CN101038785A - 具有统一的存取执行时间的高速动态随机存取存储器结构 - Google Patents

具有统一的存取执行时间的高速动态随机存取存储器结构 Download PDF

Info

Publication number
CN101038785A
CN101038785A CNA200710006302XA CN200710006302A CN101038785A CN 101038785 A CN101038785 A CN 101038785A CN A200710006302X A CNA200710006302X A CN A200710006302XA CN 200710006302 A CN200710006302 A CN 200710006302A CN 101038785 A CN101038785 A CN 101038785A
Authority
CN
China
Prior art keywords
signal
address
row
word line
dynamic ram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200710006302XA
Other languages
English (en)
Other versions
CN100568383C (zh
Inventor
保罗·德蒙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Examine Vincent Zhi Cai management company
Original Assignee
Mosaid Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mosaid Technologies Inc filed Critical Mosaid Technologies Inc
Publication of CN101038785A publication Critical patent/CN101038785A/zh
Application granted granted Critical
Publication of CN100568383C publication Critical patent/CN100568383C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/18Address timing or clocking circuits; Address control signal generation or management, e.g. for row address strobe [RAS] or column address strobe [CAS] signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2281Timing of a read operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/229Timing of a write operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

一种动态随机存取存储器(DRAM),执行读,写,与刷新操作。该DRAM包括多个子阵列,每个子阵列有多个存储单元,每个单元与互补位线对以及字线耦合。该DRAM还包括用于维持选中的字线的字线激活部件以及用于维持选中的一个位线对的列选择部件。定时电路用于根据字线定时脉冲对字线激活部件、列选择部件、以及读,写,和刷新操作进行控制。读,写,以及刷新操作是在等量的时间内执行的。

Description

具有统一的存取执行时间的高速动态随机存取存储器结构
本申请是2001年6月29日提交的国际申请PCT/CA01/00949进入国家阶段的申请01812427.5的分案申请,要求2000年7月7日提交的加拿大申请2313954和2000年7月7日提交的美国申请60/216679的优先权。
技术领域
本发明一般涉及高速DRAM结构,而具体讲,涉及读、写与刷新操作的定时。
发明背景
按照惯例,动态随机存取存储器(DRAM)商品设计的重点并非高存储性能,而是更着重于通过较高的总的位密度来实现低廉的每位成本。其原因在于二维存储器阵列的单元容量与尺寸的平方成比例增长,而位线读出放大器,字线驱动器,以及行地址(或x地址)与列地址(或y地址)解码器的附加面积与尺寸成正比增长。因此,以存储密度为设计的突出重点已使所设计的商品DRAM所具的子阵列在实际上尽可能地大,尽管这会严重有损于执行单元读取,位线读出,单元恢复以及位线平衡与预充电所需的时间。结果,正如与静态随机存取存储器(SRAM)相比,传统的DRAM结构相对的低性能已在总体上使其应用局限于性能要求处于第二位的大容量、高密度、成本要求敏感的应用场合。
而且,传统的DRAM结构通过多路复用行地址分量与列地址分量之间的地址线的方式来把存储器器件上的数字信号引脚的量降至最低。结果,DRAM阵列结构的二维特征就一直是存储控制或逻辑线路与DRAM存储器件之间的接口的固有部分。
同步接口DRAM技术如SDRAM,直接存取的RAMBUS,以及双数据率(DDR)SDRAM的出现通过编码指令取代了异步接口DRAM技术,如快速页模式(FPM)与扩展数据输出(EDO)的分离的行和列控制信号。然而,仍保留前述结构的传统二维逻辑寻址的组织方式。
通过把执行时间与周期时间对由于大单元阵列的使用而造成的行存取操作速度慢的影响降至最低来增大DRAM性能的早期尝试导致出现业内人士熟知的两种不同级别的存储。第一级包括存储体存取。存储体存取由跟随一个列存取的行打开命令组成。参见图1a,该图示出了一个存储体存取的定时图。第二级包括按页存取。按页存取包括以列的方式对由前面的列打开命令或存储体存取命令开打开的剩余列进行的存取。因此,按页存取通常快于存储体存取。参见图1b,该图示出了按页存取的定时图。按页存取在缩短平均执行时间上的功效取决于许多计算与通信应用的存储器存取模式中的统计空间位置。也就是说,以同一行为目标进行连续的存储器存取的概率是很大的。
这种双重的存储存取级别方案的进一步改进就是建立DRAM结构,明确地将每个存储器设备分为两个或更多个相等规模的、称为存储体的区域。这种结构上的改进,其目的在于使对一个存储体的存储存取进行迭加,以部分地降低行存取的辅助操作,而同时,另一个存储体执行行打开或关闭操作。实现多存储体结构的系统是业内人士熟知的,在图2a中概括地示出了这样的系统,并用数字200标记。这种系统的定时图在图2b中示出。
所有这些方案的主要问题就是维持这一双级存储器存取的系统,以部分地补偿与DRAM大阵列相关的低速行存取。许多实时应用,如数字信号处理器,都受到存储性能差的限制。因为连续存取的特有寻址模式的功能的缘故,这些系统不能允许存储器存取定时上的差异。甚至嵌入式DRAM的宏组件设计的最优化性能也在力图维持商品DRAM结构的双级存取范例。
参见图3a,该图概括地图示了利用双口结构提高DRAM性能的另一项尝试,该双口结构以数字300标识。该双口结构是为获得更高性能而在DRAM结构上进行的更新的改进。每个存储单元MC分别经由存取晶体管N1与N2与两条位线BL1与BL2连接。该单元结构能够通过一个存取晶体管及其相关位线,如N1与BL1,实现对存储单元MC的同步存取,同时,与另一个存取晶体管N2相关的BL2进行预充电与补偿。因此,可以通过N2实现第二存取,而不会因位线BL2的预充电产生任何延迟。
通过在两个存取晶体管与其各自的位线间的往复交替,该结构完全可以掩盖与关闭行以及预充电和对位线进行补偿相关的辅助开销。然而,该方案的主要缺点是,与常规的DRAM设计相比,由于每个存储单元的访存取晶体管与位线的数量翻了一番,因而DRAM阵列内的位密度大为降低。而且,这样的系统还使用开放的位线结构,这是不符合要求的,因为其敏感度与位线对的噪声耦合不相匹配。
本发明的一个目的就是预防与消除上述的缺陷。
发明内容
根据本发明的一个方面,提供了一种执行读、写与刷新操作的动态随机存取存储器(DRAM)。该DRAM包括多个子阵列,每个子阵列有多个存储单元,而每个单元与互补位线对以及字线耦合。该DRAM还包括字线起动装置,用于维护所选的一条字线,以及列选择装置,用于维护所选的位线对。所提供的定时电路用于根据字线定时脉冲的要求对字线起动装置、列选择装置以及读、写和刷新操作进行控制。读、写与刷新操作在等长的时间内进行。
附图简述
现在,将参照下面的图形并以之作为最佳范例,对本发明的实施例进行描述。其中:
图1a是用于存储器的存储体存取的定时图;
图1b是用于存储器的按页存取的定时图;
图2a是用于图解多存储体的存储器结构(现行技术)的简化方块图;
图2b是用于图2a所示系统的定时图;
图3a是双口存储器结构(现行技术)的示意图;
图3b是用于图解图3a中所示的双口结构的读写操作的定时图;
图4是用于比较常规的DRAM单元(现行技术)与根据本发明一个实施例的DRAM单元的曲线图;
图5是根据本发明的一个实施例的通用存储器结构的方块图;
图6是基本概念示意图,用于图解存储器地址字段及其作用范围;
图7是定时与信息流程图,用于对图6中所示的结构的操作进行图解;
图8是定时与信息流程图,用于对图6中所示的电路根据单条命令进行读、写操作的性能进行图解;
图9是用于描述图6中所示的存储器结构的功能性方块图;
图10a是用于图解说明图9中所示的功能块的定时状态的定时图;
图10b是用于图解说明在子阵列被选中与未被选中的情况下字线定时脉冲的触发的定时图;
图11a是用于图解说明位线补偿和预充电以及存取时间所要求的最小定时量的定时图;
图11b是用于图解说明电路在优于最低条件的状态下运行的好处的定时图;
图12a是图6中所示的存储器结构的异步实施例的定时与信息流程图;
图12b是用于子阵列存取要求两个时钟周期的实施例的定时预信息流程图;
图13a是用于子阵列存取要求时钟周期并且具有一个时钟周期的执行时间的实施例的定时与信息流程图;
图13b是用于阵列存取要求一个时钟周期并且具有三个时钟周期的执行时间的实施例的定时与信息流程图。
具体实施方式
为获得高速性能,对DRAM结构进行优化,而与其连续进行的存储器存取操作的寻址方式无关,每一次读,写或刷新操作均有相同的定时。这一点与操作定时取决于目标地址的值以及上一次存储器操作的历史状况的传统DRAM结构不同。
使所有的存储器指令均获得相同的存取定时是通过对所接收到的每一条读出、写入或刷新命令均执行一次完整的行存取操作来实现的。完整的行存取操作包括字线维护,存储单元读出,位线读出,单元内信息的复原,字线脱离维护,以及位线补偿和预充电。下面的描述将对允许通过使用常规DRAM处理技术制造的存储器设备和存储器宏组件执行具有与由常规方式构成的DRAM执行的按页存取相似的执行时间与周期时间的数据存取的实现细节作出解释。但是,本结构并不象上述技术那样依赖于对存储器进行存取的模式。
本发明的实施例的关键执行部分包括但并不局限于实际结构,操作顺序与重叠,信号电平,计时,以及定时生成技术。该实施例描述了在同步接口时钟信号周期内执行完整的DRAM阵列存取并且每个时钟周期能接收新命令的执行过程。但是,本技术领域的专业人士将会意识到,在存储器操作与接口时钟定时之间可以存在其他关系。而且,在特定的情况下,只要不背离本发明的范围,甚至可以说,其他的定时关系是需要的。
参见图5,该图概括地示出了根据本发明的一个实施例的存储器的总体结构,以数字500标识。概略示出了存储器500中一个区域的放大部分,标以数字501。一个DRAM器件或存储器宏组件502包括多个大小相等的,按照折叠位线结构制成的相对小的矩形DRAM子阵列504。为降低由于位线隔离器造成的延迟,相邻的子阵列504不能共享读出放大器。相反,相邻的子阵列504有着独立的、专用的读出放大器506。
另外,在本实施例中,构制子阵列504的每条位线的实际存储单元数量接近以同样的处理技术按照常规为DRAM所设计的每条位线的单元数量的四分之一。每条位线使用较少数量的实际存储单元使位线电容降低,继而,又使位线电容与存储单元电容的比率降低。位线上的电压差用下面的表达式给出:
ΔVBL=(NCELL-VBL)*CCELL/(CBL+CCELL)
因此,如果位线电容CBL减小,只要仍然获得相同的位线电压差ΔVBL,则VCELL也能被减小。正如将在下面详细描述的那样,这一比率的降低使存有已衰减的充电电平的存储单元能更迅速地获得与按照常规设计的DRAM的电压差相同的位线电压差。这还使存储单元的复原或行存取的写操作部分能在该单元达到处于不活跃条件(高温,低电压,慢处理)下的VDD或VSS的全值电平之前结束,同时利用标准的读出放大器电路设计实现得以加强的读出。
参见图4a与4b,概略地示出了用于图解对常规的DRAM单元以及根据本发明的DRAM单元进行充电所需要的时间的两条曲线,分别以数字400与450标识。对于该范例的目的,常规的DRAM每条位线段有256个单元。由于在最坏的情况下VDD/2的预充电电压VBLP为充电电平的95%,用于储存逻辑“0”的单元电压约为0.025VDD。用于储存逻辑“1”单元的电压约为0.975VDD。另一方面,使用根据本发明的部分充电储存电平,考虑到了60%的最坏情况,可以提供0.20VDD的电压用于储存逻辑“0”,并提供0.80VDD的电压用于储存逻辑“1”。因此,对于单元的恢复或写操作,用60%的充电电平作为可接受的充电储存电平,达到所需求的电平只需要一个时间常数τ,而作为比较,对于常规的DRAM,则需求约为3个时间常数3τ。
为使信号能非常迅速地传播经过与一条给定的字线对应的子阵列,要对每个阵列的位线对的数量加以限制,以此来限制定时的迟滞。如果字线在充分封闭的范围内恰当地与金属互连器搭接,则该结构就能使用较大的子阵列,以便对每个阵列的较小数量的位线进行补偿。这就限制了由RC寄生造成的字线传送的延迟。虽然出于简单的目的在图5中未明确示出,但字线与位线对是交错设置的。也就是说,字线由交替地设在子阵列边侧上的字线驱动器驱动,而位线与交替地设在子阵列边侧上的读出放大器与均衡电路连接。
参见图6,该图概括地图解说明了存储器地址信息组及其分布,以数字600标识。每个子阵列602包括字线阵列604与位线对606。行(或X)解码器608选择字线而列(或Y)解码器610选择位线对。列(或Y)解码器610对存储地址612的N个最低有效位进行解码,以选择列地址。行(或X)解码器对存储地址612的M个次最高有效位进行解码,以选择行地址。存储地址612的LA个最高有效位用于生成局部起动信号,以恰当地选择子阵列。存储地址612的第一段612a包括N个最低有效位,用于为行中的独立字内编址。因此,每条字线中包含2N个字。一个字的长度用W表示。因此,每条字线可控制对每行中的W*2N个位的存取。刷新操作要选择完整的行,因此对于这一刷新命令,这N个最低有效数字实质上被忽视或者按照“不理睬”处理。
存储地址612的第二段612b包括紧挨着的M个较高的有效位,用于对子阵列中的字线进行编址。每个子阵列的字线数量为2M。根据本发明的一个实施例,M=7,因此每个子阵列有128条字线,但不包括冗余的行单元(未示出)。
存储地址612的第三段612c包括LA个最高有效位,用于对存储器内特定的子阵列进行编址。完整的存储器器件或存储器宏组件包括A个子阵列。LA是最小的整数,因此2LA大于或等于A。因此,存储器的总容量为(W*2N)*(2M)*A=A*W*2(M+N)位。而且,存储器接口使用的地址量为LA+M+N位。根据本发明的一个实施例,N=3,M=7,A=104,LA=7,而W=24。因此,17个地址位用于标识106496个24位字中的一个字,并且该存储器的总容量有2555904位。
对于所有的DRAM子阵列而言,默认的静态是指处于逻辑低电位的所有字线,以及以预定的预充电电平进行了均衡与预充电的所有位线与数据线。读,写与刷新操作只对由存储地址612中的LA个最高有效位612C寻址的那个子阵列产生作用。存储器器件或存储器宏组件中的A个子阵列由值0,1,…A-1进行编址。在一个操作期间只有经过寻址的子阵列被存取。其他所有的子阵列仍处于默认的静态。读、写与刷新命令利用由存储地址612的中间段612b中的M个位的值选中的字线,在被寻址的子阵列内进行行操作。读与写操作对存储单元612的N个最低有效位612a选中的字进行存取。
参见图7,该图给出了一个定时与信息传输流程图,对与该存储器结构的上述执行过程对应的两条读命令与一条写命令的一般性操作进行了图解说明。在该特定的执行过程中,命令、地址,以及写数据的输入利用同步接口时钟CLK的上升沿进行采样,而新的命令可利用每一个接着而来的时钟上升沿给出。第一条读命令RD1利用时钟CLR的第一个上升沿对地址A1执行读出操作READ1。与此相似,利用第二个后续的时钟上升沿,第二条读命令RD2对地址A2执行读操作READ2。接着,写命令WR3执行写操作WRITE3,利用第二个后续的时钟上升沿把在数据输入端出现的数据WD3写入地址A3处的存储单元。经过两个周期的读出执行时间之后,由读命令读出的数据READ DATA1以及READ DATA2被输出到数据车出线上。
正如在图7中所能见到的,根据本发明的一个实施例,依据所采样的每一条命令来执行一项完整的行存取操作。虽然行存取操作占用的时间长于单个系统时钟周期,但是,可以利用时钟的每个上升沿以重叠的方式输入命令。例如,当利用连续的时钟周期紧接给出两条命令时,命令READ1的字线脱离维护和位线补偿及预充电与命令READ2的地址和命令解码,行冗余地址比较,以及信号传送相重叠。与此相似,命令READ2的预充电部分与命令WRITE3的解码部分同时执行。
预充电与补偿操作中的每项操作均在该项操作的末段示出,以图解说明该操作能够与另一条命令的建立重叠执行。概念性地示出了预充电与补偿操作,它与前一项读操作并合,因为在逻辑上预充电与补偿功能是前一条命令的末期操作,以使子阵列返回备用状态。但是,在实际执行过程中,时钟的上升沿是与和特定的命令相应的预充电及补偿步骤同步的。例如在图7中,命令READ2利用第二个时钟边沿采样,而其相应的预充电及补偿也在同时,即在第二个时钟周期的起点采样。
参见图8,这是定时与信息传输流程图,用数字800概括标识,该图图解说明了在一个系统时钟周期内对同一地址进行同步读与写操作进行支持的能力。在某些数据处理应用中,同步的读与写操作是有用的,因为这允许将存入存储器中的数据送至接着而来的来自同一地址的载体。一般来讲,现行技术要求有一个起自存储器数据输入与数据输出引针或插脚独立的、外部的分流路径。利用时钟信号CLK的上升沿,出现在数据输入端的数据VALUE X被写入选中的地址ADDR1。在接近为行存取规定的时间终结时,写入地址ADDR1的数据VALUE X被采样,并出现在数据输出端上。经过与读,写,以及刷新操作相同的两个周期的执行时间之后,在该数据输出端上可以得到数据VALUE X。
参见图9,该图以数字900标识,概括地图解说明了用于根据本发明的一个实施例的子阵列的控制电路元件与数据路径元件。对选中的子阵列的操作的总体定时是基于称为字线定时脉冲(WTPi)的单一的校正定时标准信号而进行的。目标地址被输入到地址寄存器902。操作命令被输入到寄存器/解码器903。地址寄存器902与寄存器/解码器903均由同步接口时钟信号CLK计时。寄存器/解码器903根据所接收的外部命令生成READ(读),WPITE(写),或REFRESH(刷新)内部命令信号。
地址寄存器902的输出被送至多个地址解码器904。第一解码器904a对输入的地址的N个最低有效位进行解码,以生成整个列的选择信号,或Y地址。第二解码器904b对M个挨着的有效位进行解码,以生成预解码的X地址。第三解码器904c对存储地址的LA个最高有效位进行解码,以生成子阵列选择信号。子阵列选择信号将存储器器件或存储器宏组件中的多个子阵列中的之一激活。第四解码器904d对子阵列组进行解码。存储器中有子阵列组。子阵列组共享相同的数据线,读出数据寄存器/放大器以及写缓冲器,这将在下面详细讨论。地址的LA个最高有效位选择子阵列组以及该组中的子阵列。
读,写,以及刷新信号由或门906组合。或门906的输出被输入到多个与门908,以生成字线定时脉冲WTPi。字线定时脉冲WTPi是为每个子阵列局部生成的。因此,与门908具有作为另一个输入信号的子阵列选择信号,并且如果相关的子阵列被子阵列选择信号选中,则与门908的输出只能被保持。与门908的另一个输入是经延迟器D1延迟的时钟信号CLK。
与门908的输出是SR触发器910的S输入信号。SR触发器910的R输入信号是通过时钟信号CLK与由延迟器D1延迟的时钟信号CLK的反相信号再经与门912组合而生成的。提供给SR触发器910的R输入端R的信号的反相信号还用作与门908的附加输入信号,以确保SR触发器的S与R输入信号永不会都等于1。SR触发器910的输出信号是用于第i个(ith)子阵列的字线定时脉冲WTPi。字线定时脉冲WTPi在局部与经由多个与门911来自预解码器904b的经过预解码的X地址组合。与门911的输出信号是字线激活信号WL,用于激活所选中的字线。字线定时脉冲WTPi经过反相器915进一步与位线补偿电路913耦合,以便当WTPi处于低电位时补偿位线并预充电到位线预充电电压VBLP。经过反相的信号称为位线补偿信号BLEQ。
字线定时脉冲WTPi进一步与其本身经与门914延迟的变形进行组合,以便向读出放大器提供电源激活信号916。读出放大器电源激活信号916向读出放大器SAP供电,以便向位线读出放大器的PMOS器件供电,并向读出放大器SAN供电,以便向位线读出放大器的NMOS器件供电。字线定时脉冲WTPi由延迟器D3延迟。读出放大器激活信号916激活读出放大器电源,以便跨越与选中的子阵列对应的位线对向读出放大器供电。
读出放大器电源激活信号916进一步由延迟器D4延迟,以生成列选择激活信号CSE。列选择激活信号CSE经过与该特定的子阵列相关的与门918与来自列解码器904a的整个列的选择地址信号组合。与门918的输出提供局部列选择信号LCSL。该局部列选择信号LCSL通过用于读出,写入或刷新操作的列存取装置激活专用的位线对。
与门920对组选择信号、时钟信号CLK、和经延迟器D2延迟的时钟信号进行组合。与门920的输出是读-写激活信号RWACTIVE。信号RWACTIVE由反相器922反相,以便控制串行耦合的数据线预充电与补偿晶体管924,当该子阵列未被选择中时把一对数据线926预充电到数据线预充电电压VDLP
RWACTIVE信号还利用与门928与WRITE信号组合。与门928的输出信号激活写缓冲器930,把所接收到的输入数据送至数据线对926。从一个D型触发器932接收写缓冲器930的输入信号,该触发器接收外部输入的数据作为其输入信号并由时钟信号CLK计时。RWACTIVE信号还通过或门934与读信号的反相信号以及时钟信号CLK组合。或门934的输出是读采样时钟信号RWACTIVE,用于激活差分D型触发器936,以便读取出现在数据线对926上的数据。差分D型触发器936的输出端子与字长多路复用器938耦合。多路复用器938是按照从概念出发的数据格式示出的,但是在实际执行过程中,它利用分布式多路复用器结构来构造。字长多路复用器938的激活信号来自D型触发器940的输出端。D型触发器940的输入信号是组选择信号,并且D型触发器940由时钟信号CLK计时。
参见图10a,这是一个定时图,用于对图9中的用于读操作的相关信号进行定时,以数字1000标识。电路的运行参照图9与图10描述如下。当存储器处于备用状态时,字线定时脉冲WTPi维持于逻辑低电位。WTPi处于低电位时,所有的字线处于低电位并且该子阵列中的位线与数据线均自动维持于补偿与预充电状态。每个子阵列有专用的WTPi信号,通过子阵列选择门908来选取。在从对存储器接口处的有效命令进行采样的时钟的上升沿开始的一个固定的延迟期之后,与选择的子阵列相关的WTPi信号得以维持。在时钟周期持续期间,WTPi保持高电位,直至其被时钟的下一个上升沿无条件地复位。WTPi起门控信号的作用,用于常规的以及冗余的(未示出)字线驱动器。随着WTPi的上升与下降,由被采样的地址选中的子阵列中的字线随之一起上升与下降。WTPi的上升沿还驱动用于激活位线读出放大器以及局部列选择存取装置的自定时电路。
再来参见图10,经过可编程的预置延迟D1之后,字线定时脉冲WTPi变为高电位,致使位线补偿信号BLEQ与字线信号WL变为高电位。应注意,延迟D1,D2,D3,D4都是利用在09/616,973号MOSAID公司的待审专利申请中描述的新颖的延迟电路来实现的(这里引入以作为参考)。在经过从时钟信号的上升沿开始的可编程的预置延迟D2之后,RWACTIVE信号得到维持,致使RSAMPCLK信号变为高电位。根据字线维持信号WL,在位线对上开始形成电压差。经组合的延迟D1+D3之后,读出放大器电源信号SAP,SAN均得以维持,对跨在位线对上的电压差进行放大。经过组合延迟D1+D3+D4之后,局部列选择信号LSCL得以维持,借此选中传输了数据列。随着局部列选择信号LCSL的确立,数据从所选的列传至一个相关的数据线对。
重要的是要注意到上述的每一步骤均是由从校正字线定时脉冲WTPi导出的自定时信号起动的,以此来实现每个信号的定时的微调精度。还应注意,虽然上面的描述总体上参考了一个所选的列以及相关的数据线对,但是本技术领域的专业人士都会理解,实际上可以用一个列选择信号来选择多个列,而每个列均有相关的数据线。
对于读操作,输入的时钟信号CLK的经过延时的变形信号RSAMPCLK把互补采样输入信号提供给一组H字长差分输入D型触发器936,这些触发器也与一个或几个子阵列组的数据线926连接。这些D型触发器最好是2000年7月30日提交的PCT/CA00/00879号待审的MOSAID公司的专利申请书中描述的那种触发器。该专利在这里引入以作为参考。在时钟CLK的下一个上升沿,RSAMPCLK将采样时钟输入锁存到在行存取操作的末期获得读出数据的读数据触发器936。含有被存取的子阵列的子阵列组的读数据触发器936的输出信号经过一个多路复用器网络938送出,用于从相应的子阵列组选择最终的输出数据,然后送至存储器引针或存储器宏组件的引针。采用这种自基准的定时方案来控制读操作,其结果是读命令,它在每个时钟周期中被送入存储器并且有两个周期的有效执行时间。也就是说,利用时钟的上升沿N采样的读命令将把其输出数据送至具有充足的准备时间的接口,以使存储器控制器能够利用时钟的上升沿N+2将其锁存。
写操作也利用自定时电路来生成RWACTIVE,参见在图9中所示的输入时钟信号CLK的经过延时的变形信号。该自定时电路通过从反相器922输出的逻辑低电位来关闭数据线补偿与预充电电路924。它通过提供来自与门928的输出端的逻辑高电压的方式来启动写缓冲器930,以便把在接口上采样的写数据送至数据线926。如前所述,子阵列中的列存取装置利用由与门918生成的局部列选择信号LCSL进行控制。
列存取装置的位线读出与激活之间的相关定时的精确控制对于执行写操作而言是重要的。一般来讲,字线一旦被选中,与该特定字线相关的所有存储单元均将被存取,并且存储数据将通过字线存取晶体管被送至各自的位线。接着,与所选子阵列相关的所有读出放大器均将开始读取它们的所有相关位线上的数据(以确保该行中未被选择的位线中的数据完整性)。在常规的DRAM中,对于写操作而言,一旦特定的列被选中,写驱动器将重写位线读出放大器读出的数据。然而,根据本发明,在读出放大器开始根据被激活的字线增大位线电压等信号区的时间与位线等信号区接近全值的干线电位的时间之间的写操作初期存在一个较短的时间间隔。在该时间间隔中,可以通过对在位线读出放大器的激活与列存取装置的激活之间的定时的精确控制来执行写操作。如果列装置被激活得太晚,则要把反相的数据写在位线上的写操作将花费较长的时间,因为写驱动器必须克服反相的全值电压等信号区。如果列存取装置被激活得太早,就存在由局部数据总线(在本实施例中与位线平行布设)与未被写操作选中的位线之间的噪声耦合而引起的数据不可靠的风险。未中选的线实际上只在执行读出与恢复操作。
为此,本发明的自定时特性为在位线激活、位线读出放大器激活、写驱动器激活及列选择激活的定时之间进行严格控制创造了条件。准确地说,WTPi信号从时钟信号CLK起,经延迟器D1,门912以及触发器910而自定时,继而,根据包括延迟器D3和门914的自定时电路而把读出放大器激活。由门914生成的同一自定时信号则用于驱动延迟器D4与门918,D4与918因此而从读出放大器的激活起被自定时,并且将在同时,在位线读出放大器被激活之后,而被准确激活。同时,写驱动器930也通过由延迟器D2和门920以及928构成的自定时电路而被激活。通过这种方式,写驱动器能够比在常规的DRAM器件中更迅速地把位线上的反相的逻辑状态翻转成它们正在写的状态。参见图10b,该图示出了用于生成WTPi的定时图,用1050标识。如果该子阵列是激活的,或是被选中的,则SR触发器910的S输入端转为高电位。因此,WTPi变为高电压,并且开始运行要求命令的一系列控制操作。WTPi在时钟的下一个上升沿处被重置为低电位。这种情况被图解为例1。然而,如果子阵列是未激活的,或未中选,则SR触发器910的S输入端维持低电位,并且,因此,WTPi维持低电位。这种情况被图解为例2。
关于命令以及组选择的信息输送,回过来参见图9,如果在周期N中在给定的子阵列组中执行了读操作,则在周期N期间其组选择将得以维持。寄存器940利用把时钟周期N与N+1隔离开的时钟上升沿锁存组选信号。904的输出在时钟周期N+1期间对多路复用器938的选择进行控制。
由一个外部存储控制器控制刷新存储器器件或存储器宏组件502的存储信息。该外部存储控制器以一种最优化的模式为特定的应用建立刷新模式。然而,在预定义的刷新时间间隔内,每个单元至少应被刷新一次。刷新时间间隔取决于所使用的装置与技术。
为了周期性地对全部存储单元进行刷新,该存储控制器给出A*2M条刷新命令,每个行地址一条命令,每个最大的刷新时间间隔中至少刷新一次。刷新命令对子阵列中的完整行的单元同时执行操作,并且对存储地址612的N个最低有效位612a采取“不理睬”的态度。
执行读与写操作时,含有被编址的字的整个行的信息均被刷新。因此,能够保证每个行中的至少一个字将在小于或等于最大刷新时间间隔的时间间隔内成为读或写命令的目标的应用无需执行明确的刷新命令。
体现上述的本发明的DRAM结构与电路被确定为众多的高性能应用的目标。本发明的结构与电路取代传统DRAM结构的双级存取模式。这样,就不再有把存储地址分为行与列分量的明显分法,并且存储器接口也不再包括行状态这一概念。没有了行状态,就没有了把存储容量分为存储体的分法,也就没有了明确开启与关闭行的命令。该结构支持并要求读,写,和刷新命令。这些操作的执行时间与周期时间也因此是恒定的,并且不取决于输入地址的值。
由于不支持明显的行状态,在每一操作的开始,所有的DRAM阵列的状态均表现相同。所有操作的初始条件都是所有的字线都被预充电为低电位,并且所有的位线与数据线均被补偿并被预充电为预充电电压。每一存储操作执行完整的行存取操作与相邻的位线和数据线的补偿与预充电。这就大为简化了外部存储控制器的设计,因为它不再需要跟踪开启的存储体。
而且,外部存储控制器无需以检查每个读或写操作的地址,以选择合适的DRAM命令序列来执行该操作。经比较,在常规的DRAM系统中,存储控制器必须判断它要存取的存储地址是否会找到打开页的存储体,封闭的存储体,或对不同的页打开的存储体。
虽然已参照具体的实施例对上面的设备进行了描述,但是本技术领域的专业人士清楚各种修改。例如,用差分放大器替换差分采样触发器936能把读执行时间从两个时钟周期降至一个,使最大执行时钟速率得以充分下降。相反,利用上述结构组建的容量巨大的DRAM可以在该存储器中的读数据或写数据的内部路径中采用一个或多个附加的信息传送寄存器级。为了增大存储器的最大时钟或者增大所读的数据,以便对所规定的可为外部存储控制器利用的时间进行计时,就可以这样做。这种情况对于在很大程度上被分解为多个子阵列的DRAM而言是相似的。
本发明的该实施例在每个存储单元子阵列中提供了附加的行与列部分,作为备份,用于修复某些种类的生产缺陷。一般来讲,这一作法使子阵列的规模稍有增大,并导致存储器的存取小有延迟。这是由于子阵列的操作较慢,并且在列冗余的情况下对字线驱动器进行维持之前或者在列冗余的情况下对列进行维持之前需要把输入地址与故障地址表进行比较的缘故。本实施例中所述的定时序列能够消除存储周期时间中的部分的或全部的行地址冗余比较延迟成分,其方式是在行周期的开始使该延迟成分与位线补偿以及预充电进行重叠。但是,一个替代的可能性是,从子阵列中完全取消冗余部分,代之以为存储器器件或存储器宏组件配备冗余的子阵列,以通过故障子阵列的冗余替换的方式达到维修的目的。
列冗余是通过在子阵列组数据线926与采样触发器936/写缓冲器930之间设置多路复用器(图9中未示出)而实现的,这样就能为常规数据部分替换冗余的列装置。此外,互补的冗余装置数据线对能够或者是单独地或者是作为较大的存储体的装置而被替换,用作互补的常规数据线对。数据线补偿与预充电电路设于数据线冗余多路复用器的旁边,以便把执行这一操作所需的时间降至最低。
在用于存取选择的行的定时序列启动的WTPi之后的行周期的第一部分中执行执行位线预充电与补偿的作法具有高于常规实施例的几个优点。对于用于在输入时钟的上升沿之后延迟字线定时脉冲(WTPi)的维持的延迟部件D1,其设计目的在于生成最小的必需的时间段,在此时间段内,WTPi为低电位。对于WTPi的这一最小的必需的低电位时间段,其设计目的在于在处理变量以及电源电压与器件温度情况最差的条件下确保足够的位线补偿一预充电。结果,字线定时脉冲WTPi是尽可能精确的。
参见图11a,该定时图示出了延迟环节D1与位线补偿之间的这种相关性。存储器的最大时钟速率是在能有效执行行存取与读或写操作的最糟条件下由必需的WTPi的高电位持续期确定的。由WTPi低电位期间所占用的、以及因此而由相邻的操作之间的位线与预充电所占用的时钟周期的时间段,是在处理、电压以及温度的情况最差的延迟条件下以最大的时钟率进行的存储器操作的最大值的时间段。
对于以较慢的时钟速率进行的、或者在好于逻辑延迟最差的情况的条件下进行的操作,相邻操作之间的WTPi处于低电位的时钟周期的时间段被减小。这就增大了在子阵列的行存取期间选择的字线得以维持的时间。于是,为了所有的操作以及用于读操作的数据线上的等信号区电压而进行的存储单元恢复的质量得以提高。参见图11b,该定时图图解说明了以慢于最大时钟速率的时钟速率进行的、或者在好于逻辑延迟最差的情况的条件下进行的存储操作。
该实施例还描述了使用同步接口的系统,该接口以接口输入时钟的每个周期一条命令的速率来接收与执行命令。然而,用异步接口来实现上述的DRAM结构,对于本技术领域的专业人士而言,这是透明的。在图12a中给出了用于异步接口的定时图。
在另一个可代替换的实施例中,同步接口把子阵列存取延迟乃至跨过两个以上的接口时钟周期,这也是可行的。参见图12b,该图给出了用于这种实施例的定时图。
在另一个可供选择的实施例中,同步接口以每个时钟周期一项操作的速率执行操作,而每个时钟周期具有一个时钟周期的读数据执行时间,这是可行的。这样的实施例在图13a中给出。
在另一个供选的实施例中,实现了同步接口,该接口以每个时钟周期一项操作的速率执行操作,而每个时钟周期具有三个以上时钟周期的读数据执行时间。这样的实施例在图13b中给出。
虽然已参照的具体实施例对本发明进行了描述,但是只要不背离如在所附的权利要求中阐述的本发明的精神与范围,对其进行和种修改对于本技术领域的专业人士而言将会是透明的。而且,本发明可用于任何种类的使用冗余存储装置以增加有效输出量的电子存储器。这包括但却不局限于SRAM以及各种非易失性的存储器,如EPROM,EEPROM,闪速EPROM,和FRAM。

Claims (26)

1.一种动态随机存取存储器,用于执行读、写、和刷新操作,所述动态随机存取存储器包括:
多个子阵列,每个子阵列包括多个存储单元,每个存储单元与多个互补位线对中的一互补位线对的一条位线耦合,并且与多条字线中的一条字线耦合;
字线激活电路,用于激活从所述多条字线中所选的字线;
列选择电路,用于激活从所述多个位线对中所选的位线对;以及
定时电路,用于响应于字线定时脉冲而控制所述字线激活电路、所述列选择电路和所述读、写、和刷新操作;
其中所述多个子阵列的每个子阵列包括独立且专用的多个位线读出放大器。
2.根据权利要求1所述的动态随机存取存储器,其中所有的字线激活信号和位线激活信号具有独立的定时路径。
3.根据权利要求1所述的动态随机存取存储器,其中所有的字线激活信号和位线激活信号都是在每个所述子阵列中局部产生的,并且由字线定时脉冲来触发。
4.根据权利要求1所述的动态随机存取存储器,还包括与所述每个子阵列相关联的逻辑门,用于将字线定时脉冲和延迟的字线定时脉冲进行组合,以提供读出放大器电源激活信号。
5.根据权利要求6所述的动态随机存取存储器,还包括延迟元件,用于对字线定时脉冲进行延迟,以提供延迟的字线定时脉冲。
6.根据权利要求5所述的动态随机存取存储器,还包括第二延迟元件,用于对读出放大器电源激活信号进行延迟,以产生列选择激活信号。
7.根据权利要求1所述的动态随机存取存储器,还包括与每个所述子阵列相关联的第二逻辑门,用于将列选择激活信号和全局列选择地址信号进行组合,以提供局部列选择信号。
8.根据权利要求7所述的动态随机存取存储器,还包括列存取电路,用于接收局部列选择信号,用于读、写、或刷新操作。
9.根据权利要求1所述的动态随机存取存储器,其中读、写、和刷新操作执行完全的行存取,后续字线和数据线预充电和均衡。
10.一种存取动态随机存取存储器的方法,所述动态随机存取存储器具有按照行和列设置的多个存储器存储元件,所述方法包括步骤:
(a)通过提供第一地址信号来启动第一存储器存取,所述第一地址信号指示了要被存取的至少一个存储器存储元件的位置;
(b)对第一地址信号进行解码,以选择与所述至少一个存储器存储元件的位置相对应的行和至少一列;
(c)激活与所选的列相对应的字线;
(d)激活读出放大器以锁存去向或者来自至少一个所选列的数据;
(e)禁止与所选行相对应的字线;
(f)对至少一个所选列进行预充电;
(g)通过提供第二地址信号来启动第二存储器存取,所述第二地址信号指示了要被存取的至少一个存储器存储元件的位置;以及
(h)对第二地址信号进行解码,以选择与至少一个存储器存储元件的位置相对应的行和至少一列,所述第二存储器存取在对所选列进行预充电的步骤已经结束之前开始。
11.根据权利要求10所述的方法,其中对所述第二地址进行解码的步骤在预所述预充电步骤大体相同的时间出现。
12.根据权利要求10所述的方法,其中存储器存储元件设置成多个子阵列,并且所述方法还包括对所述第一地址信号和所述第二地址信号进行解码,以选择至少一个子阵列。
13.根据权利要求10所述的方法,其中对所述第一地址信号进行解码包括:在大体相同的时刻对行地址和列地址进行解码。
14.根据权利要求10所述的方法,其中对所述第二地址信号进行解码包括:在大体相同的时刻对行地址和列地址进行解码。
15.根据权利要求10所述的方法,其中存储器存取是读存取、写存取、或者刷新存取之一。
16.根据权利要求10所述的方法,还包括步骤:从系统时钟信号中导出多个自定时时钟脉冲,用于控制步骤(b)到(f)的定时。
17.根据权利要求10所述的方法,还包括步骤:在系统时钟信号的连续周期中执行存储器存取。
18.一种动态随机存取存储器,包括:
多个存储器存储元件,设置成行和列,每个存储器存储元件与位线对和字线耦合;
行解码器,用于从在各自的时钟周期所接收的地址信号中解码出行地址,并且用于将字线信号维持在与所解码的行地址相对应的字线上;
列解码器,用于从地址信号解码列地址,并且用户选择至少一个相应的位线对;
预充电电路,用于对至少一对位线进行预充电;以及
定时电路,用于控制预充电电路的激活,使得在正在被行和列解码器所解码的下一地址信号大致相同的时间,出现对由地址信号所选择的存储器存储元件的预充电,而与哪些存储器存储元件被第一地址信号和下一地址信号选择无关。
19.根据权利要求18所述的动态随机存取存储器,其中存储器存储元件设置成多个子阵列,所述动态随机存取存储器还包括子阵列解码器,用于对地址信号进行解码,以提供子阵列选择信号。
20.根据权利要求19所述的动态随机存取存储器,其中每个子阵列包括数据线,所述数据线能够耦合到所选的位线。
21.根据权利要求18所述的动态随机存取存储器,其中所述动态随机存取存储器是嵌入式动态随机存取存储器。
22.根据权利要求18所述的动态随机存取存储器,还包括地址寄存器,用于响应于系统时钟信号而锁存地址信号。
23.根据权利要求18所述的动态随机存取存储器,其中将解码的行地址与字线定时脉冲组合,以在字线上维持字线信号。
24.根据权利要求18所述的动态随机存取存储器,其中定时电路包括延迟元件,所述延迟元件用于提供在时间上延迟后的系统时钟信号,以与预充电电路的激活同步。
25.根据权利要求18所述的动态随机存取存储器,其中地址信号包括定义列地址的N位和定义行地址的M位。
26.根据权利要求18所述的动态随机存取存储器,其中行解码器和列解码器在大体相同的时间对地址信号进行解码。
CNB200710006302XA 2000-07-07 2001-06-29 具有统一的存取执行时间的高速动态随机存取存储器结构 Expired - Fee Related CN100568383C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2,313,954 2000-07-07
CA002313954A CA2313954A1 (en) 2000-07-07 2000-07-07 High speed dram architecture with uniform latency
US60/216,679 2000-07-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB018124275A Division CN1307647C (zh) 2000-07-07 2001-06-29 动态随机存取存储器、存储器器件及其执行读命令的方法

Publications (2)

Publication Number Publication Date
CN101038785A true CN101038785A (zh) 2007-09-19
CN100568383C CN100568383C (zh) 2009-12-09

Family

ID=4166723

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200710006302XA Expired - Fee Related CN100568383C (zh) 2000-07-07 2001-06-29 具有统一的存取执行时间的高速动态随机存取存储器结构

Country Status (5)

Country Link
EP (1) EP2276033B1 (zh)
CN (1) CN100568383C (zh)
AT (1) ATE535911T1 (zh)
CA (3) CA2313954A1 (zh)
ES (1) ES2516791T3 (zh)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981874A (zh) * 2013-02-04 2015-10-14 美光科技公司 用于存储器的目标刷新的设备及方法
CN106601284A (zh) * 2015-10-16 2017-04-26 爱思开海力士有限公司 存储器件和包括其的系统
CN107527649A (zh) * 2016-06-20 2017-12-29 三星电子株式会社 具有提高的延迟的存储器器件及其操作方法
US9922694B2 (en) 2014-05-21 2018-03-20 Micron Technology, Inc. Apparatuses and methods for controlling refresh operations
US10134461B2 (en) 2013-08-26 2018-11-20 Micron Technology, Inc. Apparatuses and methods for selective row refreshes
CN109785882A (zh) * 2017-11-15 2019-05-21 三星电子株式会社 具有虚拟体化架构的sram及包括其的系统和方法
CN109920458A (zh) * 2017-12-12 2019-06-21 爱思开海力士有限公司 地址解码器及包括其的半导体存储器件
CN110168645A (zh) * 2017-01-06 2019-08-23 美光科技公司 用于具有双共同数据i/o线的存储器装置的设备及方法
US20190267077A1 (en) 2016-03-31 2019-08-29 Micron Technology, Inc. Semiconductor device
CN110277111A (zh) * 2018-03-16 2019-09-24 爱思开海力士有限公司 感测放大器和使用感测放大器的半导体存储装置
CN110574113A (zh) * 2017-05-01 2019-12-13 美光科技公司 用于阵列复位模式操作的系统及方法
US10580475B2 (en) 2018-01-22 2020-03-03 Micron Technology, Inc. Apparatuses and methods for calculating row hammer refresh addresses in a semiconductor device
US10770127B2 (en) 2019-02-06 2020-09-08 Micron Technology, Inc. Apparatuses and methods for managing row access counts
CN111833940A (zh) * 2019-04-15 2020-10-27 华邦电子股份有限公司 一种存储芯片及其控制方法
US10943636B1 (en) 2019-08-20 2021-03-09 Micron Technology, Inc. Apparatuses and methods for analog row access tracking
US10964378B2 (en) 2019-08-22 2021-03-30 Micron Technology, Inc. Apparatus and method including analog accumulator for determining row access rate and target row address used for refresh operation
US11043254B2 (en) 2019-03-19 2021-06-22 Micron Technology, Inc. Semiconductor device having cam that stores address signals
CN113113060A (zh) * 2020-01-09 2021-07-13 华邦电子股份有限公司 存储装置中的阵列边缘中继器
US11069393B2 (en) 2019-06-04 2021-07-20 Micron Technology, Inc. Apparatuses and methods for controlling steal rates
US11139015B2 (en) 2019-07-01 2021-10-05 Micron Technology, Inc. Apparatuses and methods for monitoring word line accesses
US11152050B2 (en) 2018-06-19 2021-10-19 Micron Technology, Inc. Apparatuses and methods for multiple row hammer refresh address sequences
US11158364B2 (en) 2019-05-31 2021-10-26 Micron Technology, Inc. Apparatuses and methods for tracking victim rows
US11158373B2 (en) 2019-06-11 2021-10-26 Micron Technology, Inc. Apparatuses, systems, and methods for determining extremum numerical values
US11200942B2 (en) 2019-08-23 2021-12-14 Micron Technology, Inc. Apparatuses and methods for lossy row access counting
US11222686B1 (en) 2020-11-12 2022-01-11 Micron Technology, Inc. Apparatuses and methods for controlling refresh timing
US11222683B2 (en) 2018-12-21 2022-01-11 Micron Technology, Inc. Apparatuses and methods for staggered timing of targeted refresh operations
US11222682B1 (en) 2020-08-31 2022-01-11 Micron Technology, Inc. Apparatuses and methods for providing refresh addresses
US11227649B2 (en) 2019-04-04 2022-01-18 Micron Technology, Inc. Apparatuses and methods for staggered timing of targeted refresh operations
US11264079B1 (en) 2020-12-18 2022-03-01 Micron Technology, Inc. Apparatuses and methods for row hammer based cache lockdown
US11264096B2 (en) 2019-05-14 2022-03-01 Micron Technology, Inc. Apparatuses, systems, and methods for a content addressable memory cell with latch and comparator circuits
US11270750B2 (en) 2018-12-03 2022-03-08 Micron Technology, Inc. Semiconductor device performing row hammer refresh operation
US11302377B2 (en) 2019-10-16 2022-04-12 Micron Technology, Inc. Apparatuses and methods for dynamic targeted refresh steals
US11302374B2 (en) 2019-08-23 2022-04-12 Micron Technology, Inc. Apparatuses and methods for dynamic refresh allocation
US11309010B2 (en) 2020-08-14 2022-04-19 Micron Technology, Inc. Apparatuses, systems, and methods for memory directed access pause
US11315619B2 (en) 2017-01-30 2022-04-26 Micron Technology, Inc. Apparatuses and methods for distributing row hammer refresh events across a memory device
US11380382B2 (en) 2020-08-19 2022-07-05 Micron Technology, Inc. Refresh logic circuit layout having aggressor detector circuit sampling circuit and row hammer refresh control circuit
US11386946B2 (en) 2019-07-16 2022-07-12 Micron Technology, Inc. Apparatuses and methods for tracking row accesses
US11424005B2 (en) 2019-07-01 2022-08-23 Micron Technology, Inc. Apparatuses and methods for adjusting victim data
US11462291B2 (en) 2020-11-23 2022-10-04 Micron Technology, Inc. Apparatuses and methods for tracking word line accesses
US11482275B2 (en) 2021-01-20 2022-10-25 Micron Technology, Inc. Apparatuses and methods for dynamically allocated aggressor detection
US11532346B2 (en) 2018-10-31 2022-12-20 Micron Technology, Inc. Apparatuses and methods for access based refresh timing
US11557331B2 (en) 2020-09-23 2023-01-17 Micron Technology, Inc. Apparatuses and methods for controlling refresh operations
US11600314B2 (en) 2021-03-15 2023-03-07 Micron Technology, Inc. Apparatuses and methods for sketch circuits for refresh binning
US11626152B2 (en) 2018-05-24 2023-04-11 Micron Technology, Inc. Apparatuses and methods for pure-time, self adopt sampling for row hammer refresh sampling
US11664063B2 (en) 2021-08-12 2023-05-30 Micron Technology, Inc. Apparatuses and methods for countering memory attacks
US11688451B2 (en) 2021-11-29 2023-06-27 Micron Technology, Inc. Apparatuses, systems, and methods for main sketch and slim sketch circuit for row address tracking
US11749331B2 (en) 2020-08-19 2023-09-05 Micron Technology, Inc. Refresh modes for performing various refresh operation types
WO2023165003A1 (zh) * 2022-03-03 2023-09-07 长鑫存储技术有限公司 数据读出电路、数据读出方法和存储器
US12002501B2 (en) 2021-02-12 2024-06-04 Micron Technology, Inc. Apparatuses and methods for distributed targeted refresh operations

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808959A (en) * 1996-08-07 1998-09-15 Alliance Semiconductor Corporation Staggered pipeline access scheme for synchronous random access memory
US6072743A (en) * 1998-01-13 2000-06-06 Mitsubishi Denki Kabushiki Kaisha High speed operable semiconductor memory device with memory blocks arranged about the center

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981874A (zh) * 2013-02-04 2015-10-14 美光科技公司 用于存储器的目标刷新的设备及方法
US10861519B2 (en) 2013-02-04 2020-12-08 Micron Technology, Inc. Apparatuses and methods for targeted refreshing of memory
US9741409B2 (en) 2013-02-04 2017-08-22 Micron Technology, Inc. Apparatuses and methods for targeted refreshing of memory
US10811066B2 (en) 2013-02-04 2020-10-20 Micron Technology, Inc. Apparatuses and methods for targeted refreshing of memory
US10147472B2 (en) 2013-02-04 2018-12-04 Micron Technology, Inc. Apparatuses and methods for targeted refreshing of memory
US10930335B2 (en) 2013-08-26 2021-02-23 Micron Technology, Inc. Apparatuses and methods for selective row refreshes
US10134461B2 (en) 2013-08-26 2018-11-20 Micron Technology, Inc. Apparatuses and methods for selective row refreshes
US11361808B2 (en) 2013-08-26 2022-06-14 Micron Technology, Inc. Apparatuses and methods for selective row refreshes
US9922694B2 (en) 2014-05-21 2018-03-20 Micron Technology, Inc. Apparatuses and methods for controlling refresh operations
US10153031B2 (en) 2014-05-21 2018-12-11 Micron Technology, Inc. Apparatuses and methods for controlling refresh operations
US10867660B2 (en) 2014-05-21 2020-12-15 Micron Technology, Inc. Apparatus and methods for controlling refresh operations
US10607686B2 (en) 2014-05-21 2020-03-31 Micron Technology, Inc. Apparatuses and methods for controlling refresh operations
CN106601284B (zh) * 2015-10-16 2020-08-25 爱思开海力士有限公司 存储器件和包括其的系统
CN106601284A (zh) * 2015-10-16 2017-04-26 爱思开海力士有限公司 存储器件和包括其的系统
US20190267077A1 (en) 2016-03-31 2019-08-29 Micron Technology, Inc. Semiconductor device
US10950289B2 (en) 2016-03-31 2021-03-16 Micron Technology, Inc. Semiconductor device
CN107527649B (zh) * 2016-06-20 2023-05-23 三星电子株式会社 具有提高的延迟的存储器器件及其操作方法
CN107527649A (zh) * 2016-06-20 2017-12-29 三星电子株式会社 具有提高的延迟的存储器器件及其操作方法
CN110168645A (zh) * 2017-01-06 2019-08-23 美光科技公司 用于具有双共同数据i/o线的存储器装置的设备及方法
US11315619B2 (en) 2017-01-30 2022-04-26 Micron Technology, Inc. Apparatuses and methods for distributing row hammer refresh events across a memory device
CN110574113A (zh) * 2017-05-01 2019-12-13 美光科技公司 用于阵列复位模式操作的系统及方法
CN109785882A (zh) * 2017-11-15 2019-05-21 三星电子株式会社 具有虚拟体化架构的sram及包括其的系统和方法
CN109785882B (zh) * 2017-11-15 2023-11-21 三星电子株式会社 具有虚拟体化架构的sram及包括其的系统和方法
CN109920458A (zh) * 2017-12-12 2019-06-21 爱思开海力士有限公司 地址解码器及包括其的半导体存储器件
US10580475B2 (en) 2018-01-22 2020-03-03 Micron Technology, Inc. Apparatuses and methods for calculating row hammer refresh addresses in a semiconductor device
US11322192B2 (en) 2018-01-22 2022-05-03 Micron Technology, Inc. Apparatuses and methods for calculating row hammer refresh addresses in a semiconductor device
CN110277111A (zh) * 2018-03-16 2019-09-24 爱思开海力士有限公司 感测放大器和使用感测放大器的半导体存储装置
US11626152B2 (en) 2018-05-24 2023-04-11 Micron Technology, Inc. Apparatuses and methods for pure-time, self adopt sampling for row hammer refresh sampling
US11694738B2 (en) 2018-06-19 2023-07-04 Micron Technology, Inc. Apparatuses and methods for multiple row hammer refresh address sequences
US11152050B2 (en) 2018-06-19 2021-10-19 Micron Technology, Inc. Apparatuses and methods for multiple row hammer refresh address sequences
US11532346B2 (en) 2018-10-31 2022-12-20 Micron Technology, Inc. Apparatuses and methods for access based refresh timing
US11315620B2 (en) 2018-12-03 2022-04-26 Micron Technology, Inc. Semiconductor device performing row hammer refresh operation
US11935576B2 (en) 2018-12-03 2024-03-19 Micron Technology, Inc. Semiconductor device performing row hammer refresh operation
US11270750B2 (en) 2018-12-03 2022-03-08 Micron Technology, Inc. Semiconductor device performing row hammer refresh operation
US11222683B2 (en) 2018-12-21 2022-01-11 Micron Technology, Inc. Apparatuses and methods for staggered timing of targeted refresh operations
US11257535B2 (en) 2019-02-06 2022-02-22 Micron Technology, Inc. Apparatuses and methods for managing row access counts
US10770127B2 (en) 2019-02-06 2020-09-08 Micron Technology, Inc. Apparatuses and methods for managing row access counts
US11521669B2 (en) 2019-03-19 2022-12-06 Micron Technology, Inc. Semiconductor device having cam that stores address signals
US11043254B2 (en) 2019-03-19 2021-06-22 Micron Technology, Inc. Semiconductor device having cam that stores address signals
US11309012B2 (en) 2019-04-04 2022-04-19 Micron Technology, Inc. Apparatuses and methods for staggered timing of targeted refresh operations
US11227649B2 (en) 2019-04-04 2022-01-18 Micron Technology, Inc. Apparatuses and methods for staggered timing of targeted refresh operations
CN111833940A (zh) * 2019-04-15 2020-10-27 华邦电子股份有限公司 一种存储芯片及其控制方法
US11264096B2 (en) 2019-05-14 2022-03-01 Micron Technology, Inc. Apparatuses, systems, and methods for a content addressable memory cell with latch and comparator circuits
US11600326B2 (en) 2019-05-14 2023-03-07 Micron Technology, Inc. Apparatuses, systems, and methods for a content addressable memory cell and associated comparison operation
US11984148B2 (en) 2019-05-31 2024-05-14 Micron Technology, Inc. Apparatuses and methods for tracking victim rows
US11158364B2 (en) 2019-05-31 2021-10-26 Micron Technology, Inc. Apparatuses and methods for tracking victim rows
US11069393B2 (en) 2019-06-04 2021-07-20 Micron Technology, Inc. Apparatuses and methods for controlling steal rates
US11798610B2 (en) 2019-06-04 2023-10-24 Micron Technology, Inc. Apparatuses and methods for controlling steal rates
US11854618B2 (en) 2019-06-11 2023-12-26 Micron Technology, Inc. Apparatuses, systems, and methods for determining extremum numerical values
US11158373B2 (en) 2019-06-11 2021-10-26 Micron Technology, Inc. Apparatuses, systems, and methods for determining extremum numerical values
US11424005B2 (en) 2019-07-01 2022-08-23 Micron Technology, Inc. Apparatuses and methods for adjusting victim data
US11699476B2 (en) 2019-07-01 2023-07-11 Micron Technology, Inc. Apparatuses and methods for monitoring word line accesses
US11139015B2 (en) 2019-07-01 2021-10-05 Micron Technology, Inc. Apparatuses and methods for monitoring word line accesses
US11386946B2 (en) 2019-07-16 2022-07-12 Micron Technology, Inc. Apparatuses and methods for tracking row accesses
US10943636B1 (en) 2019-08-20 2021-03-09 Micron Technology, Inc. Apparatuses and methods for analog row access tracking
US11398265B2 (en) 2019-08-20 2022-07-26 Micron Technology, Inc. Apparatuses and methods for analog row access tracking
US10964378B2 (en) 2019-08-22 2021-03-30 Micron Technology, Inc. Apparatus and method including analog accumulator for determining row access rate and target row address used for refresh operation
US11568918B2 (en) 2019-08-22 2023-01-31 Micron Technology, Inc. Apparatuses, systems, and methods for analog accumulator for determining row access rate and target row address used for refresh operation
US11417383B2 (en) 2019-08-23 2022-08-16 Micron Technology, Inc. Apparatuses and methods for dynamic refresh allocation
US11200942B2 (en) 2019-08-23 2021-12-14 Micron Technology, Inc. Apparatuses and methods for lossy row access counting
US11302374B2 (en) 2019-08-23 2022-04-12 Micron Technology, Inc. Apparatuses and methods for dynamic refresh allocation
US11715512B2 (en) 2019-10-16 2023-08-01 Micron Technology, Inc. Apparatuses and methods for dynamic targeted refresh steals
US11302377B2 (en) 2019-10-16 2022-04-12 Micron Technology, Inc. Apparatuses and methods for dynamic targeted refresh steals
CN113113060A (zh) * 2020-01-09 2021-07-13 华邦电子股份有限公司 存储装置中的阵列边缘中继器
CN113113060B (zh) * 2020-01-09 2024-04-12 华邦电子股份有限公司 存储装置中的阵列边缘中继器
US11309010B2 (en) 2020-08-14 2022-04-19 Micron Technology, Inc. Apparatuses, systems, and methods for memory directed access pause
US11749331B2 (en) 2020-08-19 2023-09-05 Micron Technology, Inc. Refresh modes for performing various refresh operation types
US11380382B2 (en) 2020-08-19 2022-07-05 Micron Technology, Inc. Refresh logic circuit layout having aggressor detector circuit sampling circuit and row hammer refresh control circuit
US11222682B1 (en) 2020-08-31 2022-01-11 Micron Technology, Inc. Apparatuses and methods for providing refresh addresses
US11557331B2 (en) 2020-09-23 2023-01-17 Micron Technology, Inc. Apparatuses and methods for controlling refresh operations
US11222686B1 (en) 2020-11-12 2022-01-11 Micron Technology, Inc. Apparatuses and methods for controlling refresh timing
US11462291B2 (en) 2020-11-23 2022-10-04 Micron Technology, Inc. Apparatuses and methods for tracking word line accesses
US11810612B2 (en) 2020-12-18 2023-11-07 Micron Technology, Inc. Apparatuses and methods for row hammer based cache lockdown
US11264079B1 (en) 2020-12-18 2022-03-01 Micron Technology, Inc. Apparatuses and methods for row hammer based cache lockdown
US11482275B2 (en) 2021-01-20 2022-10-25 Micron Technology, Inc. Apparatuses and methods for dynamically allocated aggressor detection
US12002501B2 (en) 2021-02-12 2024-06-04 Micron Technology, Inc. Apparatuses and methods for distributed targeted refresh operations
US11600314B2 (en) 2021-03-15 2023-03-07 Micron Technology, Inc. Apparatuses and methods for sketch circuits for refresh binning
US11664063B2 (en) 2021-08-12 2023-05-30 Micron Technology, Inc. Apparatuses and methods for countering memory attacks
US11688451B2 (en) 2021-11-29 2023-06-27 Micron Technology, Inc. Apparatuses, systems, and methods for main sketch and slim sketch circuit for row address tracking
WO2023165003A1 (zh) * 2022-03-03 2023-09-07 长鑫存储技术有限公司 数据读出电路、数据读出方法和存储器

Also Published As

Publication number Publication date
ES2516791T3 (es) 2014-10-31
CA2313954A1 (en) 2002-01-07
CA2805048A1 (en) 2002-01-17
CA2414920A1 (en) 2002-01-17
CA2414920C (en) 2013-04-23
EP2276033A1 (en) 2011-01-19
EP2276033B1 (en) 2014-07-16
CN100568383C (zh) 2009-12-09
ATE535911T1 (de) 2011-12-15
CA2805048C (en) 2015-02-10

Similar Documents

Publication Publication Date Title
CN1307647C (zh) 动态随机存取存储器、存储器器件及其执行读命令的方法
CN100568383C (zh) 具有统一的存取执行时间的高速动态随机存取存储器结构
US6735135B2 (en) Compact analog-multiplexed global sense amplifier for RAMs
US5659515A (en) Semiconductor memory device capable of refresh operation in burst mode
JP4757334B2 (ja) 高速データアクセスのための半導体メモリ装置
JP3272888B2 (ja) 半導体記憶装置
US6678198B2 (en) Pseudo differential sensing method and apparatus for DRAM cell
US10026468B2 (en) DRAM with segmented word line switching circuit for causing selection of portion of rows and circuitry for a variable page width control scheme
CN1508807A (zh) 半导体存储设备
JP2007273007A (ja) 半導体記憶装置
JPH0636560A (ja) 半導体記憶装置
CN101866687B (zh) 自定时写跟踪型静态随机存储器
US20020054530A1 (en) Method and apparatus for refreshing semiconductor memory
JPH06223561A (ja) 半導体メモリ装置及び初期化方法
US6331963B1 (en) Semiconductor memory device and layout method thereof
US8120987B2 (en) Structure and method for decoding read data-bus with column-steering redundancy
JP5119912B2 (ja) 連想メモリ
CN1421861A (zh) 高性能半导体存储设备
KR20010077080A (ko) 풀-페이지 모드를 갖는 버스트-타입의 반도체 메모리 장치
US5546350A (en) RAM variable size block write
US6400639B1 (en) Wordline decoder system and method
CN103123806B (zh) Dram的列选择信号的控制电路及包括其的存取存储器
JP4471902B2 (ja) 半導体記憶装置
US20240071469A1 (en) Memory with single transistor sub-word line drivers, and associated systems, devices, and methods
JP2003051188A (ja) 半導体メモリ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC.

Free format text: FORMER NAME: MOSAID TECH INC

CP03 Change of name, title or address

Address after: Ontario, Canada

Patentee after: Examine Vincent Zhi Cai management company

Address before: Ontario

Patentee before: Mosaid Tech Inc

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091209

Termination date: 20150629

EXPY Termination of patent right or utility model