CN101013027A - High-frequency error detecting apparatus and method for heavy caliber heavy relative aperture aspherical mirror - Google Patents

High-frequency error detecting apparatus and method for heavy caliber heavy relative aperture aspherical mirror Download PDF

Info

Publication number
CN101013027A
CN101013027A CN 200710034359 CN200710034359A CN101013027A CN 101013027 A CN101013027 A CN 101013027A CN 200710034359 CN200710034359 CN 200710034359 CN 200710034359 A CN200710034359 A CN 200710034359A CN 101013027 A CN101013027 A CN 101013027A
Authority
CN
China
Prior art keywords
axis
mirror
interferometer
measured
platform
Prior art date
Application number
CN 200710034359
Other languages
Chinese (zh)
Other versions
CN100462673C (en
Inventor
李圣怡
戴一帆
陈善勇
郑子文
解旭辉
王贵林
Original Assignee
中国人民解放军国防科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军国防科学技术大学 filed Critical 中国人民解放军国防科学技术大学
Priority to CN 200710034359 priority Critical patent/CN100462673C/en
Publication of CN101013027A publication Critical patent/CN101013027A/en
Application granted granted Critical
Publication of CN100462673C publication Critical patent/CN100462673C/en

Links

Abstract

The invention discloses a high-frequency error detection device and method in the large caliber large relative aperture non-spherical mirror, the device including the five-axis movement adjustment platform with the interferometer focusing platform, the side swing reflecting mirror side swing platform located in front of the interferometer focusing platform, and the measured non-spherical mirror 3D movement adjustment platform located below the side swing reflection mirror side swing platform, and the multiple points supporting machine with the laser wave surface interferometer, the side swing reflection mirrors, and the measured non-spherical mirror installed on the corresponding platforms, and the main control computer with built-in detection data-processing algorithm program connecting with the laser wave surface interferometer. The device uses the main control computer to process the detection data-processing algorithm, which can combine the detected multiple part regions error surface maps into error surface map with medium or high frequency in full caliber, including the initial pose determining method, the overlapping regional data extraction algorithm and the regional data stitching algorithm. The invention is a high-frequency error detection device and method with low-cost, high-precision, high-efficiency in the large caliber large relative aperture non-spherical mirror.

Description

大口径大相对孔径非球面镜中高频误差检测装置与方法 Frequency error detecting method and apparatus of large diameter large relative aperture of the aspheric mirror

技术领域 FIELD

本发明光学测试技术领域,主要涉及一种针对回转对称的大口径大相对孔径非球面镜的中高频面形误差的检测装置与方法。 BACKGROUND Optical Testing present invention relates generally to apparatus and method for detecting high-frequency surface shape error of a large diameter large relative aperture for the aspherical rotationally symmetric.

背景技术 Background technique

为了增大系统的聚光本领和峰值光强,同时缩短镜筒从而缩减成本,新一代天文望远镜等高技术光学装备的一个突出特征是大口径大相对孔径。 In order to increase the system etendue and the peak intensity, thereby reducing the cost and shorten the barrel, wherein a generation projection optical telescopes and other high-tech equipment, large diameter large relative aperture. 人们从发展进程的时间函数曲线预测,21世纪大型反射式望远镜主镜的相对孔径将大致分布在1∶1.5~1∶1之间。 People from the time function curve of the predicted development process, a large relative aperture 21 century reflecting telescope primary mirror will be substantially distributed between 1.5 to 1:1. 对于大口径大相对孔径非球面镜,除了其低频面形误差会影响成像系统的分辨率,降低峰值强度外,中高频误差同样会导致像质恶化。 For large diameter aspheric large relative aperture, in addition to its low surface error will affect the resolution of the imaging system, reducing the peak intensity, the high frequency error can also cause deterioration of the image quality. 因此大口径大相对孔径非球面镜还对中高频误差提出了严格要求,例如美国航空航天局(NASA)对JWST次镜要求全口径上小于5个周期的尺度内的扰动为均方根(RMS)34nm,全口径上5~30个周期的尺度内的扰动为RMS 12nm,而全口径上30个周期以上的尺度内的扰动为RMS4nm。 Therefore, large-caliber large relative aperture aspherical also on the high-frequency errors made stringent requirements, such as National Aeronautics and Space Administration (NASA) of the secondary mirror JWST scale disturbances in less than five cycles of the full aperture required for the root mean square (RMS) 34nm, disturbances in the aperture 5 dimension in a full cycle is 30 ~ RMS 12nm, and disturbances in the aperture over the full scale of 30 cycles RMS4nm.

在抛光阶段非球面镜的面形误差常用波面干涉仪进行检测。 In the polishing stage aspherical surface error wavefront interferometer used for testing. 对于大口径大相对孔径非球面镜,由于非球面度大,例如口径500mm、相对孔径1∶1.6的抛物面镜的非球面度约为29.8μm,远远超出了波面干涉仪的垂直测量范围,导致形成的干涉条纹太密而无法解析。 For large diameter aspheric large relative aperture, due to the large asphericity, e.g. caliber 500mm, relative aperture of the parabolic mirror aspheric 1:1.6 about 29.8μm, far beyond the vertical wavefront interferometer measuring range, resulting in the formation the interference fringes are too dense and can not be resolved. 采用补偿器可以将干涉仪的测试球面波前变换成与被测非球面镜匹配的非球面波前,从而实现干涉检测的目的,但是补偿器本身存在制造、检测和装调问题,并且横向测量分辨率取决于干涉仪所用CCD的象素和干涉仪的光学传递函数,通常难以准确检测到中高频面形误差信息。 Using the compensator may be an interference before testing spherical wave meter before conversion into an aspherical wave and the measured aspheric match, in order to achieve the purpose of interference testing, but the compensator to manufacturing, testing and assembly and adjustment problems themselves, and the lateral measurement resolution depending interferometers with a CCD pixel and the optical transfer function of the interferometer, is often difficult to accurately detect the surface shape error in the high frequency information.

Liu和Lawrence等在“Subaperture testing of aspheres with annularZones”,YMLiu,GNLawrence,and CLKoliopoulo,AppliedOptics,27(21):4504-4513,1988中提出采用环带子孔径拼接的方法测量大口径回转对称非球面镜,无需补偿器而增大了垂直测量范围。 Liu and Lawrence et al "Subaperture testing of aspheres with annularZones", YMLiu, GNLawrence, and CLKoliopoulo, AppliedOptics, 27 (21): 4504-4513,1988 proposed method using the belt loop stitching large-diameter measuring rotationally symmetric aspherical mirror, compensator without increasing the vertical measurement range. 侯溪等在中国专利申请号“200510116819.5”“一种大口径深型非球面镜检测系统”的实施方案中提出利用部分补偿器进行环带子孔径拼接测量,可以解决大口径深型非球面镜所需环带子孔径数目多的问题。 Hou Creek proposed using part compensator loop strap stitching measured in Chinese patent application number "200510116819.5" "an, large diameter deep type aspherical mirror detection system" embodiment, may be required to resolve a ring of large diameter deep type aspherical mirror the number of tape aperture and more problems. 以上方法只能增大垂直测量范围,横向测量分辨率仍然取决于干涉仪所用CCD的象素和干涉仪的光学传递函数。 The method of measuring the above range only increases the vertical, the lateral resolution of the measurement depends on the interferometers is still the CCD pixel and the optical transfer function of the interferometer.

陈伟等在中国专利申请号“200510086657.5”“大口径非球面光学元件中高频差检测方法”中,通过计算光学元件的二维功率谱密度,求取环围能量,以确定相应频率范围能量损失,它是一种中高频误差的数据处理和评价方法,而不涉及误差信息本身的检测方法。 Chen et Chinese patent application number "200510086657.5" "large aperture aspheric optical element frequency difference detection method", the calculated two-dimensional power spectral density of the optical elements to strike energy circle, to determine the respective frequency ranges of energy loss , which is the data processing and evaluation method of a frequency error, the error detection method without involving the information itself.

美国QED公司在“An automated subaperture stitching interferometerworkstation for spherical and aspherical surfaces”,PEMurphy,andG.W.Forbes,Proc.SPIE,Vol.5188,296-307,2003和美国专利“US6956657B2”中提出一种非球面镜面形误差检测的子孔径拼接方法,将被测非球面镜划分为若干更小口径的子孔径,子孔径的测量范围可以覆盖全口径,并且各子孔径间稍有重叠;通过6轴运动平台调整被测非球面镜或干涉仪,对子孔径进行零位干涉检测,然后采用拼接算法得到全口径的检测结果,算法主要补偿了干涉仪成像畸变误差、参考波面误差以及子孔径之间的倾斜、离焦误差。 QED US company in "An automated subaperture stitching interferometerworkstation for spherical and aspherical surfaces", PEMurphy, andG.W.Forbes, in Proc.SPIE, Vol.5188,296-307,2003 and US Patent "US6956657B2" presents a non-spherical mirror stitching surface error detection method, the measured aspheric lens aperture is divided into several smaller sub-caliber, sub-aperture measurement range can cover the full aperture, and overlap slightly among the subaperture; adjusted by the 6-axis motion platform or aspheric test interferometer sub-aperture interferometer zero position detector, and a detection result obtained using the stitching algorithm of the full aperture, the algorithm compensates for the inclination between the main interferometer imaging lens distortion, error, and the reference wavefront subaperture, from focus error. 算法不需迭代,由硬件精度保证可靠性。 Algorithm without iteration, precision hardware reliability. 这种方法主要用于200mm口径以下的非球面镜检测,对于大口径大相对孔径非球面镜,由于运动调整平台的行程增大,而精度要求不变;并且负载增大,光路也加长了,必须采用新的光路和结构设计。 This method is mainly used for detecting non-spherical lens of 200mm caliber or less, for a large-diameter aspherical large relative aperture, since the adjustment stroke movement of the platform is increased, and the accuracy requirements remain unchanged; and the load increases, the light path is prolonged, must the new optical path and structural design.

发明内容 SUMMARY

本发明的目的在于:针对现有技术存在的技术问题,提出一种低成本、高精度、高效率的大口径大相对孔径非球面镜中高频误差检测装置与方法。 Object of the present invention is: for the technical problems of the prior art, to provide a low-cost, high-precision, large-diameter large relative aperture aspheric the high efficiency of the high-frequency error detection means and methods.

为了实现上述目的,本发明提出的大口径大相对孔径非球面镜中高频误差检测装置,它包括由干涉仪调焦平台、位于干涉仪调焦平台前方的偏摆反射镜偏摆平台、位于偏摆反射镜偏摆平台下方的被测非球面镜三维运动调整平台构成的五轴运动调整平台,以及装设于相应平台上的激光波面干涉仪、偏摆反射镜、被测非球面镜的多点支撑机构,以及与激光波面干涉仪连接的内装检测数据处理算法程序的主控计算机。 To achieve the above object, the large-diameter large relative aperture aspherical mirror made of the present invention, a high-frequency error detection means, comprising a platform focusing interferometer, the interferometer in front of the focusing mirror platform yaw platform yaw, yaw located a mirror below the platform measured yaw axis motion non-spherical mirror adjustment internet platform configured to adjust the three-dimensional movement, and a platform mounted on a respective laser interferometer wavefront, deflection mirrors, the measured non-multi-point support mechanism of the spherical mirror and a detection data processing host computer contains an algorithm program wavefront of the laser interferometer connection. 所述五轴运动调整平台用于被测非球面镜上多个部分区域的干涉零位检测,主控计算机根据检测数据处理算法将检测得到的多幅部分区域的误差面形图拼接成全口径上包含中高频段的误差面形图,包括初始位姿确定方法,重叠区域数据提取算法以及区域数据拼接算法。 The axis motion platform for adjusting the measured non-zero interference detecting a plurality of portions of the spherical mirror region, comprising the surface shape error stitching sake diameter plurality of partial regions in accordance with the host computer will detect the detection data processing algorithm obtained high frequency error surface shape in FIG, comprising an initial pose determination method, the overlapping region data and region data extraction algorithm stitching algorithm.

所述干涉仪调焦平台包括角钢焊接座和调焦运动Z轴组件,调焦运动Z轴组件可以是由交流伺服电机、弹性联轴器、滚珠丝杠和滚动导轨副以及干涉仪安装板组成,运动精度达到亚毫米级。 Said interferometer comprising a focusing internet welding seat angle and Z axis movement of the focus assembly, the focusing assembly may be a Z-axis motion by a servo motor, flexible coupling, and a ball screw and rolling guide interferometer sub-mounting plates , sub-millimeter precision motion.

所述偏摆镜偏摆平台包括槽钢焊接龙门架和偏摆运动B轴组件,偏摆运动组件可以是由步进电机、弹性联轴器、蜗轮蜗杆传动机构和反射镜安装框架组成,运动精度达到1'量级。 The deflection mirror comprises a channel welded internet yaw and yaw movement of the gantry assembly axis B, yaw motion assembly may be a stepping motor, flexible coupling, and a worm gear consisting of a mirror mounting frame, motion accuracy of 1 'magnitude.

所述被测非球面镜三维运动调整平台包括垂直光轴方向的XY平面内的X轴运动调整平台、Y轴运动调整平台和绕光轴回转的C轴转台,X轴运动调整平台和Y轴运动调整平台均可以是由交流伺服电机、弹性联轴器、滚珠丝杠和滚动导轨副组成,运动精度要求达到亚毫米级;C轴转台可以是由交流伺服电机和谐波齿轮减速器组成,回转运动精度达到1'量级。 The measured three-dimensional movement aspherical mirror adjustment X-axis motion platform comprising in the XY plane perpendicular to the optical axis direction adjustment platform, Y axis motion platform and adjusting the C-axis about the turret axis of rotation, X-axis and Y-axis motion platform adjustment movement platform can be adjusted by the AC servo motor, flexible coupling, and vice ball rolling guide composition, movement accuracy required to achieve submillimeter; C-axis rotary table may be a servo motor and harmonic gear reducer exchange composition, rotary movement accuracy of 1 'magnitude.

本发明的大口径大相对孔径非球面镜中高频误差检测装置,与QED公司检测200mm口径以下非球面镜的六轴运动平台不同,其主要特点是检测过程中只需要五轴运动调整,容易实现,并且运动精度要求不高,因而成本低。 Large-diameter present invention is large relative aperture aspheric high-frequency error detection means, and QED company testing 200mm caliber or less different aspheric six-axis motion platform, its main feature is the detection process requires only five-axis movement to adjust, easy to implement, and movement accuracy is not required and therefore low cost. 为了保证检测结果的可靠性,与之配套的检测数据处理算法必须迭代优化,并且收敛范围要大。 To ensure the reliability of the detection result, ancillary data detection algorithm must be an iterative optimization process, convergence range and larger.

采用所述本发明装置的大口径大相对孔径非球面镜中高频误差检测方法如下:第一步:调整被测非球面镜及其多点支撑机构在被测非球面镜三维运动调整平台上的位置,使得镜面轴线与转台轴线基本重合;第二步:根据被测非球面镜的反射光点在干涉仪的CCD上的位置,通过多点支撑机构调节被测非球面镜的俯仰和偏摆,使得被测非球面镜回转一周而反射光点基本不动;第三步:通过偏摆反射镜偏摆平台调整偏摆反射镜的偏摆角度,通过被测非球面镜三维运动调整平台调整被测非球面镜的位置,使得被测镜面上的被测部分区域位于镜面中心;第四步:用激光波面干涉仪测量被测非球面镜中心区域的面形,数据存盘,记录五轴位置;第五步:按照部分区域划分方案,通过偏摆反射镜偏摆平台调整偏摆反射镜的偏摆角度,通过被测非球面镜三维运动调整 Employing the apparatus of the present invention is large relative aperture large diameter aspheric high frequency error detecting method is as follows: The first step: adjusting the measured position of the spherical mirror and a non-multi-point support means on the measured three-dimensional motion aspherical mirror adjustment platform, such that mirror axis substantially coinciding with the axis of the turntable; Step 2: according reflection spot position of the non-spherical mirror measured on the CCD of the interferometer, adjusting the pitch measured by the aspheric multi-point support mechanism and yaw, so that the non-test spherical mirror single rotation and reflection spot substantially fixed; the third step: deflection mirror by a yaw mirror deflection internet adjusting the yaw angle, the measured aspheric dimensional motion adjusting dock leveler non-measured position of the spherical mirror, so that the measured portion of the test area on the mirror located in the center of the mirror; step 4: laser interferometer measurement wavefront shape non-test surface of the central region of the spherical mirror, save data, the recording position axis; fifth step: area dividing section according to scheme, by a yaw deflection mirror internet yaw adjustment of the mirror angle deflection, measured by the three-dimensional motion aspherical adjustment 台调整被测非球面镜的方位角和位置,通过干涉仪调焦平台调整干涉仪的位置,使得干涉仪对准被测非球面镜上的离轴部分区域,测量离轴区域的面形并将测量数据存盘,记录五轴位置;第六步:重复第五步直到所有部分区域测量完毕,将五轴位置记录和激光波面干涉仪检测的测量数据输入到主控计算机用检测数据处理算法进行处理,将检测得到的多幅部分区域的误差面形图拼接成全口径上包含中高频段的误差面形图,所述检测数据处理算法包括初始位姿确定方法,重叠区域数据提取算法以及区域数据拼接算法。 Adjusting the measured non-station azimuth and position of the spherical mirror is adjusted by the interferometer interferometer focus position of the platform, so that the non-alignment of the interferometer test area on an off-axis spherical mirror portion, and the measured surface shape measuring off-axis region save data, the recording position of the axis; a sixth step: a fifth step is repeated until all the partial regions have been measured, and the input axis position of the recording laser interferometer wavefront measurement data detected by the host computer for processing detection data processing algorithm, the surface shape error of the detected plurality of partial regions obtained by stitching errors contained in the high frequency band on the chart sake diameter surface, said data processing algorithm comprises detecting an initial pose determination method, the overlapping region data and region data extraction algorithm stitching algorithm .

所述初始位姿确定方法根据检测过程中五轴运动的位置,自动计算干涉仪相对被测非球面镜的初始位姿。 The initial pose determination method of detecting the position during movement of the axis, the interferometer is automatically calculated the relative position and orientation measured non-initial spherical mirror.

所述重叠区域数据提取算法根据数据点到理想面的投影点之间的包容关系,自动确定任意两个被测部分区域之间的重叠数据,不需要对检测数据进行预处理。 The overlapping region data extraction algorithm to the data points containment relationship between the projection surface of the ideal points, automatically determine any overlap of data between the two measured partial regions, it does not require pretreatment of the test data.

所述区域数据拼接算法通过迭代优化,补偿检测过程中的六自由度位姿误差、最佳拟合球半径误差以及干涉仪成像的横向比例误差,使得所有重叠数据之间的不一致性最小,同时所有数据点与理想面形最佳匹配,因而不需要精确的先验知识,所述五轴运动调整平台的直线运动精度在亚毫米级,回转运动精度在1'量级即可。 The splice area data iterative optimization algorithm, six degrees of freedom pose error compensating the detection process, the radius of the best fitting sphere error and the scale error lateral imaging interferometer so as to minimize the inconsistency among all of the overlapping data, while All data points over the best match the surface shape, and therefore does not require precise a priori knowledge, the linear motion accuracy of the adjustment axis motion platform in submillimeter, rotary motion accuracy 1 'to the order.

与现有技术相比,本发明的优点在于:1、本发明的大口径大相对孔径非球面镜中高频误差检测装置与方法通过五轴运动调整平台进行多个部分区域的干涉零位检测,通过检测数据处理算法拼接得到全口径上的面形误差,提高横向分辨率的同时增大了垂直测量范围,因而可以获得大口径大相对孔径非球面镜的中高频误差;2、本发明的五轴运动调整平台结构简单,直线运动精度在亚毫米级,回转运动精度在1'量级即可,从而降低了成本;3、本发明的检测数据处理算法能自动计算干涉仪相对被测非球面镜的初始位姿,自动确定任意两个被测部分区域之间的重叠数据,补偿了检测过程中的六自由度位姿误差、最佳拟合球半径误差以及干涉仪成像的横向比例误差,从而不需要对检测数据进行预处理,不需要精确的先验知识,就可以高效率地获得高精度的中 Compared with the prior art, advantages of the present invention is: 1, according to the present invention, large-diameter large relative aperture aspheric high-frequency error detection means and method for adjusting the zero detecting interference internet plurality of partial regions by a five-axis motion, by splice detection data processing algorithm to obtain surface shape error on the full aperture, to improve the lateral resolution while increasing the vertical measurement range, it is possible to obtain a large diameter high frequency error is large relative aperture aspheric; 2, according to the present invention, the movement axis adjusting the platform structure is simple, linear motion in the sub-millimeter accuracy, precision rotary motion in a 'to the order, thereby reducing the cost; 3, detection data processing algorithm of the present invention can automatically calculate the measured interferometer relative initial aspherical pose, automatically determining any overlap of data between the two measured partial regions, a six degree of freedom pose compensated error detection process, and the best fitting sphere radius error proportional error lateral imaging interferometer, thereby eliminating the need preprocessing the detected data, it does not require accurate prior knowledge can be efficiently obtained with high accuracy in 频误差检测结果。 Frequency error detection results.

以下结合附图对本发明做进一步详细说明。 Conjunction with the drawings in further detail description of the invention.

附图说明 BRIEF DESCRIPTION

图1是本发明大口径大相对孔径非球面镜中高频误差检测装置示意图。 1 is a schematic high-frequency error detection apparatus according to the present invention, large diameter large relative aperture of the aspheric mirror.

图2是全口径上被测部分区域划分示意图。 FIG 2 is a schematic diagram of the measured area divided portions of the full aperture.

图3是位于被测非球面镜中心区域的干涉图。 FIG 3 is located in the test interferogram aspheric central region.

图4是位于被测非球面镜边缘区域的干涉图。 FIG 4 is located in the test interferogram aspheric edge area.

图5是检测装置运动学构型示意图。 FIG 5 is a schematic view of the detection apparatus kinematic configuration.

图6是重叠区域数据提取算法示意图。 FIG 6 is a schematic view of the overlapping region data extraction algorithm.

图7是检测数据处理算法流程图。 FIG 7 is a flowchart of the detection data processing algorithm.

具体实施方式 Detailed ways

如图1所示,本发明的大口径大相对孔径非球面镜中高频误差检测装置有一五轴运动调整平台1,包括干涉仪调焦平台11、位于干涉仪调焦平台前方的偏摆反射镜偏摆平台12、位于偏摆反射镜偏摆平台下方的被测非球面镜三维运动调整平台13;在干涉仪调焦平台11、偏摆反射镜偏摆平台12、被测非球面镜三维运动调整平台13上分别装设激光波面干涉仪2、偏摆反射镜3、被测非球面镜的多点支撑机构4,内装检测数据处理算法程序的主控计算机5与激光波面干涉仪连接2。 As shown, the present invention large diameter large relative aperture aspheric high-frequency error detecting means has a motion axis to adjust a platform 1, platform 11 includes a focusing interferometer, the interferometer is located in front of the focus deflection mirror platform yaw platform 12, a yaw mirror positioned below the platform measured yaw aspherical adjustment three-dimensional motion platform 13; focusing interferometer stage 11, a yaw deflection mirror platform 12, the measured three-dimensional motion aspherical adjustment platform 13 are mounted on the laser interferometer 2 wavefront, deflection mirror 3, the measured non-multi-point support mechanism of the spherical mirror 4, the laser 5 and the host computer detecting wavefront data processing algorithm program contents interferometer 2 is connected.

其中干涉仪调焦平台11包括角钢焊接座111和调焦运动Z轴组件112,调焦运动Z轴组件112由交流伺服电机、弹性联轴器、滚珠丝杠和滚动导轨副以及干涉仪安装板组成,运动精度达到亚毫米级。 Wherein the interferometer comprises a focusing stage 11 and the focusing angle 111 welded seat assembly 112 Z axis movement, Z-axis movement of the focusing assembly 112 by the AC servo motor, flexible coupling, and the ball rolling guideway and mounting plate interferometer composition, sub-millimeter precision motion.

偏摆镜偏摆平台12包括槽钢焊接龙门架121和偏摆运动B轴组件122,偏摆运动组件122由步进电机、弹性联轴器、蜗轮蜗杆传动机构和反射镜安装框架组成,运动精度达到1'量级。 Yaw deflection mirror platform 12 includes a gantry 121 and welding channel yaw motion of the shaft assembly B 122, the yaw motion assembly 122 by the stepper motor, flexible coupling, and a worm gear consisting of a mirror mounting frame, motion accuracy of 1 'magnitude.

被测非球面镜三维运动调整平台13包括垂直光轴方向的XY平面内的X轴运动调整平台131、Y轴运动调整平台132和绕光轴回转的C轴转台133,X轴运动调整平台131和Y轴运动调整平台132均由交流伺服电机、弹性联轴器、滚珠丝杠和滚动导轨副组成,运动精度达到亚毫米级;C轴转台133由交流伺服电机和谐波齿轮减速器组成,回转运动精度达到1'量级。 Measured aspherical mirror 13 comprises a three-dimensional moving platform adjustment X-axis motion in the XY plane perpendicular to the optical axis direction adjustment platform 131, Y-axis movement of the platform 132 to adjust the optical axis and C-axis rotation about the turret 133, X-axis moving table 131 and adjustment Y-axis motion platform 132 by adjusting the AC servo motor, flexible coupling, and vice ball rolling guide composition, submillimeter accuracy motion; C-axis rotary table 133 by the servo motor and harmonic gear reducer exchange composition, rotary movement accuracy of 1 'magnitude.

激光波面干涉仪采用菲索(Fizeau)型球面干涉仪,测试光束通过透射球变换为球面波。 Laser using Fizeau interferometer wavefront (a Fizeau) Spherical interferometer, by transmitting test beam is converted into a spherical wave ball. 偏摆反射镜是表面镀膜的平面反射镜,面形精度为PV(Peak-Valley)λ/20,λ是干涉仪所用激光波长。 Deflection mirrors are planar mirror surface coating, surface accuracy of PV (Peak-Valley) λ / 20, λ is the wavelength of the laser interferometers used. 多点支撑机构根据被测非球面镜的几何尺寸和材料特性进行设计,在《先进光学制造技术》(杨力主编,科学出版社,2001)中有详细论述。 Multi-point support mechanism designed according to the geometry and material properties of the tested non-spherical mirror, are discussed in detail in the "Advanced Optical Manufacturing Technology" (edited by Yang Li, Science Press, 2001). 为了减小环境振动对检测的影响,建议将整个检测装置放置在气浮隔振平台上。 To reduce the impact on the detection of environmental vibration, it is recommended the entire device is placed on the flotation detecting vibration isolation platform.

本发明的检测数据处理算法将检测得到的多幅部分区域的误差面形图拼接成全口径上包含中高频段的误差面形图,包括初始位姿确定方法、重叠区域数据提取算法以及区域数据拼接算法。 Comprising the high frequency error surface shape error of the surface shape on FIG stitching sake plurality diameter portion region detection data processing algorithm of the present invention will be obtained by detecting, comprising an initial pose determination method, the overlapping region data and region data extraction algorithm splicing algorithm. 初始位姿确定方法根据检测过程中五轴运动的位置,自动计算干涉仪相对被测非球面镜的初始位姿;重叠区域数据提取算法根据数据点到理想面的投影点之间的包容关系,自动确定任意两个被测部分区域之间的重叠数据;区域数据拼接算法通过迭代优化,补偿检测过程中的六自由度位姿误差、最佳拟合球半径误差以及干涉仪成像的横向比例误差,使得所有重叠数据之间的不一致性最小,同时所有数据点与理想面形最佳匹配。 The initial pose determination method according to a position detection axis during movement, automatically calculates an initial non-measured interferometer relative position and orientation of the spherical mirror; overlap region data extraction algorithm to the data points containment relationship between the projection surface of the ideal points, automatic determining any overlap of data between the two measured partial regions; stitching region data iterative optimization algorithm, six degrees of freedom pose error compensating the detection process, the radius of the best fitting sphere error and the scale error lateral imaging interferometer, All such inconsistencies between the smallest overlapping data, while all of the data points over the surface shape best match.

本发明的工作原理:见图2,首先将大口径大相对孔径非球面镜划分为若干部分区域,相邻部分区域之间互有重叠,所有区域可覆盖被测非球面镜的全口径;见图1,将被测非球面镜及其多点支撑机构4安装在三维运动调整平台13上;干涉仪2发出的球面波测试光束经偏摆反射镜3偏摆后,由水平方向变为垂直方向,入射到被测非球面镜的部分区域上,由于被测非球面镜部分区域的非球面度小,测试光束反射后经偏摆反射镜3偏摆,变成水平光束返回干涉仪2,与干涉仪2的参考光束相遇形成干涉,从而实现被测非球面镜部分区域的零位干涉检测;调整五轴运动平台1的五轴位置,完成对被测非球面镜上其他部分区域的零位干涉检测;将检测过程中五轴位置以及干涉仪2的测量数据输入计算机5,利用检测数据处理算法自动计算各部分区域检测过程中干涉仪相对被 Working principle of the invention: Figure 2, the first large-diameter aspherical large relative aperture is divided into several partial areas, mutual overlap between adjacent partial regions, all regions can cover a non-spherical mirror measured full aperture; see FIG. 1 , and the measured aspheric multi-point support mechanism 4 mounted on the platform 13 to adjust the three-dimensional movement; spherical wave after the test beam 2 emitted by the interferometer yaw deflection mirror 3, the horizontal direction to the vertical direction, the incident measured on a partial area of ​​the non-spherical mirror, since the measured small non-spherical lens portion of the aspherical surface area, after the test light beam reflected by the deflection mirror 3 yaw, becomes horizontal beam 2 returns interferometer, interferometer 2 reference beam to form an interference meet, in order to achieve a non-zero measured interference detection section area of ​​the spherical mirror; five-axis adjustment axis position of a moving platform, completion of the zero detecting interference to other areas on the non-test portions of the spherical mirror; detection process and 5-axis interferometer position measurement data into the computer 52 automatically calculates the detection data processing algorithm using the parts area detection process is relatively interferometer 测非球面镜的初始位姿,自动确定任意两个被测部分区域之间的重叠数据,最后通过迭代优化,补偿检测过程中的六自由度位姿误差、最佳拟合球半径误差以及干涉仪成像的横向比例误差,从而实现将多幅部分区域的误差面形图拼接成全口径上包含中高频段的误差面形图。 The initial position and orientation measuring aspheric automatically determining any overlap between the two measured data of partial areas, and finally through an iterative optimization, six degrees of freedom pose error compensating detection process, and the best fitting sphere radius error interferometer transverse imaging scale error, the error surface in order to achieve high band-shaped pattern comprising the surface shape error stitching sake diameter plurality of partial regions.

本发明的检测步骤如下(参见图1):第一步:调整被测非球面镜及其多点支撑机构4在C轴转台133上的位置,使得镜面轴线与转台轴线基本重合;第二步:根据被测非球面镜的反射光点在干涉仪2的CCD上的位置,通过多点支撑机构调节被测非球面镜的俯仰和偏摆,使得被测非球面镜回转一周而反射光点基本不动;第三步:通过偏摆运动B轴组件122调整偏摆反射镜3的偏摆角度,通过X轴运动调整平台131和Y轴运动调整平台132调整被测非球面镜的X轴、Y轴位置,使得被测镜面上的被测部分区域位于镜面中心;第四步:测量被测非球面镜中心区域的面形,数据存盘,记录五轴位置,中心区域的干涉图如图3所示;第五步:按照部分区域划分方案,通过偏摆运动B轴组件122调整偏摆反射镜3的偏摆角度,通过C轴转台133调整被测非球面镜的方位角,通过X轴运动调整平台131 The detection step of the invention is as follows (see Figure 1): The first step: adjusting the measured position of the spherical mirror and a non-multi-point support means 4 on the turn table 133 in the C-axis, so that the mirror axis substantially coinciding with the axis of the turntable; Step: the reflection spot non-measured spherical mirror interferometer position on the CCD 2, adjusting the non-measured spherical mirror pitch by a multi-point support mechanism and yaw, so that the measured aspherical single rotation and reflection spot substantially fixed; the third step: a yaw axis B through the yaw movement 122 adjustment of the mirror assembly yaw angle of 3, the adjustment table 131 and the Y-axis movement of the X-axis movement of the platform 132 to adjust the measured X-axis adjustment of non-spherical mirror, a Y-axis position, so that the measured portion of the test area on the mirror located in the center of the mirror; step IV: is measured on the non-spherical mirror surface shape of the central region, data archiving, recording position axis, the central region of the interferogram shown in Figure 3; fifth step: dividing the partial region in accordance with the embodiment, the B-axis by the yaw movement 122 adjustment assembly yaw angle deflection mirror 3, the turntable 133 is adjusted by the C-axis non-spherical mirror measured azimuth adjusting movement of the X-axis table 131 Y轴运动调整平台132调整被测非球面镜的X轴、Y轴位置,通过调焦运动Z轴组件112调整干涉仪2的Z轴位置,使得干涉仪2对准被测非球面镜上的离轴部分区域,测量离轴区域的面形并将测量数据存盘,记录五轴位置,位于边缘区域的干涉图如图4所示;第六步:重复第五步直到所有部分区域测量完毕,将五轴位置记录和干涉仪测量数据输入到检测数据处理算法中进行处理。 Y-axis motion platform adjustment 132 to adjust the measured aspheric X-axis, Y-axis position, the focus adjustment assembly 112 by moving the Z-axis interferometer Z-axis position of the device 2, so that the alignment of the interferometer 2 off axis on the measured non-spherical mirror partial area, measuring the surface shape measurement data archiving and off-axis region, the recording position axis, at the edge region of the interference pattern shown in Figure 4; sixth step: a fifth step is repeated until all the partial regions have been measured, the five axis interferometer position measurement data recording and inputted to the detection processing algorithm for processing data.

本发明的检测数据处理算法流程如图7所示:第一步:输入数据,确定初始位姿和最佳拟合球半径等参数。 Flow detection data processing algorithm of the present invention shown in Figure 7: The first step: the input data, and determining the initial pose parameters such as the radius of the best fit sphere. 大口径大相对孔径非球面镜中高频误差检测装置的运动学构型如图5所示,干涉仪2通过偏摆运动B轴组件和调焦运动Z轴组件与基座(相对大地是静止的)相连,被测非球面镜及其多点支撑机构4通过C轴转台、Y轴运动调整平台和X轴运动调整平台与基座相连,从干涉仪2到基座再到被测非球面镜及其多点支撑机构4是一个串联机构。 Large relative aperture large diameter non-spherical mirror configuration kinematic high-frequency error detection apparatus shown in Figure 5, the interferometer 2 by the yaw motion of the shaft assembly and the focus B Z axis movement of the base assembly (stationary relative to the earth) is connected, the measured aspheric multi-point support mechanism and the turntable 4 through the C-axis, Y-axis motion is connected to the platform and adjusting the adjustment X-axis motion platform and the base, from the interferometer 2 to the base and then to test multiple aspherical 4-point support mechanism is a mechanism in series. 在距离测试光束焦点0为rts的测试球面波顶点处建立检测坐标系{Ci},与干涉仪2固连,rts为干涉仪2的透射球的顶点曲率半径;在被测非球面镜的顶点上建立模型坐标系{CM},与被测非球面镜固连,roc为被测非球面镜的顶点曲率半径。 Establishment detecting coordinates at the vertices of the test spherical wave from the beam focus test 0 rts of {Ci}, interferometer 2 is secured, rts interferometric transmission globes 2 apical radius of curvature; non-tested spherical mirror vertices model coordinates {CM}, and measured the aspherical mirror fixedly connected, roc measured radius of curvature at a non-spherical mirror. 假设检测过程中X轴、Y轴、Z轴、B轴和C轴的位移大小分别为x、y、z、β和γ,根据机器人运动学理论,模型坐标系{CM}相对检测坐标系{Ci}的位姿变换为gi=g0exp(-ξ^zz)exp(-ξ^bβ)exp(ξ^xx)exp(ξ^yy)exp(ξ^cγ)]]>式中g0=10000100000rts-roc0001,]]>ξ^x=0001000000000000,]]>ξ^y=0000000100000000,]]> Suppose the size of the displacement detection process X axis, Y axis, Z axis, B axis and C-axis are x, y, z, β and gamma], the robot kinematics model coordinate system {CM} detecting relative coordinate system { Ci} pose converted into gi = g0exp (- & xi; ^ zz) exp (- & xi; ^ b & beta;) exp (& xi; ^ xx) exp (& xi; ^ yy) exp (& xi; ^ c & gamma;)]] > where g0 = 10000100000rts-roc0001,]]> & xi; ^ x = 0001000000000000,]]> & xi; ^ y = 0000000100000000,]]>

ξ^z=0000000000010000,]]>ξ^b=000000roc-l10l-roc000000,]]>ξ^c=0-100100000000000.]]>最佳拟合球是指与被测部分区域最佳匹配的测试光束球面波,最佳拟合球半径根据不分区域划分方案确定,由于本发明的检测数据处理算法的收敛范围大,最佳拟合球半径的初始值也可以取为被测部分区域中心点的曲率半径。 & Xi; ^ z = 0000000000010000,]]> & xi; ^ b = 000000roc-l10l-roc000000,]]> & xi;. ^ C = 0-100100000000000]]> best fit sphere is the best means and the measured partial region test beam matching spherical wave, according to the best fit spherical radius is determined regardless of the region division scheme, due to the large convergence range detection data processing algorithm of the present invention, the initial value of the best fit sphere radius may be taken as part of the test radius of curvature of the center of the area.

第二步:重叠区域数据提取。 Step two: the overlapping region data extraction. 假设第i个部分区域上干涉仪(2)的测量数据为{wj,i=(uj,i,vj,i,φj,i)},j=1,...,Ni,其中φj,i为象素坐标(uj,i,vj,i)上的相位差,Ni为第i个部分区域上的采样点数。 Suppose interferometer (2) on the i-th measurement data for the partial region {wj, i = (uj, i, vj, i, φj, i)}, j = 1, ..., Ni, wherein φj, i the phase difference on the pixel coordinates (uj, i, vj, i), Ni is the number of sampling points on the i-th partial area. 根据球面干涉仪的测试几何关系,测量数据点在检测坐标系{Ci}下的坐标由下式获得xj,iyj,izj,i=(ri+φj,i)aiuj,i(ri+φj,i)aivj,irts-(ri+φj,i)1-ai2(uj,i2+vj,i2)]]>式中ri为最佳拟合球半径,αi=τi/rts,其初始值由干涉仪(2)的内部光路参数确定,也可以通过标定获得,τi为像面上横向坐标与CCD像面上横向坐标之间的比例因子。 The test geometry spherical interferometer coordinate measurement data points in the detection coordinate system {Ci} under xj by the following formula is obtained, iyj, izj, i = (ri + & phi; j, i) aiuj, i (ri + & phi ; j, i) aivj, irts- (ri + & phi; j, i) 1-ai2 (uj, i2 + vj, i2)]]> where ri is the radius of the best fit sphere, αi = τi / rts, its initial value is determined by the interferometer (2) of the internal optical path parameter, may be obtained by calibration, τi is the scale factor between the lateral surface of the lateral coordinates of the CCD camera coordinate plane image. ri和ai的数值通常不能准确获知,其不确定性通过区域数据拼接算法进行补偿。 And the values ​​ai ri generally not known accurately, the uncertainty region data compensated by stitching algorithm.

利用第一步确定的位姿{gi}、最佳拟合球半径{ri}和比例因子{αi}后,将测量数据点变换到模型坐标系{CM}下的坐标可以用下式表示fiwj,i=gi-1[xj,i,yj,i,zj,i,1]T]]>在模型坐标系{CM}下将第k个部分区域与第i个部分区域中所有测量数据点均投影到被测非球面镜的理想表面上,产生相应投影点集{xj,k}和{xj,i}。 The first step in using the determined pose {gi}, the best fitting sphere radius {ri} and {αi} after scaling factor, the measurement data transformed to a coordinate point {CM} in the model coordinate system can be represented by the following formula fiwj , i = gi-1 [xj, i, yj, i, zj, i, 1] T]]> in the model coordinate system {CM} k-th partial region and the i-th partial regions of all the measurement data points They are projected over the upper surface of the aspheric test to produce the corresponding projected point set {xj, k} and {xj, i}. 称第k个部分区域中的点fkwjo,k落在重叠区内,若其投影点xjo,k在XY平面上的投影位于投影点集{xj,i}在XY平面上的投影的凸包内。 Fkwjo said k-th point of the partial region, k fall within the overlapping region, if the projected point xjo, k projected onto the XY plane of the projection point set {xj, i} encapsulated projections on the XY plane projected . 图6所示为二维情形下的重叠区域数据提取算法,由于投影pjo,k在位于线段 Figure 6 shows overlapping region extraction algorithm to the data in the two-dimensional case, since the projection pjo, k line located 内,点fiwjo,i是一个重叠点。 The point fiwjo, i is a point of overlap.

提取了重叠区域数据后,计算其对应的测量数据点到理想表面上的距离之偏差的均方根值σo,同时计算所有测量数据点到理想表面上的距离的均方根值σ,其中σ和σo是关于位姿{gi}、最佳拟合球半径{ri}和比例因子{αi}的非线性函数。 After extracting the overlapping region data, calculation of measurement data points corresponding to the rms deviation of σo distance over the upper surface, while all measurement data points to calculate the rms value of the distance over the upper surface of the [sigma], where [sigma] and σo is about posture {gi}, the best fitting sphere radius {ri} {αi} and scale factor non-linear function.

第三步:计算目标函数值。 Third step: calculation of objective function value. 目标函数为双目标的线性组合F=μ1σ2+μ2σ2.]]>其中μ1和μ2为正的权系数,满足μ1+μ2=1。 Dual objective function is a linear combination of the target F = & mu; 1 & sigma; 2 + & mu; 2 & sigma;. 2]]> mu] 1 and [mu] 2 wherein the weight coefficient is positive, satisfying μ1 + μ2 = 1.

第四步:判断是否收敛。 Step Four: determine whether convergence. 收敛条件是目标函数值F<ε1或相邻两次迭代的目标函数值之差|Fn-Fn-1|<ε2,ε1和ε2是预先给定的常数。 Convergence condition that the objective function value F <difference between the objective function value ∈ 1 or two adjacent iterations | Fn-Fn-1 | <ε2, ε1 and ∈ 2 are predetermined constants. 如果满足收敛条件,则算法结束;否则继续下一步。 If the convergence condition is satisfied, then the algorithm ends; otherwise continue.

第五步:区域数据拼接,计算新的位姿、最佳拟合球半径和比例因子等参数。 Step Five: splicing area data, the new pose calculation parameters, and the best fitting sphere radius ratio factor. 对目标函数进行线性化处理,将其表示为关于位姿参数、最佳拟合球半径和比例因子的线性函数,从而目标函数最小化问题化为线性最小二乘问题,求解线性方程组获得新的位姿、最佳拟合球半径和比例因子。 Linear objective function processing, it is expressed as a parameter on the pose, and the radius of the sphere best fitting a linear function of the scaling factor, so that the objective function minimization problem into a linear least squares problem solving linear equations to obtain a new the pose, the radius of the best fitting sphere and a scale factor. 算法跳转到第二步(可参考chen等“Iterative algorithm for subaperture stitchmg test withspherical interferometers”J.OSA.A.23(5):1219-1226,2006)。 The algorithm jumps to step 2 (refer to like chen "Iterative algorithm for subaperture stitchmg test withspherical interferometers" J.OSA.A.23 (5): 1219-1226,2006).

本发明在具体实现时,需要说明以下几点:1、安装时角钢焊接座111、槽钢焊接龙门架121和被测非球面镜三维运动调整平台13三者之间的相互位置可以根据被测非球面镜的口径和相对孔径进行调整(参见图1)。 In specific implementation of the present invention, the following points should be noted: 1, when the mutual position between the mounting angle 13 welded three seats 111, 121 and channel welded gantry measured aspherical dimensional motion platform according to the measured non-adjusted Sizes and relative aperture of the spherical mirror can be adjusted (see FIG. 1).

2、大口径大相对孔径非球面镜中高频误差检测可能涉及的被测部分区域数目较多、数据量太大,为了解决由此引起的迭代计算时间剧增的问题,在检测数据处理算法中建议采取粗-精结合的拼接策略。 2, the number of the test area portions of large diameter large relative aperture aspheric high-frequency error detection may involve a large amount of data is too large, an iterative calculation to solve the problem caused thereby surge time, it is recommended in the detection data processing algorithms take the rough - splicing strategy combining fine. 即先对检测数据进行低分辨率二次采样,应用检测数据处理算法处理低分辨率数据后得到的最优参数(位姿、最佳拟合球半径和比例因子)再作为初始参数输入到检测数据处理算法中,将原始的高分辨率检测数据拼接到一起,此时只需要2~3次迭代即可,从而减少计算时间。 That is, first low-resolution data for sub-sampling the detection, the application data processing algorithm detects a low-resolution data obtained after optimal parameters (position and orientation, the radius of the best fitting sphere and the scale factor) and then input to the detector as an initial parameter data processing algorithm, the original high-resolution detection data spliced ​​together, this time only 2 or 3 iterations to thereby reduce computing time. 另外在区域数据拼接算法中建议采用分块QR分解方法求解线性方程组,以避免内存不足问题。 Another proposal in the area of ​​the data block used in stitching algorithm QR decomposition method for solving linear equations, in order to avoid shortage of memory.

Claims (8)

1.一种大口径大相对孔径非球面镜中高频误差检测装置,其特征在于:包括由干涉仪调焦平台、位于干涉仪调焦平台前方的偏摆反射镜偏摆平台、位于偏摆反射镜偏摆平台下方的被测非球面镜三维运动调整平台构成的五轴运动调整平台,以及装设于相应平台上的激光波面干涉仪、偏摆反射镜、被测非球面镜的多点支撑机构,以及与激光波面干涉仪连接的内装检测数据处理算法程序的主控计算机。 A large diameter large relative aperture aspheric high-frequency error detection means, characterized by: an interferometer comprising a focusing platform, the platform located in front of the focus of the interferometer mirror yaw platform yaw, yaw mirror located below the platform measured yaw axis motion non-spherical mirror adjustment internet platform configured to adjust the three-dimensional movement, and a platform mounted on a respective laser interferometer wavefront, deflection mirrors, the measured non-multi-point support mechanism of the spherical mirror, and laser interferometer with wavefront host computer contains the detection data processing device connected to a program algorithm.
2.根据权利要求1所述的大口径大相对孔径非球面镜中高频误差检测装置,其特征在于:所述干涉仪调焦平台包括角钢焊接座和调焦运动Z轴组件,调焦运动Z轴组件由交流伺服电机、弹性联轴器、滚珠丝杠和滚动导轨副以及干涉仪安装板组成。 2. The large diameter large relative aperture of the aspheric mirror in a frequency error detecting device according to claim, characterized in that: said interferometer comprises a focusing internet welding seat angle and Z axis movement of the focus assembly, the Z axis focus movement assembly by the AC servo motor, flexible coupling, and a ball screw and rolling guide interferometer sub-mounting plates.
3.根据权利要求1所述的大口径大相对孔径非球面镜中高频误差检测装置,其特征在于:所述偏摆镜偏摆平台包括槽钢焊接龙门架和偏摆运动B轴组件,偏摆运动B轴组件由步进电机、弹性联轴器、蜗轮蜗杆传动机构和反射镜安装框架组成。 The large diameter relatively large aperture aspheric high-frequency error detection apparatus according to claim 1, wherein: said deflection mirror comprises a channel welded internet yaw and yaw movement of the gantry assembly B axis, yaw B axis motion by a stepper motor assembly, flexible coupling, and a worm gear consisting of a mirror mounting frame.
4.根据权利要求1或2或3所述的大口径大相对孔径非球面镜中高频误差检测装置,其特征在于:所述被测非球面镜三维运动调整平台包括垂直光轴方向的XY平面内的X轴运动调整平台、Y轴运动调整平台和绕光轴回转的C轴转台,X轴运动调整平台和Y轴运动调整平台均由交流伺服电机、弹性联轴器、滚珠丝杠和滚动导轨副组成;C轴转台由交流伺服电机和谐波齿轮减速器组成。 The large diameter relatively large aperture aspheric claim 1 or 2 or 3 in the high-frequency error detecting device as claimed in claim, wherein: said measured three-dimensional non-spherical mirror movement within the XY plane platform comprises a vertical adjustment of the optical axis direction adjustment X-axis motion platform, the Y-axis and C-axis motion platform adjustment rotation about the turret axis, the X-axis and Y-axis movement of the adjustment movement the adjustment internet internet AC servo motor, flexible coupling, a ball screw and guide rail pair by rolling composition; C-axis rotary table by a servo motor and harmonic gear reducer exchange composition.
5.一种采用权利要求1所述装置的大口径大相对孔径非球面镜中高频误差检测方法如下:第一步:调整被测非球面镜及其多点支撑机构在被测非球面镜三维运动调整平台上的位置,使得镜面轴线与转台轴线基本重合;第二步:根据被测非球面镜的反射光点在干涉仪的CCD上的位置,通过多点支撑机构调节被测非球面镜的俯仰和偏摆,使得被测非球面镜回转一周而反射光点基本不动;第三步:通过偏摆反射镜偏摆平台调整偏摆反射镜的偏摆角度,通过被测非球面镜三维运动调整平台调整被测非球面镜的位置,使得被测镜面上的被测部分区域位于镜面中心;第四步:用激光波面干涉仪测量被测非球面镜中心区域的面形,数据存盘,记录五轴位置;第五步:按照部分区域划分方案,通过偏摆反射镜偏摆平台调整偏摆反射镜的偏摆角度,通过被测非球面镜三维 Large diameter large relative aperture aspheric mirror in a frequency error detecting method according to claim 5. An apparatus for use as follows: The first step: adjusting the measured aspheric multi-point support mechanism and the measured three-dimensional motion aspherical adjustment platform positions, such that the mirror axis substantially coinciding with the axis of the turntable; Step 2: according reflection spot position of the non-spherical mirror measured on the CCD of the interferometer is adjusted non-spherical mirror measured by multi-point pitch and yaw support mechanism , so that the measured aspherical single rotation and reflection spot substantially fixed; the third step: yaw deflection mirror by mirror deflection yaw angle adjustment platform, measured by adjusting the measured three-dimensional motion aspherical adjustment platform position aspheric, so that the measured portion of the test area on the mirror surface mirror located at the center; step 4: laser interferometer measurement wavefront shape non-test surface of the central region of the spherical mirror, save data, the recording position axis; a fifth step : division scheme according to the partial region, by a yaw deflection mirror adjustment internet yaw deflection angle of the mirror, measured by the three-dimensional non-spherical mirror 动调整平台调整被测非球面镜的方位角和位置,通过干涉仪调焦平台调整干涉仪的位置,使得干涉仪对准被测非球面镜上的离轴部分区域,测量离轴区域的面形并将测量数据存盘,记录五轴位置;第六步:重复第五步直到所有部分区域测量完毕,将五轴位置记录和激光波面干涉仪检测的测量数据输入到主控计算机用检测数据处理算法进行处理,将检测得到的多幅部分区域的误差面形图拼接成全口径上包含中高频段的误差面形图,所述检测数据处理算法包括初始位姿确定方法,重叠区域数据提取算法以及区域数据拼接算法。 Adjusting the movable adjusting platform aspheric test and azimuth position is adjusted by the interferometer interferometer focus position of the platform, so that the non-alignment of the interferometer measured off-axis partial regions on the spherical mirror, off-axis measuring surface area and shape save the measurement data, the recording position of the axis; a sixth step: a fifth step is repeated until all the partial regions have been measured, the measurement data of the interferometer input axis position of the detected face to the recording and laser wave detection data with the host computer for processing algorithm process, the high frequency error in surface figure error of the surface shape stitching FIG sake plurality diameter portion comprises a region of detection obtained on the detection data processing algorithm including an initial pose determination method, the overlapping region data and region data extraction algorithm stitching algorithm.
6.根据权利要求5所述的大口径大相对孔径非球面镜中高频误差检测方法,其特征在于:所述初始位姿确定方法根据检测过程中五轴运动的位置,自动计算干涉仪相对被测非球面镜的初始位姿。 The large diameter relatively large aperture aspheric lens as claimed in claim 5, wherein the frequency error detecting method, wherein: said initial position and orientation determination method according to a position detection process of the motion axis, measured relative to automatically calculate the interferometer the initial position and orientation of non-spherical mirror.
7.根据权利要求5所述的大口径大相对孔径非球面镜中高频误差检测方法,其特征在于:所述重叠区域数据提取算法根据数据点到理想面的投影点之间的包容关系,自动确定任意两个被测部分区域之间的重叠数据。 The large diameter relatively large aperture aspheric lens as claimed in claim 5, wherein the frequency error detecting method, wherein: said overlapping region data extraction algorithm to the data points containment relationship between the projection points of the ideal surface, automatically determines measured data between any two overlapping partial regions.
8.根据权利要求5所述的大口径大相对孔径非球面镜中高频误差检测方法,其特征在于:所述区域数据拼接算法通过迭代优化,补偿检测过程中的六自由度位姿误差、最佳拟合球半径误差以及干涉仪成像的横向比例误差,使得所有重叠数据之间的不一致性最小,同时所有数据点与理想面形最佳匹配。 The large diameter relatively large aperture aspheric lens as claimed in claim 5, wherein the frequency error detecting method, wherein: said data registration area iterative optimization algorithm, six degrees of freedom pose detection process of error compensation, the best fitting sphere radius error and the scale error lateral imaging interferometer, such that all of the overlapping data inconsistency between the minimum, while all of the data points over the surface shape best match.
CN 200710034359 2007-01-31 2007-01-31 High-frequency error detecting apparatus and method for heavy caliber heavy relative aperture aspherical mirror CN100462673C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710034359 CN100462673C (en) 2007-01-31 2007-01-31 High-frequency error detecting apparatus and method for heavy caliber heavy relative aperture aspherical mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710034359 CN100462673C (en) 2007-01-31 2007-01-31 High-frequency error detecting apparatus and method for heavy caliber heavy relative aperture aspherical mirror

Publications (2)

Publication Number Publication Date
CN101013027A true CN101013027A (en) 2007-08-08
CN100462673C CN100462673C (en) 2009-02-18

Family

ID=38700692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710034359 CN100462673C (en) 2007-01-31 2007-01-31 High-frequency error detecting apparatus and method for heavy caliber heavy relative aperture aspherical mirror

Country Status (1)

Country Link
CN (1) CN100462673C (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100568038C (en) 2008-05-06 2009-12-09 芯硕半导体(中国)有限公司 Integral precise five-axis adjustment device
CN101666628B (en) 2009-09-22 2010-12-01 哈尔滨工业大学 Measuring apparatus with two spliced shafts for large-caliber convex aspheric surface
CN101900537A (en) * 2010-08-05 2010-12-01 中国人民解放军国防科学技术大学 Detection method and device of three-dimensional sphericity error of global spherical surface of optical sphere part
CN101949691A (en) * 2010-09-07 2011-01-19 中国科学院长春光学精密机械与物理研究所 Method for detecting nonzero digit compensation light-degree optical aspheric surface profile
CN101650157B (en) 2009-09-18 2011-04-20 中国科学院长春光学精密机械与物理研究所 Detecting method and detecting device of surface-shape error of double curved surface convex reflecting mirror
CN102128596A (en) * 2010-11-19 2011-07-20 福建师范大学 Lens surface shape error detecting device and method thereof
CN102128597A (en) * 2010-11-19 2011-07-20 福建师范大学 Device for detecting surface shape deviation of lens
CN102519388A (en) * 2011-10-28 2012-06-27 中国科学院长春光学精密机械与物理研究所 Method for detecting surface figures of large-aperture off-axis convex aspheric mirror
CN102607408A (en) * 2012-03-28 2012-07-25 中国科学院光电技术研究所 Method for correcting distortion of imaging system for interferometer
CN102735187A (en) * 2012-07-05 2012-10-17 北京理工大学 Searching method for annular sub-aperture boundary splicing
CN102788562A (en) * 2012-08-24 2012-11-21 中国科学院光电技术研究所 Device for detecting sub-aperture splicing surface shape with movement coordinate feedback
CN102848287A (en) * 2012-09-14 2013-01-02 中国人民解放军国防科学技术大学 Combination machining method for removing high-frequency errors in optical elements
CN103557802A (en) * 2013-11-18 2014-02-05 沈阳黎明航空发动机(集团)有限责任公司 Method for measuring diameter and coordinate position of spatial curved surface micro-hole in non-contact mode
CN104697465A (en) * 2015-03-31 2015-06-10 中国人民解放军国防科学技术大学 Aberration-free absolute inspection method of ellipsoidal surface
CN105043296A (en) * 2015-08-31 2015-11-11 成都精密光学工程研究中心 Optical element surface profile in-situ detection device and detection method thereof
CN105627946A (en) * 2015-12-21 2016-06-01 中国科学院长春光学精密机械与物理研究所 Device and method of quickly adjusting aspheric space position
CN105627945A (en) * 2015-12-21 2016-06-01 中国科学院长春光学精密机械与物理研究所 Device and method of measuring deviation between center of aspheric element and center of outer circle
CN105675263A (en) * 2016-01-18 2016-06-15 中国科学院上海光学精密机械研究所 Positioning error calibrator in planar sub-aperture splicing system and calibration and compensation method of calibrator
CN105698709A (en) * 2016-03-24 2016-06-22 洛阳亨基智能数控装备科技有限公司 Measurement method for curvature radius of tapered roller
CN105865374A (en) * 2016-03-24 2016-08-17 洛阳亨基智能数控装备科技有限公司 Method for measuring curvature radius of cylindrical roller
CN106124171A (en) * 2016-06-16 2016-11-16 中国科学院上海光学精密机械研究所 Three-dimensional platform for the detection of optical elements of large caliber optical property
CN106247967A (en) * 2016-08-18 2016-12-21 京东方科技集团股份有限公司 The measurement apparatus of a kind of substrate warp amount and method
CN108036738A (en) * 2017-12-18 2018-05-15 中国航空工业集团公司洛阳电光设备研究所 A kind of method that spherical mirror surface type detection is carried out using horizontal interferometer
CN108205184A (en) * 2017-12-28 2018-06-26 中国科学院西安光学精密机械研究所 A kind of integrated pendulum mirror Method of Adjustment
CN108844720A (en) * 2018-07-03 2018-11-20 长春理工大学 A kind of optical system multi-angle image quality detection device and method
CN110109230A (en) * 2019-05-24 2019-08-09 西安交通大学 A kind of intelligent splicing assembly method of aspheric noodles complex curved surface part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1258073C (en) * 2002-12-03 2006-05-31 中国科学院长春光学精密机械与物理研究所 Vertical heavy caliber aspherical mirror tester
CA2424023C (en) * 2003-03-28 2008-10-14 Institut National D'optique Method and system for characterizing aspheric surfaces of optical elements
CN100400225C (en) * 2003-08-22 2008-07-09 中国人民解放军国防科学技术大学 Non-spherical optical component composite machining and testing machine tools
US20060268282A1 (en) * 2005-05-25 2006-11-30 Evans Christopher J Adaptive nulls for testing off-axis segments of aspherics

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100568038C (en) 2008-05-06 2009-12-09 芯硕半导体(中国)有限公司 Integral precise five-axis adjustment device
CN101650157B (en) 2009-09-18 2011-04-20 中国科学院长春光学精密机械与物理研究所 Detecting method and detecting device of surface-shape error of double curved surface convex reflecting mirror
CN101666628B (en) 2009-09-22 2010-12-01 哈尔滨工业大学 Measuring apparatus with two spliced shafts for large-caliber convex aspheric surface
CN101900537A (en) * 2010-08-05 2010-12-01 中国人民解放军国防科学技术大学 Detection method and device of three-dimensional sphericity error of global spherical surface of optical sphere part
CN101900537B (en) 2010-08-05 2012-06-27 中国人民解放军国防科学技术大学 Detection method and device of three-dimensional sphericity error of global spherical surface of optical sphere part
CN101949691A (en) * 2010-09-07 2011-01-19 中国科学院长春光学精密机械与物理研究所 Method for detecting nonzero digit compensation light-degree optical aspheric surface profile
CN102128596A (en) * 2010-11-19 2011-07-20 福建师范大学 Lens surface shape error detecting device and method thereof
CN102128597A (en) * 2010-11-19 2011-07-20 福建师范大学 Device for detecting surface shape deviation of lens
CN102128596B (en) 2010-11-19 2012-09-26 福建师范大学 Lens surface shape error detecting device and method thereof
CN102519388B (en) 2011-10-28 2013-11-27 中国科学院长春光学精密机械与物理研究所 Method for detecting surface figures of large-aperture off-axis convex aspheric mirror
CN102519388A (en) * 2011-10-28 2012-06-27 中国科学院长春光学精密机械与物理研究所 Method for detecting surface figures of large-aperture off-axis convex aspheric mirror
CN102607408A (en) * 2012-03-28 2012-07-25 中国科学院光电技术研究所 Method for correcting distortion of imaging system for interferometer
CN102607408B (en) * 2012-03-28 2014-10-08 中国科学院光电技术研究所 Method for correcting distortion of imaging system for interferometer
CN102735187A (en) * 2012-07-05 2012-10-17 北京理工大学 Searching method for annular sub-aperture boundary splicing
CN102735187B (en) * 2012-07-05 2017-05-03 北京理工大学 Searching method for annular sub-aperture boundary splicing
CN102788562A (en) * 2012-08-24 2012-11-21 中国科学院光电技术研究所 Device for detecting sub-aperture splicing surface shape with movement coordinate feedback
CN102788562B (en) * 2012-08-24 2014-12-24 中国科学院光电技术研究所 Device for detecting sub-aperture splicing surface shape with movement coordinate feedback
CN102848287B (en) * 2012-09-14 2014-09-17 中国人民解放军国防科学技术大学 Combination machining method for removing high-frequency errors in optical elements
CN102848287A (en) * 2012-09-14 2013-01-02 中国人民解放军国防科学技术大学 Combination machining method for removing high-frequency errors in optical elements
CN103557802B (en) * 2013-11-18 2015-10-07 沈阳黎明航空发动机(集团)有限责任公司 A kind of method of non-cpntact measurement space curved surface micro hole diameter and coordinate position
CN103557802A (en) * 2013-11-18 2014-02-05 沈阳黎明航空发动机(集团)有限责任公司 Method for measuring diameter and coordinate position of spatial curved surface micro-hole in non-contact mode
CN104697465A (en) * 2015-03-31 2015-06-10 中国人民解放军国防科学技术大学 Aberration-free absolute inspection method of ellipsoidal surface
CN104697465B (en) * 2015-03-31 2017-05-31 中国人民解放军国防科学技术大学 The absolute method of inspection of aberrationless of ellipsoid
CN105043296A (en) * 2015-08-31 2015-11-11 成都精密光学工程研究中心 Optical element surface profile in-situ detection device and detection method thereof
CN105627945A (en) * 2015-12-21 2016-06-01 中国科学院长春光学精密机械与物理研究所 Device and method of measuring deviation between center of aspheric element and center of outer circle
CN105627946B (en) * 2015-12-21 2018-09-21 中国科学院长春光学精密机械与物理研究所 The fast adjustment method of aspherical space position
CN105627945B (en) * 2015-12-21 2017-12-26 中国科学院长春光学精密机械与物理研究所 Non-spherical element center and the measurement apparatus and measuring method of cylindrical center shift amount
CN105627946A (en) * 2015-12-21 2016-06-01 中国科学院长春光学精密机械与物理研究所 Device and method of quickly adjusting aspheric space position
CN105675263B (en) * 2016-01-18 2018-03-20 中国科学院上海光学精密机械研究所 The caliberating device of position error and its demarcation and compensation method in plane sub-aperture stitching system
CN105675263A (en) * 2016-01-18 2016-06-15 中国科学院上海光学精密机械研究所 Positioning error calibrator in planar sub-aperture splicing system and calibration and compensation method of calibrator
CN105865374A (en) * 2016-03-24 2016-08-17 洛阳亨基智能数控装备科技有限公司 Method for measuring curvature radius of cylindrical roller
CN105698709B (en) * 2016-03-24 2018-02-09 洛阳亨基智能数控装备科技有限公司 A kind of measuring method of taper roller radius of curvature
CN105865374B (en) * 2016-03-24 2018-05-11 洛阳亨基智能数控装备科技有限公司 A kind of measuring method of cylindrical roller radius of curvature
CN105698709A (en) * 2016-03-24 2016-06-22 洛阳亨基智能数控装备科技有限公司 Measurement method for curvature radius of tapered roller
CN106124171A (en) * 2016-06-16 2016-11-16 中国科学院上海光学精密机械研究所 Three-dimensional platform for the detection of optical elements of large caliber optical property
CN106124171B (en) * 2016-06-16 2018-05-08 中国科学院上海光学精密机械研究所 Three-dimensional platform for the detection of optical elements of large caliber optical property
CN106247967A (en) * 2016-08-18 2016-12-21 京东方科技集团股份有限公司 The measurement apparatus of a kind of substrate warp amount and method
US10393511B2 (en) 2016-08-18 2019-08-27 Boe Technology Group Co., Ltd. Measuring device and method for substrate warping amount
CN108036738A (en) * 2017-12-18 2018-05-15 中国航空工业集团公司洛阳电光设备研究所 A kind of method that spherical mirror surface type detection is carried out using horizontal interferometer
CN108205184A (en) * 2017-12-28 2018-06-26 中国科学院西安光学精密机械研究所 A kind of integrated pendulum mirror Method of Adjustment
CN108844720A (en) * 2018-07-03 2018-11-20 长春理工大学 A kind of optical system multi-angle image quality detection device and method
CN110109230A (en) * 2019-05-24 2019-08-09 西安交通大学 A kind of intelligent splicing assembly method of aspheric noodles complex curved surface part

Also Published As

Publication number Publication date
CN100462673C (en) 2009-02-18

Similar Documents

Publication Publication Date Title
Fang et al. Manufacturing and measurement of freeform optics
CN100390519C (en) Lens evaluation method and device, optical unit and lens-adjusting method and device thereof
EP2478328B1 (en) Method of measuring a shape of an optical surface
CN101680742B (en) Turntable having a liquid filled cell for optical measurement of ophthalmic lens
JP3309743B2 (en) Shape measuring method and device
Díaz-Uribe et al. Null-screen testing of fast convex aspheric surfaces
Otaki et al. Development of the point diffraction interferometer for extreme ultraviolet lithography: Design, fabrication, and evaluation
US7936521B2 (en) Method of measuring a deviation of an optical surface from a target shape
US5625454A (en) Interferometric method for optically testing an object with an aspherical surface
US5416586A (en) Method of testing aspherical optical surfaces with an interferometer
US7612893B2 (en) Scanning interferometric methods and apparatus for measuring aspheric surfaces and wavefronts
KR20070012459A (en) Device and method for optical precision measurement
Su et al. Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach
Burge Measurement of large convex aspheres
Chen et al. Iterative algorithm for subaperture stitching interferometry for general surfaces
Arsenault et al. MACAO-VLTI: an adaptive optics system for the ESO Interferometer
US20140132960A1 (en) Near-Null Compensator and Figure Metrology Apparatus for Measuring Aspheric Surfaces by Subaperture Stitching and Measuring Method Thereof
US6909498B2 (en) Method and apparatus for measuring the geometrical structure of an optical component in transmission
CN1403783A (en) Apex cuvature radius measuring method and device for aspherics
CN102507155B (en) Device for detecting wave front of large-aperture optical system
CN100414253C (en) Digital sun sensor calibration method and device
Beier et al. Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope
US6937345B2 (en) Measuring system for measuring performance of imaging optical system
Burge et al. Alternate surface measurements for GMT primary mirror segments
Oreb et al. Calibration of a 300-mm-aperture phase-shifting Fizeau interferometer

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01