CN101042071A - 降低燃气轮机系统和内燃机中NOx排放的系统和方法 - Google Patents

降低燃气轮机系统和内燃机中NOx排放的系统和方法 Download PDF

Info

Publication number
CN101042071A
CN101042071A CNA2007100889504A CN200710088950A CN101042071A CN 101042071 A CN101042071 A CN 101042071A CN A2007100889504 A CNA2007100889504 A CN A2007100889504A CN 200710088950 A CN200710088950 A CN 200710088950A CN 101042071 A CN101042071 A CN 101042071A
Authority
CN
China
Prior art keywords
oxygen
firing chamber
body source
air body
rich air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100889504A
Other languages
English (en)
Other versions
CN101042071B (zh
Inventor
B·瓦拉塔拉彦
C·巴兰
M·J·鲍曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101042071A publication Critical patent/CN101042071A/zh
Application granted granted Critical
Publication of CN101042071B publication Critical patent/CN101042071B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/002Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid using an auxiliary fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/073Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages the compressor and turbine stages being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/082Purpose of the control system to produce clean exhaust gases with as little NOx as possible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种燃气轮机系统(10,50),包括压缩机(12);燃烧室(14),布置在所述压缩机(12)的下游,并与所述压缩机(12)流体连通;涡轮组件(16),布置在所述燃烧室(14)的下游,并与所述燃烧室(14)流体连通;以及富氧气体源(18),布置成与所述压缩机(12)、所述燃烧室(14)或上述两者的组合可选择地流体连通,其中所述富氧气体源为变压吸附系统、电解装置或薄膜反应装置。

Description

降低燃气轮机系统和内燃机中NOx排放的系统和方法
技术领域
本发明总地涉及降低燃气轮机系统和内燃机中NOx排放的系统和方法,尤其涉及制作和使用富氧气体以降低燃气轮机系统和内燃机中NOx排放的系统和方法。
背景技术
涉及全球范围的空气污染已经导致更加严格的排放标准。这些标准规定了燃气轮机系统运行或内燃机(IC)运行产生的氮氧化物NOx(例如,一氧化氮(NO)、二氧化氮(NO2)、一氧化二氮(N2O))、未燃碳氢化合物(HC)以及一氧化碳(CO)的排放。例如,在燃气轮机系统之中由于高火焰温度(例如,高于或等于约2600(1427℃))形成NOx。
在燃气轮机系统中,已经进行了如下降低NOx排放的尝试,通过在运行情形期间增加通过燃气轮机系统的气流以控制火焰温度。降低NOx排放的其它尝试包括水喷射、稀燃预混系统。但是,这些对燃气轮机系统的修改在燃气轮机系统的运行性能水平上通常具有不利的效果。
因此,持续地需要改进降低燃气轮机系统中NOx排放的系统和方法,以及改进降低内燃机中NOx排放的系统和方法,使其在运行性能上的不利效果最小化。
发明内容
本文公开了降低燃气轮机系统和内燃机中NOx排放的系统和方法。
在一个实施例中,燃气轮机系统包括:压缩机;燃烧室,布置在所述压缩机的下游,并与所述压缩机流体连通;涡轮组件,布置在所述燃烧室的下游,并与所述燃烧室流体连通;以及富氧气体源,布置成与所述压缩机、所述燃烧室或上述两者的组合可选择地流体连通,其中所述富氧气体源为变压吸附系统、电解装置或薄膜反应装置。
在一个实施例中,降低NOx排放并提高燃烧系统操作性的方法包括:使用富氧气体源产生富氧气体;以及将富氧气体有选择地引进燃气轮机系统的燃烧室或内燃机中,其中所述富氧气体源布置在所述燃烧室或所述内燃机的上游。
在一个实施例中,燃烧室系统包括富氧气体源,其中所述富氧气体源为变压吸附系统、电解装置或薄膜反应装置;以及内燃机,布置在所述富氧气体源的下游,并与所述富氧气体源流体连通。
通过下面的附图和详细描述,能够理解上述及其它特征。
附图说明
参考附图,其中在几个附图中相同的元件由相同的标记表示:
图1为燃气轮机系统的实施例的示意图;
图2为燃气轮机系统的另一个实施例的示意图;
图3为内燃机系统的实施例的示意图;
图4为将富氧气体引进燃烧室的方法的实施例的示意图;
图5为将富氧气体引进燃烧室的方法的另一个实施例的示意图;
图6为将富氧气体引进燃烧室的方法的再一个实施例的示意图。
具体实施方式
本文公开了降低燃气轮机系统和内燃机(例如,压燃式发动机和火花点燃式发动机)中NOx排放的系统和方法。为方便描述,描述关于燃气轮机系统的实施例,应当理解,本领域的技术人员可容易地将这些应用到内燃机或其它燃烧式发动机上。如下面更加详细描述的,可使用变压吸附(PSA)系统、电解装置或薄膜反应装置来产生富氧气流,与未采用富氧气体的燃气轮机系统相比,当在燃气轮机系统的燃烧室中适当地利用上述富氧气流时可降低NOx排放。另外,应当理解,下面描述的系统和方法还可与整体煤气化联合循环发电(IGCC)系统一起使用,其中具有空气分离单元(ASU)。
在下面的描述中,“富氧”气体通常指的是氧浓度大于标准条件下空气中氧浓度(例如,氧体积百分比为21%)的气体。“轴向”广义上指的是大致平行于燃气轮机发动机旋转部件环绕其旋转的轴的方向。“上游”方向指的是本地气流的起源方向,而“下游”方向指的是本地气流的传播方向。用最通俗的话讲,通过发动机的气流往往从前至后,所以“上游方向”通常指的是向前方向,而“下游方向”指的是向后方向。
图1示出了典型燃气轮机系统,总地标记为10。燃气轮机系统10包括压缩机12、燃烧室14、涡轮组件16以及富氧气体源18。在一个实施例中,压缩机12位于燃烧室14的上游并与之流体连通,燃烧室14位于涡轮组件16的上游并与之流体连通。换句话说,压缩机12串联地与燃烧室14和涡轮组件16流体连通。在移动应用(例如,飞机和坦克)与静止应用(例如,发电站)中都可用燃气轮机系统10。
在运行期间,压缩机12通常压缩含有氧气的气体(例如,空气),并将压缩空气供给煅烧室14。可控制地将总地标记为20的富氧气流供给压缩机12,其中压缩机12用作混合器以将富氧气体与空气混合。另外地或可选择地,富氧气流直接供给燃烧室14,如由富氧气流22所标识的。应当理解,富氧气流22和22可为纯氧或除氧气之外可含有各种其它气体(例如,氮气、二氧化碳、氩气等等)。富氧气流20和22的成分依赖于富氧气体源18的类型以及燃气轮机系统10的预期应用。可通过任何适合的方法(例如,阀)控制富氧气流20和22的流动。
在一个实施例中,富氧气流(例如,20和22)的氧体积百分比大于或等于约30%。在该范围中,富氧气流的氧体积百分比可大于或等于约40%,具体地,氧体积百分比可大于或等于约50%。同样在该范围中,富氧气流的氧体积百分比可小于或等于约99%,具体地,氧体积百分比可小于或等于约80%。在其它实施例中,富氧气流的氧体积百分比为100%,例如,富氧气流为纯氧。
燃烧室14从压缩机12接收由气流24表示的已经富含氧气的气体。在其它实施例中,燃烧室直接从富氧气体源18接收富氧气流22。下面更加详细地描述各种喷射方案。燃料源(未示出)的燃料也供给燃烧室14,由燃料流26表示。燃料形式的几个实例包括,但不限于,氢气、馏分燃料和天然气。典型的馏分燃料包括,但不限于,柴油#2、喷气燃料A(Jet A fuel)、JP8。
富氧气体在燃烧室14中的使用允许燃烧室14比只使用空气作为氧气源的情形在更宽的工况下运行。换句话说,富氧气体的使用提高了燃烧室14的稀燃熄火温度,即与未使用富氧气体(例如空气)时的火焰熄火相比,燃烧室14中的火焰熄火发生在较低的温度。由于降低了整个运行温度范围,从而较低的稀燃熄火温度降低了NOx排放。
另外,在各种实施例中,富氧气体的产生允许燃气轮机系统10以基本上恒定的负载运行,例如,负载波动小于或等于20%,具体地,小于或等于10%。例如,在一个实施例中,燃气轮机系统10用于发电。当负载降低至用于发电的燃气轮机系统的容量之下时,可将电与电解装置一起使用,以产生和存储氧气和氮气。
涡轮组件16可包括轴流组件、径流组件、横流组件等等。涡轮组件16包括至少一个涡轮级。在一个实施例中,涡轮级包括定子和转子。定子是固定的,即,不象转子一样旋转,而用于引导气流。在各种其它实施例中,涡轮组件16不使用定子。气流而是由适当倾斜的燃烧室14出口引导。另外地/可选择地,气流由反方向旋转的涡轮引导。使用涡轮组件16以通过排出气体的排出提供推力、通过旋转连接到一个涡轮的轴提供机械能、或提供推力与机械能的组合。在一个实施例中,由一个或多个涡轮级驱动的一个或多个轴驱动压缩机12。另外,使用该能量驱动运输工具(例如,飞机、直升机、坦克等等)、发电厂或发电机组、燃气轮机发动机本身等等。
富氧气体源18布置成至少与燃烧室14有选择的流体连通,并且通常布置在燃烧室14的上游。在各种实施例中,富氧源布置成与压缩机12有选择的流体连通。富氧源18为:1)变压吸附(PSA)系统;2)电解装置;3)薄膜反应装置。系统的选择依赖于其预期应用。例如,电解装置的使用在其中水容易获得的非移动应用(即,静止应用)中尤其有用。但是,这三个系统中的每个都适于使用在移动应用和静止应用中。应当理解,富氧气体源18可有选择地包括在整体煤气化联合循环发电(IGCC)系统中使用的空气分离单元(ASU)。ASU包括将气体和氮气从空气分离的低温设备和非低温设备。
在一个实施例中,富氧气体源18为变压吸附(PSA)系统。PSA系统在现场和根据需要产生低成本氧气中是有效的。在PSA系统中,使用分子筛将氧气从空气分离,其中分子筛通常为沸石。通常,空气包括79%体积百分比的氮气、21%体积百分比的氧气、0.9%体积百分比的氩气,其余由其它气体组成。在运行期间,空气以足以将氮气从空气吸收在分子筛上的压力通过分子筛,而允许其它气体,即氧气通过分子筛。产生的氧气流出气流富含氧气。而富氧气流20和22的纯度依赖于应用变化,在一些实施例中,该气流的氧体积百分比大于或等于约90%。
分子筛周期性地饱和有氮气,需要再生。在运行的再生模式期间,将空气和/或氧气引进分子筛。当空气和/或氧气接触吸收在分子筛上的氮气时,氮气被释放,并排向大气或供给燃烧室14。
在另一个实施例中,富氧气体源18为电解装置。通常,电解装置包括至少一个电化电池。更具体地,电化电池包括布置在电解质(例如,质子交换薄膜(PEM))相对两侧的阳极和阴极。在运行期间,电流应用在电极(即,阳极和阴极)上,将水(H2O)分解为氢气(H2)和氧气(O2)。与PSA系统相同,电解装置允许现场和根据需要产生富氧气体。气体的纯度依赖于预定应用变化,但是在一些实施例中,氧气浓度高于或等于90%体积百分比。
如富氧气流20和22所示,从电解装置产生的氧气供应至压缩机12和/或燃烧室14。另外,该实施例方便地产生可与燃料混合的氢气。当氢气与燃料混合时,同氢气不与燃料混合的系统相比,燃烧室可以更稀地运行而避免火焰熄火。在其它实施例中,在氢气进入燃烧室14之前,将其引进与燃料流26混合。可选择地,氢气直接供给燃烧室14。此外,还应当注意到,通过从电解装置供给氧气和氢气,氧气与燃料混合生成氧合燃料,防止了燃烧室14的焦化(即,形成积碳)。
在再一个实施例中,富氧气体源18为薄膜反应装置。在薄膜反应装置中,氧气从空气或混有氧气(O2)的其它气体混合物中分离。更具体地,薄膜反应装置通常包括用作透氧膜的致密陶瓷材料(例如,钙钛矿)。在薄膜上布置有催化剂材料。在运行期间,空气或其它气体混合物中的氧气在薄膜表面还原成氧阴离子。通常通过在薄膜的一侧应用真空,使氧阴离子随后通过薄膜。在通过薄膜之后,氧阴离子重新结合形成氧气,释放电子。产生的富氧气体为富氧气流20和22。换句话说,由薄膜反应装置产生的富氧气体供给压缩机12和/或燃烧室14,如富氧气流20和22所示。在一个实施例中,使用薄膜反应装置产生的氮气也使用在燃烧室14中。
本领域的技术人员还应当理解,燃气轮机系统10可进行修改,以包括通常使用在燃气轮机发动机中的各种其它部件。虽然部件依赖于应用而变化,典型的其它部件包括,但不限于,燃料喷射系统、涡轮风扇、冲击管道、阀、控制系统(例如,计算机)等等。此外,燃气轮机系统10可适于使用在涡轮风扇发动机中以及涡轮轴发动机中。
图2示出了燃气轮机系统的另一个实施例,总地标记为50,示出了另外的可选特征。燃气轮机系统50包括压缩机12、燃烧室14、涡轮组件16以及富氧气体源18。在一个实施例中,压缩机12位于燃烧室14的上游并与之流体连通,压缩机14位于涡轮组件16的上游并与之流体连通。上面关于燃气轮机系统10(图1)描述了这些部件的细节。
燃气轮机系统50还包括可选排出存储罐28和30,以及可选氧气源存储罐32。氧气源存储罐32布置成通过可选阀34与富氧气体源18可选择地流体连通。存储在氧气源存储罐32之中的氧气源依赖于富氧气体源18选择的系统变化。例如,当富氧气体源18为电解装置时,氧气源为用于产生富氧气体和氢气的水。在另一个实施例中,例如,当富氧气体源18为薄膜反应装置时,氧气源存储罐32可用来存储空气或完全省略。
在富氧气体源18为电解装置的实施例中,电解装置中生成的富氧气体存储在通过阀36与燃烧室14有选择地流体连通的排出存储罐28中。类似地,电解装置中产生的氢气存储在排出存储罐30中。阀38用于有选择地控制氢气从排出存储罐30至燃烧室14或燃料流26的流动。类似地,在其它实施例中,排出存储罐28用于存储富氧气体,而排出存储罐30用于存储氢气或省略该罐。换句话说,本领域的技术人员应当理解,依据其预期应用,可增加或省略各种可选系统部件。
例如,燃气轮机系统50还包括布置于涡轮组件16下游并可操作与之相连通的可选发电机40。发电机40用来将旋转涡轮组件的机械能转换成电能。该实施例尤其适用于静止应用,如发电厂。在其它实施例中,由于系统的预期输出为由排出气体的排出引起的推力,而不是将电能作为输出,所以省略发电机。
另外,本领域的技术人员应当容易地理解,燃气轮机系统50还可包括另外的可选部件。例如,在涡轮组件16的下游可布置余热回收蒸汽发生器(HRSG)(未示出),并与涡轮组件16流体连通,使得可使用从涡轮组件16排出的废气产生蒸汽。在一个实施例中,蒸汽供应到布置在HRSG下游并与之流体连通的汽轮机(未示出)。在汽轮机的下游可布置可选发电机(未示出),并可操作与汽轮机流体连通以发电。
图3为内燃机系统的实施例,总地标记为60,示出了上面关于燃气轮机系统10和50中应用的原理可同样应用于内燃机。内燃机系统60包括富氧气体源41和内燃机42。内燃机42布置在富氧气体源41的下游并与之流体连通。富氧气体源41与上面关于系统10和50描述的富氧气体源18相类似,包括PSA系统、电解装置或薄膜反应装置。内燃机42包括火花点燃式发动机和压燃式发动机。
在运行期间,将主氧气源44的氧气和燃料源46的燃料引进内燃机42。通常,主氧气源为空气。燃料源依赖于内燃机的形式以及发动机的应用而变化。适合的燃料源包括碳氢燃料,例如汽油、柴油、乙醇、甲醇、煤油等等;气态燃料,例如天然气、丙烷、丁烷等等;可选燃料,例如氢气、生物燃料、二甲基乙醚等等;以及包括至少一种上述燃料的组合。然后,燃料与氧气一起燃烧以产生能量。
将富氧气体源41的富氧气流48有选择地引进内燃机42。根据应用,可将各种其它气体引进内部,如流出气流52所示。例如,流出气流52可包括氢气、氮气或这两种气体的组合。
简注,当将这些原理应用于内燃机时,实现了NOx排放和碳烟的降低,达到均匀燃烧。另外,由于富氧气流48是可控制的,所以可有选择地控制氧气喷射以允许内燃机42在不同负载的运行,这能够实现均质压燃(HCCI)。
现在参考图4-6,示出了将富氧气体引进燃烧室14的各种方法的示意图。燃烧室14包括主火焰区52和副火焰区54。图4示出了被引进主火焰区52上游的空气燃料混合物56的富氧气体51。在该实施例中,与未使用富氧气体的系统相比,提升了火焰稳定性并降低了NOx的产生。图5示出了将富氧气体51直接引进主火焰区52的实施例。同样,该实施提升了火焰稳定性,并降低了NOx的产生。图6示出了将富氧气体51直接引进副火焰区54的实施例。该实施例方便地降低了一氧化碳(CO)排放。应当理解,根据预期应用可使用这些方法的各种组合。例如,既将富氧气体51引进主火焰区52的上游,又将其直接引进主火焰区52。在各种实施例中,如上所述以振荡的方式引进富氧气体。即,可被动地或主动地控制富氧气体51引进燃烧室。
方便地,本申请公开的燃气轮机系统和内燃机允许更稀薄的燃烧与更低的火焰温度,结果导致更低的排放,即NOx排放。此外,PSA系统、电解装置或薄膜反应装置的使用允许现场并根据需要产生富氧气体,使本文公开的燃气轮机系统和内燃系统能够使用在移动应用和静止应用之中。
另外,应当注意,当与燃气轮机中使用的稀薄燃烧系统相比时,富氧气体在燃烧室火焰区(例如,主火焰区52和/或副火焰区54)中的喷射可降低燃烧动态振荡,这可增加能够获得更加低的温度与更低的NOx排放的操作窗口。另外,富氧气体的喷射也导致燃烧室中一氧化碳排放的降低。通常,NOx与一氧化碳的折衷限制了燃烧室可运行的最低温度。如果降低一氧化碳,那么与未使用富氧气体的系统相比,富氧气体喷射还可允许降低NOx排放。
尽管已经参考具体实施例描述了本发明,但是本领域的技术人员应当理解,在不脱离本发明范围的情况下,能够做出各种变化和适于替代其元件的等效替代物。另外,在不脱离本发明的情况下,可对本发明的教导做出适于特定情形或材料的许多改进。因此,本发明不限于特定实施例,即实现本发明的最佳模式,而是本发明包括落入所附权利要求范围内的所有实施方式。
附图标记
10燃气轮机系统
12压缩机
14燃烧室
16涡轮组件
18富氧气体源
20富氧气流
22富氧气流
24压缩机气流
26燃料流
28排出存储罐
30排出存储罐
32氧气源存储罐
34阀
36阀
38阀
40发电机
41富氧气体源
42内燃机
44主氧气源
46燃料源
48富氧气体源
50燃气轮机系统
51富氧气体
52主火焰区
54副火焰区
56空气/燃料混合物
60内燃系统。

Claims (10)

1.一种燃气轮机系统(10,50),包括:
压缩机(12);
燃烧室(14),布置在所述压缩机(12)的下游,并与所述压缩机(12)流体连通;
涡轮组件(16),布置在所述燃烧室(14)的下游,并与所述燃烧室(14)流体连通;以及
富氧气体源(18),布置成与所述压缩机(12)、所述燃烧室(14)或上述两者的组合可选择地流体连通,其中所述富氧气体源为变压吸附系统、电解装置或薄膜反应装置。
2.如权利要求1所述的系统,其中所述富氧气体源(18)构造成产生其氧气体积百分比大于或等于约30%的富氧气流。
3.如权利要求1所述的系统,其中所述富氧气体源(18)构造成产生富氧气流和包括氢气的第二气流。
4.如权利要求1所述的系统,其中所述富氧气体源(18)构造成产生富氧气流和包括氮气的第二气流。
5.如权利要求1所述的系统,还包括排出存储罐(26,28),其布置在所述富氧气体源(18)的下游,并与所述富氧气体源(18)流体连通。
6.如权利要求1所述的系统,还包括氧气源存储罐(32),其布置在所述富氧气体源(18)的上游,并与所述富氧气体源(18)流体连通。
7.如权利要求1所述的系统,还包括发电机(40),其布置在所述涡轮组件(16)的下游,并可操作与所述涡轮组件(16)相连通。
8.一种降低NOx排放并提高燃烧系统操作性的方法,包括:
使用富氧气体源(18)产生富氧气体;以及
将富氧气体有选择地引进燃气轮机系统(10,50)的燃烧室(14)或内燃机(42)中。
9.如权利要求8所述的方法,其中使用所述富氧气体源(18)产生所述富氧气体还包括产生氢气,并将所述氢气引进所述燃烧室(14)或所述内燃机(42)。
10.如权利要求8所述的方法,其中产生所述富氧气体还包括产生氮气,并将所述氮气引进所述燃烧室(14)或所述内燃机(42)。
CN200710088950.4A 2006-03-24 2007-03-26 降低燃气轮机系统和内燃机中NOx排放的系统和方法 Expired - Fee Related CN101042071B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/388466 2006-03-24
US11/388,466 US7650744B2 (en) 2006-03-24 2006-03-24 Systems and methods of reducing NOx emissions in gas turbine systems and internal combustion engines

Publications (2)

Publication Number Publication Date
CN101042071A true CN101042071A (zh) 2007-09-26
CN101042071B CN101042071B (zh) 2015-11-25

Family

ID=38531895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710088950.4A Expired - Fee Related CN101042071B (zh) 2006-03-24 2007-03-26 降低燃气轮机系统和内燃机中NOx排放的系统和方法

Country Status (5)

Country Link
US (1) US7650744B2 (zh)
JP (1) JP4981495B2 (zh)
KR (1) KR101385902B1 (zh)
CN (1) CN101042071B (zh)
AU (1) AU2007200639B2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840065A (zh) * 2011-06-23 2012-12-26 湖南大学 一种实时实现内燃机富氧燃烧的复合进气系统
CN102953815A (zh) * 2011-08-25 2013-03-06 通用电气公司 功率装置和运行方法
CN105339629A (zh) * 2013-02-19 2016-02-17 阿尔斯通技术有限公司 具有燃料成分控制的燃气涡轮
CN113137294A (zh) * 2021-04-25 2021-07-20 广州市深发机电实业发展有限公司 一种一体化多功能集成燃气发电系统

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0519402D0 (en) * 2005-09-23 2005-11-02 Tonery David Air intake system
US20090301099A1 (en) * 2006-06-23 2009-12-10 Nello Nigro Power Generation
US20080314018A1 (en) * 2007-06-08 2008-12-25 Subhash Chander Operation of internal combustion (IC) engines and gas turbines with concurrently generated oxygen enriched air
CA2934541C (en) 2008-03-28 2018-11-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CA2718803C (en) 2008-03-28 2016-07-12 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
US9222671B2 (en) 2008-10-14 2015-12-29 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
WO2010131941A1 (en) * 2009-05-13 2010-11-18 Petroliam Nasional Berhad (Petronas) Gas turbine engine
MX336605B (es) 2009-06-05 2016-01-25 Exxonmobil Upstream Res Co Sistemas de camara de combustion y metodos para usar los mismos.
GB0912081D0 (en) * 2009-07-11 2009-08-19 Tonery David Combustion method and apparatus
US8381525B2 (en) * 2009-09-30 2013-02-26 General Electric Company System and method using low emissions gas turbine cycle with partial air separation
EP2499332B1 (en) 2009-11-12 2017-05-24 Exxonmobil Upstream Research Company Integrated system for power generation and method for low emission hydrocarbon recovery with power generation
CN101788147B (zh) * 2010-02-09 2012-09-05 崔金福 燃烧系统的燃气与助燃空气的混合装置
JP5913305B2 (ja) 2010-07-02 2016-04-27 エクソンモービル アップストリーム リサーチ カンパニー 低エミッション発電システム及び方法
TWI593878B (zh) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 用於控制燃料燃燒之系統及方法
MY164051A (en) 2010-07-02 2017-11-15 Exxonmobil Upstream Res Co Low emission triple-cycle power generation systems and methods
US9732673B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
US9903316B2 (en) 2010-07-02 2018-02-27 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
WO2012018457A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
KR101358095B1 (ko) * 2011-09-28 2014-02-05 한국기계연구원 연료전지 하이브리드 시스템
US9038579B2 (en) 2011-05-11 2015-05-26 Korea Institute Of Machinery & Materials Fuel cell-engine hybrid system
US8266913B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant and method of use
US8266883B2 (en) 2011-08-25 2012-09-18 General Electric Company Power plant start-up method and method of venting the power plant
US8245493B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and control method
US8453461B2 (en) 2011-08-25 2013-06-04 General Electric Company Power plant and method of operation
US9127598B2 (en) 2011-08-25 2015-09-08 General Electric Company Control method for stoichiometric exhaust gas recirculation power plant
US8347600B2 (en) 2011-08-25 2013-01-08 General Electric Company Power plant and method of operation
US8713947B2 (en) 2011-08-25 2014-05-06 General Electric Company Power plant with gas separation system
US8453462B2 (en) 2011-08-25 2013-06-04 General Electric Company Method of operating a stoichiometric exhaust gas recirculation power plant
US8245492B2 (en) 2011-08-25 2012-08-21 General Electric Company Power plant and method of operation
JP2013092276A (ja) * 2011-10-24 2013-05-16 Hitachi Zosen Corp NOx低減火力発電システム
US8984888B2 (en) 2011-10-26 2015-03-24 General Electric Company Fuel injection assembly for use in turbine engines and method of assembling same
WO2013095829A2 (en) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9488100B2 (en) * 2012-03-22 2016-11-08 Saudi Arabian Oil Company Apparatus and method for oxy-combustion of fuels in internal combustion engines
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US20130327050A1 (en) * 2012-06-07 2013-12-12 General Electric Company Controlling flame stability of a gas turbine generator
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9097208B2 (en) * 2012-12-14 2015-08-04 Electro-Motive Diesel, Inc. Cryogenic pump system for converting fuel
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
CN105008499A (zh) 2013-03-08 2015-10-28 埃克森美孚上游研究公司 发电和从甲烷水合物中回收甲烷
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
EP2789915A1 (en) * 2013-04-10 2014-10-15 Alstom Technology Ltd Method for operating a combustion chamber and combustion chamber
CN103277813B (zh) * 2013-05-30 2015-10-07 北京航空航天大学 一种在航空燃油燃烧中加氢减排的低污染燃烧室
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
WO2015050601A2 (en) * 2013-07-01 2015-04-09 United Technologies Corporation Enhanced apu operability
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
CN104481617B (zh) * 2014-11-03 2015-12-02 东南大学 基于氧化还原反应的储能装置及其储能方法和发电方法
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
EP3059500A1 (en) * 2015-02-20 2016-08-24 Siemens Aktiengesellschaft Method for operating a combustion system
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US10040567B2 (en) * 2015-09-25 2018-08-07 The Boeing Company Aircraft nitrogen generation and oxygen distribution
JP6748802B2 (ja) * 2016-07-31 2020-09-02 寛治 泉 水素と富化酸素空気を連続燃焼するエンジンシステム。

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177952A (en) * 1991-03-01 1993-01-12 Rockwell International Corporation Closed cycle power system
US6148602A (en) * 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141229A (ja) * 1991-03-20 1993-06-08 Hitachi Ltd 自動車エンジンの排気ガス浄化方法
JPH05321693A (ja) * 1992-05-15 1993-12-07 Hitachi Ltd ガスタービン燃焼器及びその運転方法
US5413476A (en) * 1993-04-13 1995-05-09 Gas Research Institute Reduction of nitrogen oxides in oxygen-enriched combustion processes
US5459994A (en) * 1993-05-28 1995-10-24 Praxair Technology, Inc. Gas turbine-air separation plant combination
JPH08254161A (ja) * 1995-03-16 1996-10-01 Isuzu Motors Ltd 過給式内燃機関
US5802875A (en) * 1997-05-28 1998-09-08 Praxair Technology, Inc. Method and apparatus for control of an integrated croyogenic air separation unit/gas turbine system
DE19731865C2 (de) * 1997-07-24 1999-05-06 Siemens Ag Abgasreinigungsanlage für das Abgas eines Dieselmotors
US5960777A (en) * 1998-02-20 1999-10-05 Compact Membrane Systems, Inc. Combustion engine air supply system
US6314896B1 (en) 1999-06-10 2001-11-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for operating a boiler using oxygen-enriched oxidants
US6401445B1 (en) * 1999-12-07 2002-06-11 Northern Research & Engineering Corp. Electrolysis system and method for improving fuel atomization and combustion
FR2806755B1 (fr) * 2000-03-21 2002-09-27 Air Liquide Procede et installation de generation d'energie utilisant un appareil de separation d'air
DE10024570A1 (de) * 2000-05-19 2002-04-18 Xcellsis Gmbh Brennstoffzellensystem sowie Verfahren zum Betreiben des Brennstoffzellensystems
US6722352B2 (en) * 2001-11-06 2004-04-20 Praxair Technology, Inc. Pressure-swing adsorption system for internal combustion engines
EP1561010B1 (en) * 2002-11-08 2012-09-05 Alstom Technology Ltd Gas turbine power plant and method of operating the same
ATE485480T1 (de) 2003-01-21 2010-11-15 Air Liquide Verfahren und vorrichtung zur sauerstoffanreicherung in brennstoff fördernden gasen
JP2005198691A (ja) 2004-01-13 2005-07-28 Matsushita Electric Ind Co Ltd 酸素富化機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177952A (en) * 1991-03-01 1993-01-12 Rockwell International Corporation Closed cycle power system
US6148602A (en) * 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840065A (zh) * 2011-06-23 2012-12-26 湖南大学 一种实时实现内燃机富氧燃烧的复合进气系统
CN102953815A (zh) * 2011-08-25 2013-03-06 通用电气公司 功率装置和运行方法
CN102953815B (zh) * 2011-08-25 2016-07-06 通用电气公司 功率装置和运行方法
CN105339629A (zh) * 2013-02-19 2016-02-17 阿尔斯通技术有限公司 具有燃料成分控制的燃气涡轮
CN113137294A (zh) * 2021-04-25 2021-07-20 广州市深发机电实业发展有限公司 一种一体化多功能集成燃气发电系统
CN113137294B (zh) * 2021-04-25 2021-10-15 广州市深发机电实业发展有限公司 一种一体化多功能集成燃气发电系统

Also Published As

Publication number Publication date
KR20070096869A (ko) 2007-10-02
AU2007200639A1 (en) 2007-10-11
KR101385902B1 (ko) 2014-04-15
US7650744B2 (en) 2010-01-26
JP2007255424A (ja) 2007-10-04
JP4981495B2 (ja) 2012-07-18
US20070220896A1 (en) 2007-09-27
CN101042071B (zh) 2015-11-25
AU2007200639B2 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
CN101042071A (zh) 降低燃气轮机系统和内燃机中NOx排放的系统和方法
JP4490912B2 (ja) 燃焼のための液体燃料を気化するためのシステムおよび使用方法
US6173567B1 (en) Method to reduce diesel engine exhaust emissions
US8381525B2 (en) System and method using low emissions gas turbine cycle with partial air separation
US6968678B2 (en) High efficiency, reduced emissions internal combustion engine system, especially suitable for gaseous fuels
EP2317098A1 (en) Gas turbine operation-controlling device
CN1755089A (zh) 减少内燃机排放的系统和方法
CN104769255A (zh) 用于化学计量排气再循环燃气涡轮机系统的系统和方法
CN1568286A (zh) 燃烧器,燃料重整设备,燃料电池系统及启动燃料重整系统的方法
CN109098892A (zh) 一种基于替代燃料的发动机混合动力系统
KR102508325B1 (ko) 수전해가스 발전장치
US20130255267A1 (en) System and method of improving emission performance of a gas turbine
KR20170056793A (ko) 브라운가스를 이용한 오토바이 매연 저감장치
KR20170056792A (ko) 브라운가스를 이용한 매연 저감장치
CN1714234A (zh) 内燃机的泄漏燃料回收装置
KR20120064214A (ko) 수소-산소 혼합기를 이용한 고효율 청정 엔진
WO2013189468A1 (en) The system of supply of gas containing hydrogen and oxygen into the combustion chamber of a cogeneration unit
Rabinovich et al. Plasmatron internal combustion engine system for vehicle pollution reduction
KR102516218B1 (ko) 수전해가스를 이용한 내연엔진 운전연료생성장치
KR102516219B1 (ko) 수전해가스를 이용한 내연엔진 시동연료생성장치
KR102318405B1 (ko) 저농도 가스 발전기의 연료공급 시스템
KR20110053809A (ko) 합성가스 발전 시스템
KR102417374B1 (ko) 개질 시스템 및 수소센서를 이용한 개질기 작동 방법
CN2550522Y (zh) 可于引擎运转时取出氢及氧的装置
Amatnieks et al. HYDROXY GAS AS AN ADDITIVE FOR IMPROVEMENT OF EXHAUST EMISSIONS OF INTERNAL COMBUSTION ENGINES–A REVIEW

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20180326

CF01 Termination of patent right due to non-payment of annual fee