所示系统中所用的具有有孔尖端的导管的末梢部分的端视图;
图6是沿在图5中所示的导管的线6-6所取的剖面图;
图7是按照本发明的可替代实施例的在图1所示系统中所用的具有多个有孔尖端的导管的末梢部分的端视图。
具体实施方式
在以下描述中,为了提供对本发明的全面理解而提出了大量的特定细节。但是对本领域技术人员来说,显而易见本发明可在没有这些特定细节的情况下被实施。在其它情形中,为了避免不必要的混淆,公知的电路、控制逻辑以及传统算法和处理的计算机程序指令的细节未被详细描述。
体现本发明方面的软件编程代码典型地被保存在永久存储器中,例如计算机可读介质。在客户端服务器环境中,这种软件编程代码可被存储在客户端或者服务器上。软件编程代码可被包含在多种熟知的供数据处理系统使用的媒介之一上。这包括、但不限于磁和光存储装置(例如磁盘驱动器、磁带、压缩光盘(CD)、数字视频光盘(DVD)),和包含在具有或者不具有载波的传输媒介中的计算机指令信号,其中所述信号被调制到所述载波上。例如,传输媒介可包括通讯网络,例如因特网。此外,虽然本发明可以计算机软件形式体现,但实施本发明所必需的功能可替代地可利用硬件组件(例如专用集成电路或其它硬件)或硬件组件和软件的组合部分地或整体地来体现。
实施例1
下面转向附图,首先参照图1,所述图1是按照本发明的公开实施例用于对活对象的心脏12执行消融过程的系统10的示意图。该系统包括探针、典型地是导管14,其由典型地为医生的操作者16经由患者的血管系统经皮插入心脏的腔室或血管结构。操作者16使导管的末梢尖端18在要消融的靶点处与心脏壁相接触。然后射频电流通过导管中的线传导至末梢尖端18的一个或多个电极,所述电极将射频能量施加于心肌。该能量在组织中被吸收,从而将该组织加热至某一点(典型为大约50℃),在该点永久丧失其电激发性。当成功时,该过程在心脏组织中产生非传导损伤,所述非传导损伤破坏了引起心律失常的非正常电通路。
导管14典型地包括手柄20,所述手柄具有适当的控制装置以使操作者16能够在消融期间如所期望的那样掌控、定位和定向导管的末梢尖端18。为了辅助操作者16,导管14的末梢部分包含方位传感器(未示出),所述方位传感器向位于控制台24中的定位处理器22提供信号。患者体表面上的ECG电极(未示出)经由电缆26向ECG监视器28传导电信号。导管14可以由共同转让的美国专利No.6,669,692中所描述的消融导管加以必要的变更来修改,所述美国专利的公开在此引入作为参考。
定位处理器22是定位子系统的元件,所述定位子系统用于测量导管14的位置和取向坐标。贯穿本专利申请,术语“位置(location)”指导管的空间坐标,术语“取向”指其角坐标。术语“方位(position)”指导管的全部位置信息,包括位置和取向坐标。
在一个实施例中,定位子系统包括磁方位跟踪系统,所述磁方位跟踪系统确定导管14的位置和取向。定位子系统在预定的工作体积中产生磁场,并感测导管处的这些场。定位子系统典型地包括一组外部辐射体,例如位于患者外部固定的已知方位中的场发生线圈30。线圈30在心脏12的附近产生场、典型地是电磁场。
在定位子系统的可替代实施例中,导管14中的辐射体(例如线圈)产生电磁场,所述电磁场由患者体外的传感器(未示出)接收。
响应于所感测的场,导管14中的方位传感器(未示出)经由电缆32通过导管14向控制台24传输与方位相关的电信号。可替代地,导管14中的方位传感器可经由无线链路向控制台24传输信号,如在美国专利申请公布No.2003/0120150和2005/0099290中所述的那样,其公开内容在此引入作为参考。定位处理器22基于由方位传感器所发送的信号计算导管14的位置和取向。典型地,定位处理器22从导管14接收、放大、过滤、数字化以及以其它方式处理信号。定位处理器22还向显示器34提供信号输出,所述显示器34提供导管14的末梢尖端18相对于为消融所选择的部位的方位的可视指示。
可用于这种目的的一些方位跟踪系统例如在美国专利6,690,963、6,618,612和6,332,089、以及美国专利公布2002/0065455、2004/0147920和2004/0068178中进行了描述,其公开在此全部引入作为参考。尽管图1中所示的定位子系统利用磁场,但是下面描述的方法可利用任何其它适当的定位子系统实施,例如基于电磁场、声或超声测量的系统。
可替代地,系统10可被实现为Carto-Biosense导航系统,其可从BiosenseWebster,Inc.(3333 Diamond Canyon Road,Diamond Bar,CA 91765)获得,其适于被修改用以执行这里所述的过程。
本发明的实施例同时结合消融和起搏,以便可以几乎实时地评估消融损伤,而无需中断该过程。为此目的,控制台24包括产生射频消融功率信号的射频功率源36。频率为13.56MHz的50瓦的功率输出是合适的。控制台24具有低频起搏发生器38,其产生心脏起搏信号。起搏发生器38典型地具有用于在操作者16的控制下改变其输出电压(例如3-6伏)而维持恒定的电流输出的电路。可替代地,起搏发生器38可维持恒定的电压,而改变其电流输出。射频功率源36和起搏发生器38的输出经由电缆32被传导至导管14。
下面参照图2,图2是按照本发明的公开实施例的系统10(图1)的一部分的方框图,其中射频功率源36的输出在混合器40中与由起搏发生器38所产生的起搏信号相混合。由于射频和起搏信号处于不同的、间隔很远的频率,因此起搏信号基本不影响消融功率,并且消融信号不影响心脏的起搏。组合波形沿着作为组合波形公共通道的线42通过导管14传导。组合波形在导管14的末梢尖端18处被施加于公共电极44,用以同时起搏患者的心脏并向靶递送消融能量。电极44可以按照美国专利申请公布No.2004/0158141被构造,其同此为共同受让人,并且在这里引入作为参考。ECG监视器28(图1)指示心脏是否当前已经捕获了起搏信号。方位传感器46典型地位于末梢尖端18内,靠近电极44。方位传感器46可以是在对Ben-Haim发布的美国专利No.6,751,492中所述类型的超声方位传感器,其公开在此引入作为参考。
可替代地,可以使射频功率源36的输出与起搏发生器38的输出交织。在这种操作模式下,射频功率源36周期性地被禁止使用一个短的时间、典型地为5-60毫秒。在此间隔期间,起搏发生器38可操作以产生起搏信号。
作为另一替代方案,射频功率源36保持被禁止使用一段时间,在此期间起搏发生器38被使能一个时段,该时段长得足以自动地或由操作者确定起搏信号是否已经被捕获。在该确定之后,如果附加消融是必要的,则射频功率源36被再使能。
如在图2中所示,尽管电极44被示为单个电极,但导管14可包括任何形式任何数目的电极。例如,导管14可包括两个或多个环电极、多个点电极或者点电极阵列、或者这些类型电极的任意组合,以执行这里所述的治疗功能。
监视消融
按照本发明实施例所采用的用于评估由消融所产生的损伤程度的方法是试图通过施加于消融区域的电极而与消融同时地起搏心脏。如果起搏信号被“捕获”、也即心跳与起搏信号同步,则损伤形成被视为未完成。过去为了测试起搏信号的捕获,需要停止消融过程,并且如果确定需要进一步的消融,则然后重新开始后面的过程。
下面参照图3,图3是表示按照本发明的公开实施例的评估通过心脏内消融所形成的损伤的方法的流程图。在初始步骤48,操作者通常将导管14(图1)引入心脏。
接下来,在步骤50,操作者利用由显示器34所提供的方位指示以在心脏的腔室中对导管导航而将末梢尖端18定位在靶点处。
接下来,在步骤52,操作者激活起搏发生器38并增大起搏电压,直至起搏信号被捕获为止。
接下来,在步骤54,射频功率源36被激活,操作者开始消融靶点处的组织。
接下来,在延迟步骤56,期望在心脏12的壁中形成损伤。消融继续,直至下列事件之一发生:(1)损伤程度使得起搏信号不再被捕获,或(2)已经超出超时(timeout)间隔,典型地为10个周期。该超时间隔不是临界性的,并且2-10个心搏周期的范围是合适的。
现在控制(control)进行到判定步骤58,其中确定超时是否已发生。如果在判定步骤58的确定是肯定的,则控制进行到下面所述的判定步骤60。
如果判定步骤58的确定是否定的,则控制进行到步骤62,其中起搏电压被增大。增量一般基于操作者的经验和患者的状况。在消融之前,捕获的起搏门限典型地处于0.3-1.0mA范围中。在消融之后,起搏门限可能增大到大约10mA。为了快速设置起搏门限,起初在步骤62中使用较大的增量,大约是0.5mA。稍后在该过程中,该增量可减小到大约0.1mA。
现在控制进行到判定步骤64,其中确定由于起搏信号强度的增加而起搏信号是否已经被再捕获。如果判定步骤64的确定是肯定的,则控制返回延迟步骤56,消融继续。
如果判定步骤64的确定是否定的,则控制进行到步骤66,其中确定是否已达到预定的最大电平。当采用恒定电流起搏时,最大值典型地被设为初始起搏门限电平的大约2-3倍。例如,如果初始门限为0.5mA,则一旦门限升至1.5mA,消融就可被视为完成。如果判定步骤64的确定是否定的,则控制返回步骤62。
如果判定步骤64的确定是肯定的,则推断出由消融所产生的损伤程度是足够的。该过程在最终步骤68成功结束,然后结束。当然,当再进入的环路或其它非正常传导路径是复杂的,则在步骤50开始的顺序可在另一个靶点被重复。
如果判定步骤58的确定是肯定的,则执行判定步骤60。在该点,通过消融来中断起搏信号的捕获已经是不可能的。操作者现在要决定是否重新定位该导管并进一步尝试消融。如果判定步骤60的确定是否定的,则该过程被断言是不成功的,并在最终步骤70结束。
如果判定步骤60的确定是肯定的,则控制进行到步骤72,其中射频功率源36和起搏发生器38被复位。然后控制返回步骤50用以调节末梢尖端18的方位。
实施例2
以上参照图2所公开的方法可与其它损伤评估(lesion assessment)技术相结合。现在参照图4,图4是按照本发明的可替代实施例的导管14(图1)的末梢尖端18的示意图。与靶组织74毗邻示出的末梢尖端18具有超声换能器(ultrasound transducer)76阵列和温度传感器78,用于附加的损伤产生和评估,如例如在美国专利No.5,443,489、6,321,109、6,083,170、6,301,496和美国专利申请公布No.2004/0143258和2004/0147920所述,其公开在此引入作为参考。换能器76和温度传感器78连接于控制台24(图1)中适当的信号处理电路,这可被实现成上述Carto-Biosense导航系统。损伤评估可同时通过利用电极44所获取的电的反馈和从温度传感器78所获取的局部温度信息结合利用换能器76所以获取的信息来实施。
换能器76典型地被实现为定相阵列(phased array)。在该实施例中,通常与换能器76相对的导管壁的分段80是声致发光的,使得换能器76具有基本朝向前方的视场82,如虚线所示。当电极44为固态时,有效地发生向靶组织的能量传送。但是,当利用该实施例时,为了使消融部位进入视场82,可能有必要调整末梢尖端18的方位。
可替代地,可使用换能器的二维阵列或者甚至单个元件换能器。换能器76可以朝向前方或具有其它方向特性,例如所述换能器可以朝向侧方,或者甚至可能是全方向的。典型地,该阵列包括至少10个换能器,每一个的宽不大于0.5mm。控制台24以高频驱动换能器76,典型地处于5-15MHz的范围中。在这些条件下,16个换能器的阵列例如能够产生具有分辨率大约为0.1mm的组织图像(包括Doppler(多普勒)图像)。换能器76可以以这种方式被用于在消融之前确定靶组织74的厚度和其它性质,并评估消融过程的进程和结果。
在一个实施例中,换能器76可被用于确定靶组织74的温度作为消融程度的量度,附加于或代替可由温度传感器78所实施的温度测量。为了确定温度,通过测量从靶组织74的远方表面86反射并然后返回换能器76的波的往返时间来估计超声波在表面层84中的传播速度。一般来说,超声波的传播速度随组织温度而增大。例如在水中,超声波的速度每度改变大约2m/s。因此,当超声波在较短的时间间隔内被反射回换能器76时,由于表面层84相对于下面的层变薄,温度增加被感知。通过在实施射频消融之前和之后测量并比较靶组织74的视厚度(apparent thickness),温度在组织中变化并因此消融程度可以被估计。当换能器76以在10-15MHz范围内的频率发射并接收超声波时,对应于几度数量级的温度变化,0.1mm或更小数量级的视厚度变化以这种方式可以被检测。
作为另一实例,换能器76可以被用于观察由于消融期间的气穴现象而在靶组织74中微泡的产生。微泡的数目典型地随组织温度而增加。通过减去由换能器76所形成的连续图像,可以最清楚地观察到微泡,其中微泡密度随时间而有秩序的增加和减少可被用于在控制台24中利用公知的方法显影的超声图像中从背景噪声中辨别出微泡。这样观察到的微泡密度给出了组织温度的量度。
在又一实例中,换能器76可被用于Doppler成像模式,以测量靶组织74的较深层88中的血流速度。对上面层(例如表面层84)的消融预期引起较深层88中的血管阻塞,从而引起血流速度的改变。通过测量由消融过程所引起的速度改变来评估消融程度。
可替代地或附加地,可使用用于测量组织温度并评估消融组织程度的如在本领域中所公知的其它方法。例如,导管14可包括小型核磁共振(NMR)传感器(未示出),其可被用于在导管尖端附近标测(map)消融程度。
这些技术可结合上述对起搏信号捕获的评估而以多种组合方式被应用。例如,当在判定步骤66(图3)识别出最大起搏电压之前可达到临界局部温度。这可使操作者暂时停止消融,以避免烧焦组织。可替代地,利用换能器76获取的信息可能展现组织解剖或血流的充分破坏,以使该过程尽早终止。例如,当超声换能器与起搏和消融电极结合使用时,如果起搏和消融电极接触到靶组织,则起搏电极可能未达到该过程需要被停止的电平。但是,超声换能器将检测会触发停止该过程的变化。可替代地,如果导管尖端不指向该靶,则朝向前方的超声换能器不会检测消融的进程。然而,起搏门限的达到则会向操作者发出警报以停止该过程。
实施例3
现在参照图5,图5是按照本发明的可替代实施例的适于在系统10(图1)中使用的导管的末梢部分90的端视图。在该实施例中,尖端具有消融电极92,该消融电极92具有直径为大约1-1.5mm的中心孔94。
现在参照图6,图6是沿图5中所示的导管的末梢部分90的线6-6的剖面图。电极92在导管尖端后面延伸一个短的距离,由虚线96所限定。超声换能器98被定位于孔94后方的一短距离处,所述超声换能器98通过声致发光材料(例如硅)的塞子100与导管末梢末端相分离,并且与塞子100具有接口102。换能器98朝向前方,并且具有虚线表示的视场104,有大约8mm的操作范围。视场104通过孔94延伸,并包围靶组织,但由于电极92与电极44(图4)相比接触面积减小,因此能量的传送在某种程度上被减少。
实施例4
现在参照图7,图7是按照本发明的可替代实施例的适于在系统10(图1)中使用的导管的末梢部分106的端视图。该实施例的构造类似于末梢部分90(图6)。但是,在该实施例中,尖端具有消融电极108,该消融电极108具有多个直径大约为0.1mm的小孔眼或小穿孔110,它们由固体区112分隔。典型地有大约75个穿孔110。但是,该数目不是临界的。虽然在图7的电极108中示出圆形的孔眼,但其它形状可以同样有效。
该实施例具有介于图4中所示的方案和图5、图6中所示的方案之间的特性。固体区112部分地阻挡换能器的视场,但与图5的实施例相比,该电极的能量传送增大。此外,该实施例具有这样的优点,即换能器的视场通过穿孔110延伸,并且包括靶区。因此,无需如在可能是具有图4的实施例的情况那样在操作期间改变导管尖端的方位来获得该靶的超声图像。
本领域技术人员应当理解的是,本发明不局限于在上文中已经具体所示的和所述的。更确切地说,本发明的范围包括在上文中所述的各种特征的组合和子组合、以及在现有技术中不存在的对本领域技术人员而言在阅读上述说明时可能出现的其变型和修改。

Claims (24)

1、用于在对象的心脏内消融组织的方法,包括如下步骤:
将探针插入所述心脏的腔室;
将所述探针放置在所述腔室中的靶附近,用于消融所述靶;
通过经由所述探针传输起搏信号而对所述心脏起搏;以及
将来自所述探针的能量引向所述靶,以消融其中的组织,直至所述起搏信号在所述心脏中不再被捕获为止。
2、按照权利要求1的方法,其中对所述心脏起搏和引导来自所述探针的能量的所述步骤同时被执行。
3、按照权利要求1的方法,其中对所述心脏起搏和引导来自所述探针的能量的所述步骤以交替的方式反复被执行。
4、按照权利要求3的方法,进一步包括步骤:在每次执行对所述心脏起搏的所述步骤之后,确定所述起搏信号是否被捕获。
5、按照权利要求1的方法,其中引导能量的所述步骤包括通过所述探针在公共通道上与所述起搏信号一起传导能量信号。
6、按照权利要求5的方法,其中所述起搏信号和所述能量信号具有不同的频率。
7、按照权利要求1的方法,其中所述能量为射频能量。
8、按照权利要求1的方法,进一步包括如下步骤:在所述起搏信号在所述心脏中不再被捕获之后,增大所述起搏信号的幅度,直至所述起搏信号在所述心脏中被再捕获,并第二次执行引导能量的所述步骤。
9、按照权利要求1的方法,进一步包括如下步骤:在执行放置所述探针的所述步骤之后,监视所述靶附近的温度。
10、按照权利要求1的方法,进一步包括如下步骤:在执行放置所述探针的所述步骤之后,监视所述心脏的电激活图。
11、按照权利要求1的方法,进一步包括如下步骤:在执行引导能量的所述步骤时,通过所述探针获取所述靶的超声图像。
12、一种心脏消融系统,包括:
适于插入心脏的导管,具有末梢尖端和其上被置于末梢的电极;
用于产生起搏信号的第一发生器;
用于产生消融能量信号的第二发生器;
所述导管中的导体,用于向所述电极传输所述起搏信号和所述消融能量信号;以及
监视器,其可操作以提供在将所述消融能量信号施加于所述电极时由所述心脏对所述起搏信号捕获的指示。
13、按照权利要求12的心脏消融系统,进一步包括混合器,用于组合所述起搏信号和所述消融能量信号,以向所述电极同时传输所述起搏信号和所述消融能量信号。
14、按照权利要求12的心脏消融系统,进一步包括:
所述导管中的方位传感器,和
连接于所述方位传感器的电路,用于确定在所述心脏内所述末梢尖端的位置。
15、按照权利要求12的心脏消融系统,其中所述电极恰好是用于传导所述起搏信号和所述消融能量信号的一个公共电极。
16、按照权利要求12的心脏消融系统,进一步包括所述导管中的温度传感器。
17、按照权利要求12的心脏消融系统,进一步包括所述导管中的超声换能器。
18、按照权利要求17的心脏消融系统,其中所述超声换能器是单个元件换能器。
19、按照权利要求17的心脏消融系统,其中所述超声换能器是超声换能器的定相阵列。
20、按照权利要求17的心脏消融系统,其中所述超声换能器是超声换能器的二维阵列。
21、按照权利要求17的心脏消融系统,其中所述电极具有孔,其中所述超声换能器的视场通过所述孔延伸。
22、按照权利要求17的心脏消融系统,其中所述电极具有多个孔,其中所述超声换能器的视场通过所述孔延伸。
23、按照权利要求12的心脏消融系统,其中所述起搏信号和所述消融能量信号具有不同的频率。
24、按照权利要求12的心脏消融系统,其中所述消融能量信号为射频信号。
CN2007101006965A 2006-02-17 2007-02-17 通过起搏的损伤评估 Active CN101045016B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/357,512 US7918850B2 (en) 2006-02-17 2006-02-17 Lesion assessment by pacing
US11/357512 2006-02-17

Publications (2)

Publication Number Publication Date
CN101045016A true CN101045016A (zh) 2007-10-03
CN101045016B CN101045016B (zh) 2011-11-23

Family

ID=37963485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101006965A Active CN101045016B (zh) 2006-02-17 2007-02-17 通过起搏的损伤评估

Country Status (10)

Country Link
US (1) US7918850B2 (zh)
EP (1) EP1820464A1 (zh)
JP (1) JP5306603B2 (zh)
KR (1) KR20070082873A (zh)
CN (1) CN101045016B (zh)
AU (1) AU2007200712B2 (zh)
BR (1) BRPI0700450A (zh)
CA (1) CA2578667C (zh)
IL (1) IL181266A (zh)
MX (1) MX2007001999A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198013A (zh) * 2010-03-25 2011-09-28 北京迈迪顶峰医疗科技有限公司 消融标测及起搏系统、控制装置和射频消融执行装置
CN103584911A (zh) * 2013-08-21 2014-02-19 上海慧达医疗器械有限公司 一种肾交感神经电刺激消融仪
CN106999080A (zh) * 2014-12-18 2017-08-01 波士顿科学医学有限公司 针对病变评估的实时形态分析
CN107613849A (zh) * 2014-11-03 2018-01-19 乔治华盛顿大学 用于损伤评估的系统和方法
CN112826587A (zh) * 2013-12-09 2021-05-25 韦伯斯特生物官能(以色列)有限公司 具有温度感测阵列的心包导管
CN113164210A (zh) * 2018-11-21 2021-07-23 伯恩森斯韦伯斯特(以色列)有限责任公司 将球囊电极的周边配置为位置传感器
US11589768B2 (en) 2014-10-13 2023-02-28 Boston Scientific Scimed Inc. Tissue diagnosis and treatment using mini-electrodes
US11684416B2 (en) 2009-02-11 2023-06-27 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US20080275439A1 (en) * 2002-01-25 2008-11-06 David Francischelli Cardiac ablation and electrical interface system and instrument
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
DE202004021941U1 (de) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Auswählbare exzentrische Remodellierung und/oder Ablation von atherosklerotischem Material
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
WO2007140331A2 (en) 2006-05-25 2007-12-06 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US8694077B2 (en) * 2006-10-06 2014-04-08 The Cleveland Clinic Foundation Apparatus and method for targeting a body tissue
WO2008049082A2 (en) 2006-10-18 2008-04-24 Minnow Medical, Inc. Inducing desirable temperature effects on body tissue
JP5312337B2 (ja) 2006-10-18 2013-10-09 べシックス・バスキュラー・インコーポレイテッド 標的組織の選択的な処置のための調節されたrfエネルギーおよび電気的な組織の特徴付け
ES2407329T3 (es) 2006-10-18 2013-06-12 Vessix Vascular, Inc. Sistema para inducir efectos de temperatura deseables sobre un tejido corporal
US20080161705A1 (en) * 2006-12-29 2008-07-03 Podmore Jonathan L Devices and methods for ablating near AV groove
US8535308B2 (en) 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
US8357152B2 (en) 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
US8357149B2 (en) 2008-06-05 2013-01-22 Biosense Webster, Inc. Filter for simultaneous pacing and ablation
US8437832B2 (en) 2008-06-06 2013-05-07 Biosense Webster, Inc. Catheter with bendable tip
US9101734B2 (en) 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
JP5307900B2 (ja) 2008-11-17 2013-10-02 べシックス・バスキュラー・インコーポレイテッド 組織トポグラフィの知識によらないエネルギーの選択的な蓄積
US9326700B2 (en) 2008-12-23 2016-05-03 Biosense Webster (Israel) Ltd. Catheter display showing tip angle and pressure
US8600472B2 (en) 2008-12-30 2013-12-03 Biosense Webster (Israel), Ltd. Dual-purpose lasso catheter with irrigation using circumferentially arranged ring bump electrodes
US8475450B2 (en) 2008-12-30 2013-07-02 Biosense Webster, Inc. Dual-purpose lasso catheter with irrigation
US8545412B2 (en) * 2009-05-29 2013-10-01 Boston Scientific Scimed, Inc. Systems and methods for making and using image-guided intravascular and endocardial therapy systems
CA2766640C (en) 2009-06-30 2016-01-05 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US20110028848A1 (en) 2009-07-31 2011-02-03 Cem Shaquer Methods and Apparatus for Detecting and Mapping Tissue Interfaces
US10688278B2 (en) 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
US8920415B2 (en) 2009-12-16 2014-12-30 Biosense Webster (Israel) Ltd. Catheter with helical electrode
US8521462B2 (en) 2009-12-23 2013-08-27 Biosense Webster (Israel), Ltd. Calibration system for a pressure-sensitive catheter
US8529476B2 (en) 2009-12-28 2013-09-10 Biosense Webster (Israel), Ltd. Catheter with strain gauge sensor
US8608735B2 (en) 2009-12-30 2013-12-17 Biosense Webster (Israel) Ltd. Catheter with arcuate end section
US8374670B2 (en) 2010-01-22 2013-02-12 Biosense Webster, Inc. Catheter having a force sensing distal tip
WO2011095937A1 (en) 2010-02-05 2011-08-11 Koninklijke Philips Electronics N.V. Combined ablation and ultrasound imaging
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US10335192B2 (en) 2010-04-28 2019-07-02 Koninklijke Philips N.V. Apparatus for determining a property of an object using ultrasound scatter
US8798952B2 (en) 2010-06-10 2014-08-05 Biosense Webster (Israel) Ltd. Weight-based calibration system for a pressure sensitive catheter
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
JP2012000194A (ja) * 2010-06-15 2012-01-05 Hitachi Aloka Medical Ltd 医療システム
US20140171806A1 (en) 2012-12-17 2014-06-19 Biosense Webster (Israel), Ltd. Optical lesion assessment
US10314650B2 (en) 2010-06-16 2019-06-11 Biosense Webster (Israel) Ltd. Spectral sensing of ablation
US11490957B2 (en) 2010-06-16 2022-11-08 Biosense Webster (Israel) Ltd. Spectral sensing of ablation
US8226580B2 (en) 2010-06-30 2012-07-24 Biosense Webster (Israel), Ltd. Pressure sensing for a multi-arm catheter
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US8380276B2 (en) 2010-08-16 2013-02-19 Biosense Webster, Inc. Catheter with thin film pressure sensing distal tip
US8731859B2 (en) 2010-10-07 2014-05-20 Biosense Webster (Israel) Ltd. Calibration system for a force-sensing catheter
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US8979772B2 (en) 2010-11-03 2015-03-17 Biosense Webster (Israel), Ltd. Zero-drift detection and correction in contact force measurements
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US9737353B2 (en) 2010-12-16 2017-08-22 Biosense Webster (Israel) Ltd. System for controlling tissue ablation using temperature sensors
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
JP2014516723A (ja) 2011-06-01 2014-07-17 ボストン サイエンティフィック サイムド,インコーポレイテッド 超音波映像性能を備えた切除プローブ
US9220433B2 (en) 2011-06-30 2015-12-29 Biosense Webster (Israel), Ltd. Catheter with variable arcuate distal section
CN103813745B (zh) 2011-07-20 2016-06-29 波士顿科学西美德公司 用以可视化、对准和消融神经的经皮装置及方法
AU2012287189B2 (en) 2011-07-22 2016-10-06 Boston Scientific Scimed, Inc. Nerve modulation system with a nerve modulation element positionable in a helical guide
US9662169B2 (en) 2011-07-30 2017-05-30 Biosense Webster (Israel) Ltd. Catheter with flow balancing valve
WO2013040297A1 (en) 2011-09-14 2013-03-21 Boston Scientific Scimed, Inc. Ablation device with ionically conductive balloon
JP6117209B2 (ja) 2011-09-14 2017-04-19 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 複数のアブレーションモードを備えたアブレーション装置及び同アブレーション装置を含むシステム
US9084611B2 (en) 2011-09-22 2015-07-21 The George Washington University Systems and methods for visualizing ablated tissue
ES2727868T3 (es) 2011-09-22 2019-10-21 Univ George Washington Sistemas para visualizar el tejido ablacionado
EP2765942B1 (en) 2011-10-10 2016-02-24 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
EP2768568B1 (en) 2011-10-18 2020-05-06 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
EP2768563B1 (en) 2011-10-18 2016-11-09 Boston Scientific Scimed, Inc. Deflectable medical devices
CN104023662B (zh) 2011-11-08 2018-02-09 波士顿科学西美德公司 孔部肾神经消融
WO2013074813A1 (en) 2011-11-15 2013-05-23 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
EP2793724B1 (en) 2011-12-23 2016-10-12 Vessix Vascular, Inc. Apparatuses for remodeling tissue of or adjacent to a body passage
CN104135958B (zh) 2011-12-28 2017-05-03 波士顿科学西美德公司 用有聚合物消融元件的新消融导管调变神经的装置和方法
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9687289B2 (en) 2012-01-04 2017-06-27 Biosense Webster (Israel) Ltd. Contact assessment based on phase measurement
EP2802282A1 (en) 2012-01-10 2014-11-19 Boston Scientific Scimed, Inc. Electrophysiology system
JP5830614B2 (ja) 2012-01-31 2015-12-09 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 超音波組織撮像のための流体に基づいた音響結合を有するアブレーションプローブ、および、アブレーションおよび超音波撮像システム
JP6574131B2 (ja) 2012-04-19 2019-09-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. エネルギー付与装置
WO2013162749A1 (en) * 2012-04-23 2013-10-31 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology laboratory system for use with magnetic resonance imaging systems
WO2013169927A1 (en) 2012-05-08 2013-11-14 Boston Scientific Scimed, Inc. Renal nerve modulation devices
EP2882336B1 (en) 2012-08-09 2019-06-26 University of Iowa Research Foundation Catheter systems for puncturing through a tissue structure
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
CN104780859B (zh) 2012-09-17 2017-07-25 波士顿科学西美德公司 用于肾神经调节的自定位电极系统及方法
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
JP6074051B2 (ja) 2012-10-10 2017-02-01 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 血管内神経変調システム及び医療用デバイス
WO2014143571A1 (en) 2013-03-11 2014-09-18 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
WO2014163987A1 (en) 2013-03-11 2014-10-09 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
JP6220044B2 (ja) 2013-03-15 2017-10-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経アブレーションのための医療用デバイス
WO2014149690A2 (en) 2013-03-15 2014-09-25 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
JP2016524949A (ja) 2013-06-21 2016-08-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 回転可能シャフトを有する腎神経アブレーション用医療装置
JP2016523147A (ja) 2013-06-21 2016-08-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 同乗型電極支持体を備えた腎除神経バルーンカテーテル
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
WO2015010074A1 (en) 2013-07-19 2015-01-22 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
JP6122217B2 (ja) 2013-07-22 2017-04-26 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経アブレーション用医療器具
EP3024406B1 (en) 2013-07-22 2019-06-19 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
JP6159888B2 (ja) 2013-08-22 2017-07-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経変調バルーンへの接着性を向上させたフレキシブル回路
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
WO2015057521A1 (en) 2013-10-14 2015-04-23 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
JP6259099B2 (ja) 2013-10-18 2018-01-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 可撓性を備える導電性ワイヤを備えるバルーン・カテーテル、並びに関連する使用および製造方法
JP2016534842A (ja) 2013-10-25 2016-11-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 除神経フレックス回路における埋め込み熱電対
WO2015077474A1 (en) 2013-11-20 2015-05-28 The George Washington University Systems and methods for hyperspectral analysis of cardiac tissue
JP6382989B2 (ja) 2014-01-06 2018-08-29 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 耐引き裂き性フレキシブル回路アセンブリを備える医療デバイス
EP3091921B1 (en) 2014-01-06 2019-06-19 Farapulse, Inc. Apparatus for renal denervation ablation
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
EP3102136B1 (en) 2014-02-04 2018-06-27 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
EP3139997B1 (en) 2014-05-07 2018-09-19 Farapulse, Inc. Apparatus for selective tissue ablation
WO2015192027A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective transurethral tissue ablation
WO2015192018A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective tissue ablation with cooling
WO2016060983A1 (en) 2014-10-14 2016-04-21 Iowa Approach Inc. Method and apparatus for rapid and safe pulmonary vein cardiac ablation
WO2016065337A1 (en) 2014-10-24 2016-04-28 Boston Scientific Scimed Inc. Medical devices with a flexible electrode assembly coupled to an ablation tip
CN113208723A (zh) 2014-11-03 2021-08-06 460医学股份有限公司 用于接触质量的评估的系统和方法
EP3220841B1 (en) * 2014-11-19 2023-01-25 EPiX Therapeutics, Inc. High-resolution mapping of tissue with pacing
JP6825789B2 (ja) * 2014-11-19 2021-02-03 エピックス セラピューティクス,インコーポレイテッド 組織の高分解能マッピングのためのシステムおよび方法
CA2967824A1 (en) 2014-11-19 2016-05-26 Advanced Cardiac Therapeutics, Inc. Ablation devices, systems and methods of using a high-resolution electrode assembly
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
JP6592526B2 (ja) * 2015-05-11 2019-10-16 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 高密度マッピングおよびアブレーションカテーテル
US10779904B2 (en) 2015-07-19 2020-09-22 460Medical, Inc. Systems and methods for lesion formation and assessment
US11160607B2 (en) * 2015-11-20 2021-11-02 Biosense Webster (Israel) Ltd. Hyper-apertured ablation electrode
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10130423B1 (en) 2017-07-06 2018-11-20 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10660702B2 (en) 2016-01-05 2020-05-26 Farapulse, Inc. Systems, devices, and methods for focal ablation
AU2017235224A1 (en) 2016-03-15 2018-11-08 Epix Therapeutics, Inc. Improved devices, systems and methods for irrigated ablation
EP3471631A4 (en) 2016-06-16 2020-03-04 Farapulse, Inc. GUIDE WIRE DISTRIBUTION SYSTEMS, APPARATUSES AND METHODS
US10729486B2 (en) * 2016-08-23 2020-08-04 Covidien Lp Implant mode for electrosurgical generator
WO2018185256A1 (en) * 2017-04-05 2018-10-11 National University Of Ireland, Galway An implantable medical device
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
EP3614946B1 (en) 2017-04-27 2024-03-20 EPiX Therapeutics, Inc. Determining nature of contact between catheter tip and tissue
US10617867B2 (en) 2017-04-28 2020-04-14 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
AU2018261726A1 (en) 2017-05-04 2020-01-02 Gynesonics Inc. Methods for monitoring ablation progress with doppler ultrasound
CN115844523A (zh) 2017-09-12 2023-03-28 波士顿科学医学有限公司 用于心室局灶性消融的系统、设备和方法
US10792087B2 (en) 2017-09-29 2020-10-06 Biosense Webster (Israel) Ltd. Highlighting region for re-ablation
US11484359B2 (en) 2017-10-31 2022-11-01 Biosense Webster (Israel) Ltd. Method and system for gap detection in ablation lines
JP7379377B2 (ja) 2018-05-07 2023-11-14 ファラパルス,インコーポレイテッド パルス電界アブレーションによって誘導される高電圧ノイズをフィルタリングするためのシステム、装置、および方法
JP7399881B2 (ja) 2018-05-07 2023-12-18 ファラパルス,インコーポレイテッド 心外膜アブレーションカテーテル
JP2021522903A (ja) 2018-05-07 2021-09-02 ファラパルス,インコーポレイテッド 組織へアブレーションエネルギーを送達するためのシステム、装置、および方法
US10687892B2 (en) 2018-09-20 2020-06-23 Farapulse, Inc. Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines
US11583332B2 (en) 2019-12-24 2023-02-21 Biosense Webster (Israel) Ltd. Combined cardiac pacing and irreversible electroporation (IRE) treatment
US11723517B2 (en) * 2019-12-31 2023-08-15 Biosense Webster (Israel) Ltd. Wiring of trocar having movable camera and fixed position sensor
WO2022214870A1 (en) 2021-04-07 2022-10-13 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
IL309432A (en) 2021-07-06 2024-02-01 Btl Medical Dev A S Apparatus and method for ablation (burning) by electric pulse field

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US5295484A (en) 1992-05-19 1994-03-22 Arizona Board Of Regents For And On Behalf Of The University Of Arizona Apparatus and method for intra-cardiac ablation of arrhythmias
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5433198A (en) * 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
DE69432148T2 (de) 1993-07-01 2003-10-16 Boston Scient Ltd Katheter zur bilddarstellung, zur anzeige elektrischer signale und zur ablation
US6285898B1 (en) 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5807395A (en) 1993-08-27 1998-09-15 Medtronic, Inc. Method and apparatus for RF ablation and hyperthermia
US6090084A (en) 1994-07-08 2000-07-18 Daig Corporation Shaped guiding introducers for use with a catheter for the treatment of atrial arrhythmia
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5954665A (en) 1995-06-07 1999-09-21 Biosense, Inc. Cardiac ablation catheter using correlation measure
US6805130B2 (en) * 1995-11-22 2004-10-19 Arthrocare Corporation Methods for electrosurgical tendon vascularization
IL125757A (en) 1996-02-15 2003-09-17 Biosense Inc Medical procedures and apparatus using intrabody probes
EP0891152B1 (en) 1996-02-15 2003-11-26 Biosense, Inc. Independently positionable transducers for location system
EP0888086B1 (en) 1996-02-15 2005-07-27 Biosense Webster, Inc. Excavation probe
US6083170A (en) 1996-05-17 2000-07-04 Biosense, Inc. Self-aligning catheter
US5971983A (en) 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US6012457A (en) 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US5938660A (en) 1997-06-27 1999-08-17 Daig Corporation Process and device for the treatment of atrial arrhythmia
US6251109B1 (en) 1997-06-27 2001-06-26 Daig Corporation Process and device for the treatment of atrial arrhythmia
US6245064B1 (en) 1997-07-08 2001-06-12 Atrionix, Inc. Circumferential ablation device assembly
US6117101A (en) 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
US6164283A (en) 1997-07-08 2000-12-26 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US5991660A (en) * 1997-09-18 1999-11-23 The Regents Of The University Of Michigan Cardiac pacing methods
US6064902A (en) 1998-04-16 2000-05-16 C.R. Bard, Inc. Pulmonary vein ablation catheter
US6050994A (en) * 1998-05-05 2000-04-18 Cardiac Pacemakers, Inc. RF ablation apparatus and method using controllable duty cycle with alternate phasing
US6027500A (en) * 1998-05-05 2000-02-22 Buckles; David S. Cardiac ablation system
US6301496B1 (en) 1998-07-24 2001-10-09 Biosense, Inc. Vector mapping of three-dimensionally reconstructed intrabody organs and method of display
US6190382B1 (en) 1998-12-14 2001-02-20 Medwaves, Inc. Radio-frequency based catheter system for ablation of body tissues
US6749606B2 (en) * 1999-08-05 2004-06-15 Thomas Keast Devices for creating collateral channels
US6852120B1 (en) 1999-08-10 2005-02-08 Biosense Webster, Inc Irrigation probe for ablation during open heart surgery
US20020107514A1 (en) 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
US6669692B1 (en) 2000-08-21 2003-12-30 Biosense Webster, Inc. Ablation catheter with cooled linear electrode
US6743225B2 (en) 2001-03-27 2004-06-01 Uab Research Foundation Electrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates
US6733499B2 (en) 2002-02-28 2004-05-11 Biosense Webster, Inc. Catheter having circular ablation assembly
US6780183B2 (en) 2002-09-16 2004-08-24 Biosense Webster, Inc. Ablation catheter having shape-changing balloon
US20040068178A1 (en) 2002-09-17 2004-04-08 Assaf Govari High-gradient recursive locating system
US7001383B2 (en) 2002-10-21 2006-02-21 Biosense, Inc. Real-time monitoring and mapping of ablation lesion formation in the heart
US7306593B2 (en) 2002-10-21 2007-12-11 Biosense, Inc. Prediction and assessment of ablation of cardiac tissue
US7397364B2 (en) 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11684416B2 (en) 2009-02-11 2023-06-27 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use
CN102198013A (zh) * 2010-03-25 2011-09-28 北京迈迪顶峰医疗科技有限公司 消融标测及起搏系统、控制装置和射频消融执行装置
CN103584911A (zh) * 2013-08-21 2014-02-19 上海慧达医疗器械有限公司 一种肾交感神经电刺激消融仪
CN103584911B (zh) * 2013-08-21 2015-12-02 上海慧达医疗器械有限公司 一种肾交感神经电刺激消融仪
CN112826587A (zh) * 2013-12-09 2021-05-25 韦伯斯特生物官能(以色列)有限公司 具有温度感测阵列的心包导管
US11589768B2 (en) 2014-10-13 2023-02-28 Boston Scientific Scimed Inc. Tissue diagnosis and treatment using mini-electrodes
CN107613849A (zh) * 2014-11-03 2018-01-19 乔治华盛顿大学 用于损伤评估的系统和方法
CN113143440A (zh) * 2014-11-03 2021-07-23 乔治华盛顿大学 用于损伤评估的系统和方法
CN106999080A (zh) * 2014-12-18 2017-08-01 波士顿科学医学有限公司 针对病变评估的实时形态分析
CN113164210A (zh) * 2018-11-21 2021-07-23 伯恩森斯韦伯斯特(以色列)有限责任公司 将球囊电极的周边配置为位置传感器

Also Published As

Publication number Publication date
KR20070082873A (ko) 2007-08-22
MX2007001999A (es) 2008-11-18
IL181266A (en) 2013-07-31
CA2578667C (en) 2013-01-22
CA2578667A1 (en) 2007-08-17
IL181266A0 (en) 2007-07-04
EP1820464A1 (en) 2007-08-22
AU2007200712A1 (en) 2007-09-06
BRPI0700450A (pt) 2007-11-06
US7918850B2 (en) 2011-04-05
JP5306603B2 (ja) 2013-10-02
AU2007200712B2 (en) 2012-02-09
JP2007244857A (ja) 2007-09-27
US20070198007A1 (en) 2007-08-23
CN101045016B (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
CN101045016B (zh) 通过起搏的损伤评估
US7201749B2 (en) Externally-applied high intensity focused ultrasound (HIFU) for pulmonary vein isolation
JP5676575B2 (ja) 心臓の特性を決定するための装置、方法及びコンピュータプログラム
JP6273144B2 (ja) 位置決定装置
US9220924B2 (en) System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion
AU2008249243B2 (en) Determining locations of ganglia and plexi in the heart using complex fractionated atrial electrogram
US6896657B2 (en) Method and system for registering ultrasound image in three-dimensional coordinate system
JP6095979B2 (ja) 位相測定に基づく接触評価
US9033885B2 (en) System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion
JP6190890B2 (ja) 電気的及び機械的方法に基づく心臓活性化信号の再構成
CN104661609A (zh) 近距离超声回波描记术标测
JP2005131367A (ja) 心臓の一過性の現象のマッピング
JP6599885B2 (ja) 正規化された変位差に基づく熱的破壊痕サイズ制御のための手法
US11298568B2 (en) System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant