CN1009688B - 具有一连续渐变带隙半导体区域的半导体器件 - Google Patents

具有一连续渐变带隙半导体区域的半导体器件

Info

Publication number
CN1009688B
CN1009688B CN87107592A CN87107592A CN1009688B CN 1009688 B CN1009688 B CN 1009688B CN 87107592 A CN87107592 A CN 87107592A CN 87107592 A CN87107592 A CN 87107592A CN 1009688 B CN1009688 B CN 1009688B
Authority
CN
China
Prior art keywords
band gap
atom
semiconductor layer
band
district
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN87107592A
Other languages
English (en)
Other versions
CN87107592A (zh
Inventor
斋藤惠志
藤冈靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP61229246A external-priority patent/JPS6384082A/ja
Priority claimed from JP61229249A external-priority patent/JPS6384083A/ja
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN87107592A publication Critical patent/CN87107592A/zh
Publication of CN1009688B publication Critical patent/CN1009688B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/247Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种改进的半导体器件,诸如改进的渐变带隙晶体管和改进的渐变带隙二极管,其特征在于该器件由含有硅原子、调节带隙的原子和降低定域能级的原子的非单晶材料构成,并且该器件至少在非结位置的一个方位上还具有一个带隙连续渐变的区域,而且只有导带和价带之一是连续渐变的。即显著地改善了频率特性,又改善了光敏效应。

Description

本发明与含有非晶材料的半导体器件有关。尤其是与包括晶体管和二极管的半导体器件有关。该器件有一区域,其中的带隙至少在一非结位置处是连续渐变的,并且只有导带和价带之一是连续渐变的。
按照本发明所说的晶体管和二极管,在下面分别称为“渐变带隙晶体管”和“渐变带隙二极管”。
迄今为止,已提出各种各样具有半导体区域的晶体管和二极管。在该区域中禁带(即带隙)是以斜坡状渐变的,这有助于加速频率响应,并能提高光敏响应。
但是,对这些晶体管和二极管的研究重点放在应用晶体半导体方面,尤其是应用GaAs(Al)半导体。其中晶体管或二极管是按照分子束外延法来制造的。〔参见F·Capasso,Surface    Science.142.pp.513-528(1984)〕
在分子束外延法中,形成薄膜的操作是在超高真空中进行。并在基片上生成半导体膜的沉积速率低。此外,不仅难以大规模生产此种膜,而且也难以将此形成的膜加工到大面积。而且,由于Ca和As对人体有害,用它们作为原料会产生麻烦。
与上述不同,也曾试验易于得到的Si和Ge作为原料来制造这种半导体器件。但是大家公认,由于Si和Ge的晶格常数彼此不 同,用这样的原料难以制成没有不希望结构缺陷的单晶体膜。
在这方面,曾重点研究非单晶SiGe膜,该SiGe膜有利于制造太阳能电池和光电检测器。在非单晶膜情况下,不需考虑有关组成材料之间的上述差异问题,结构上的自由度大,能够用氢原子或卤素原子如氟容易地补偿悬空键。正由于此,能有效地生成实际所需的非单晶SiGe膜。
此外,适当改变含于膜中的Si和Go的比,就能使非单晶SiGe膜的带隙连续地变化。
同样,也曾对非单晶SiC、SiN和SiO膜进行了各种研究这些膜适用于制造上面所述的半导体器件。
对于那样的非单晶膜,改变其组成元素间的比,就能使它们的带隙连续的渐变。
但是,由于它们的迁移率低,用这些非单晶膜,还未能得到所希望的高效晶体管和二极管等。
虽然在美国专利4254429中提出了建议,用这样的非单晶膜制造具有异质结的晶体管或光敏二极管,但其
公开内容的目的在于防止在组成部分层间的交界面处形成缺陷或/和失配。由此,即使在所说的出版物中,也未能在实际上制成满意的高效率晶体管和二极管。
参照US4.254.429中公开的半导体器件,在有一半导体膜情况下,该膜中的导带和价带二者相对费米能级而言都是倾斜的并且该膜有一向另一方向扩展的带隙,在形成漏斗状带隙的同时,由于空穴或电子二者之一的载流子易于积累,器件的特性就可以提高。
举例说,把所说器件用作晶体管,在此情况下,晶体管的特性 低。如把所说器件用作二极管,这种情况下,就成为一种特性低的二极管。
此外,把所说器件作为太阳电池应用,不可能满意地增加短路电流(ISo),开路电压(Voc)以及占空因数(FF)其中任何一个。
本发明的目的在于改善已知半导体器件的频率特性,诸如含有一非单晶半导体膜的晶体管和二极管这类半导体器件。
本发明的另一个目的,旨在得到一种改善的半导体器件,它包括能在商业上大量生产的改进的晶体管和改进的二极管。
本发明的进一步目的是要提供一种改进的半导体器件,它包括改进的晶体管和改进的二极管,它在光敏响应方面得到了改进。
图1是解释一代表性实施例的示意图,这是本发明所说的渐变带隙晶体管结构的示意图;
图2(a)至图2(c)是按本发明例子制造的渐变带隙晶体管各能带的解释性示意图;
图3是测量器件样品内部光发射和V-I(电压-电流)特性曲线的解释性示意图;
图4是一代表性实施例的示意图,它说明按照本发明所制造的渐变带隙二极理的结构;
图5(a)至图5(c)以及图6是按本发明的例子制造的渐变带隙二极管各能带的解释性简图;
图7是生产装置示意图,该设备作为制造本发明的渐变带隙晶体管或二极管所用设备的一个例子;
图8是一种生产装置的示意图,作为用以制造本发明的渐变带隙 晶体管或二极管设备的另一个例子。
本发明人为了达到前面所述的目的进行了广泛的研究,结果、完成了基于下面所述研究成果的发明。
即首先发现了这样的事实,一种含有非单晶材料(如非晶材料或多晶材料)的半导体,不需要考虑它的组分之间的晶格常数匹配问题;另一方面,它的迁移率低,能有效地用来达到本发明的目的。
另一发现是,此种半导体与晶体管结合,其中为该晶体管提供一基极区域具有斜坡状渐变的带隙结构(即渐变带隙晶体管),就能获得对光谱快速响应的改进的光敏晶体管。
进一步发现,此种半导体与二极管结合,该二极管具有斜坡状渐变带隙结构(即渐变带隙二极管),从而获得对光谱能快速响应的光敏二极管。
更进一步发现,对于非单晶材料,能够制成诸如A-SiC、A-SiN等的半导体材料,其带隙比单晶Si或单晶GaAs的带隙宽,并能制成渐变带隙晶体管或渐变带隙二极管,它们有很高的抗温度变化和抗高能粒子的能力。
从而,本发明提供了一种改进的半导体器件,诸如改进的渐变带隙晶体管和改进的渐变带隙二极管,它包括一种包含硅、调节带隙的原子以及降低定域能级的原子的非单晶材料,并具有一区域其中至少在一非结位置其带隙是连续渐变的,并且其中只有导带和价带之一是连续渐变的。
这样,按照本发明,能使已知非单晶晶体管的频率特性以及光敏响应得到显著的改进。
而且,按本发明改进的渐变带隙晶体管二极管能有效地大量生产 而不用依靠用来制造已知的GaAs(Al)系列半导体的技术。
此外,按照本发明,能根据应用的目的制造所希望的渐变带隙晶体管或二极管,因为在带隙宽度和所用材料方面具有自由度。
现将参照附图详细地说明本发明所说的改进的半导体器件。
图1表示本发明的一种典型的渐变带隙晶体管。图中表示了基片101,集电极102,基极103以及发射极104,它们就以这样的次序配置在基片101上。并有重掺杂层105和另一重掺杂层106配置在集电极102和发射极104上,以便制成一欧姆结。电引线107、108和109分别与掺杂层105、基极103以及掺杂层106相连接。
图2(a)至2(c)表示本发明的渐变带隙晶体管在热平衡状态下的能带结构。
在图2(a)至2(c)中,数字203、204和205分别代表发射极、基极和集电极。数字201表示导带,数字202代表价带,数字206代表费米能级。
基极204的带隙在发射极203一边较宽,在集电极一边较窄,这是所希望的。
当在基极204和发射极203的交界面处和在基极204和集电极205的交界面处出现一个不连续的凹陷或尖峰时,就要在基极204和发射极203之间,并且在基极204和集电极205之间连续地分布一种组成元素。
为了使本发明的渐变带隙晶体管能有效地呈现其功能,希望基极204中的最小带隙与最大带隙之差大于0.1eV,更可取的是大于0.2eV。
此外,基极的厚度对于决定本发明渐变带隙晶体管的特性是个重要因素,虽说应当根据所用材料的种类来适当决定其厚度,但可取的范围是2um或者更薄,比较可取的范围是1um或者更薄,最可取的范围是0.7um或者更薄。
在本发明的半导体器件中,图2(a)至2(c)显示了变带隙晶体管在热平衡状态下的能带结构,该半导体区域一部分(即图中基极区域)的能带结构呈现出斜坡状的带隙渐变状态,只有价带和导带之一的带能级是单调连续增加或减少,其余的带能级保持平坦状态。
一般说来,可通过选择合适的膜形成条件使带隙连续渐变,并连续地改变在一实际所需半导体区域中各组分元素之间的化学成分的比例。
但是,如先有技术所说,只要简单地连续改变前述的化学比例,就可以使一半导体区域中的带隙连续渐变。不过,在此情况下,价带和导带的带能级是同时渐变的。正由于此,不可能只使该两带能级之一单调地连续上升或下降,并使其余带能级保持平坦状态。
举例说,如要求一实际所需半导体器件的一部分半导体膜用非单晶SiGe为材料,以等离子化学汽相淀积法来制造,一般说来,考虑到要在淀积室中保持等离子体处于稳定状态,半导体膜的制造是在不改变膜生成参数的数值情况下进行的。特别是关于稀释原料气体等的浓度,在此情况下是不改变的。
正由于此,当增加含在膜中Ge的量时,所生成膜的缺陷也增多故其生成膜很可能变成n型,与此同时,价带和导带二者的带能级也将相应地改变。
另一方面,在本发明中,举例说如果用单晶SiGe来制成一实际所需半导体器件的半导体膜,则膜的制造是利用实际存在的现象、即 (1)适当选择形成膜的条件,锗原子用以改变价带和导带的带能级,使之趋向在非单晶Si半导体的本征能带结构中的费米级,(2)氢原子的作用只改变价带的带能级,几乎不能改变导带的能级级。
为了能有效地达到本发明的目的,举例说,在用等离子化学汽相淀积法生成非单晶SiGe膜的情况下,在增加作为稀释气体的氢气(H2)流速并且增加导输锗的原料气体流量的同时,要适当地减少放电功率,这样,就能从某一位置开始。朝着处于平衡状态的费米级的另一方向、连续地提高导带能级,同时保持价带的带能级处于平坦状态。
也即,在本发明中,适当地选择形成膜的条件,能够制造满意的半导体膜,该膜部分地含有一区域,其中的空穴激活能维持恒定,而电子激活能在能带结构中从一边向着另一边不断增大。
在本发明的例子中,将详述上面提到的内容。
应用下面通用的带隙测量方法就能测定,构成本发明半导体器件的半导体膜的部分区域中,其能带结构是否处于所希望的状态。
(1)测量内部发发射。
配备了一个样品和有关的测量装置,使能如图3那样构成一个电路。
在图3中,数字301代表一样品。
对于该样品301,有一层微米厚要测量其能带结构的半导体膜304配置在一半透明铬电极303上,该铬电极设置在玻璃板302上。在半导体膜304的另外一面设置了另一个半透明铬电极305。
电极303和305电连接到直流电源306及电流表307,以便观察半导体膜中的电流。
应用上述电路,在样品301上加几伏电压就能观察到光电流(Ip)与波长的相关性。
待测的光电流(Ip)能以下列方程式(A)表示:
Ip=eηNo(1-R)〔1-e(1-αd)〕uEτ
……(A)
e:单位电荷
η:量子效率
d:半导体膜厚度
u:迁移率
τ:寿命
No:发射光的光子数/每秒
R:在反射面上的反射因子
α:吸收系数
E:电场
在均匀吸收情况下,该方程式(A)变为:
Ip=eηNo(1-R)(αd)uEτ……(B)
在此情况下,吸收系数(α)可由下式(C)表示:
α~ (Ip)/(No) ……(C)
利用该吸收系数。在横座标上标出hν,在纵座标上标出 2 h v ,从而得到该半导体膜304的一带隙值。
在本情况下,半导体膜304的较宽一边和较窄一边有关带隙值都可以独立地测量出来,其方法是有选择地以玻璃板302或电极305作为光入射面。
(2)测量V-I(电压-电流特性曲线)
根据用图3所示电路测得的结果,可以探测到在价带一边还是在导带一边存在电势垒。
把光入射到样品301上,同时在样品上施加电压就能测得V-I特性曲线。
通过施加电压,并使带隙的较宽一边为正(+),由此测得的V-I曲线,能够证实如果所说电压的施加方向是正偏置。在此情况下就在导带一边渐变;在所加电压是负偏置情况下,就在禁带一边渐变。
根据上述(1)和(2)两种测量结果。就能断定样品的能带结构是否相当于本发明所确定的能带结构。
图4中示出有关本发明的一种典型的渐变带隙二极管,其中有基片401,第一欧姆接触层402,第一非单晶层区域403,第二非单晶层区域404,以及第二欧姆接触层405。
各个的欧姆接触层402和405包含大量掺杂剂,其极性与邻近层区域403和404相同,从而分别保持一欧姆接触。电引线406和407分别与欧姆接触层402和405电连接。
图5(a)至图5(c)概略地表示了根据本发明的处于平衡状 态的渐变带隙二极管的能带结构。
在图5(a)至图5(c)中,数字504代表第一非单晶区域,数字505代表第二非单晶区域,而数字501(a)至501(c),数字502(a)至502(c)以及数字503(a)至503(c)分别代表价带、导带和费米能级。
正如图5(a)至5(c)所示,要求第一和第二非单晶层区域中至少有一层区域的带隙是连续渐变的,在价带和导带中,只有其中之一是连续渐变的,而其余一个带保持平的状态,并且在邻近电极一边的隙宽不断变宽。
在利用本发明的渐变带隙二极管作为光敏二极管的情况下,希望尽可能地减薄欧姆接触层的厚度,使光入射一面的带隙尽可能宽。
此外,在第一非单晶层区域的交界面上连续地布置组成元素,就可以阻止在这些交界面上出现凹陷或尖峰值。
为使本发明的渐变带隙二极管有效地显示其功能,最小带隙和最大带隙之差较可取的是大于0.1eV,最好大于0.2eV。
带隙渐变区域的层的厚度是决定本发明所属渐变二极管特性的重要因素。
虽然,所说厚度应当根据所用材料的种类适当地的决定。但要求厚一点以便增加对所加电压的抗击穿能力,可取的具体厚度在50到200微米之间,另一方面,为了提高频率响应,希望薄一点,在此情况下,一种可取的厚度是从0.5到50微米。
至于在本发明中用以生成前述非单晶膜的提供硅原子的适用气体 原料,可列举一种链硅烷化合物,诸如甲硅烷(SiH4),全氟甲硅烷(SiF4),乙硅烷(Si2H6),全氟乙硅烷(Si2F6),丙硅烷(Si3H6),一氟代甲硅烷(SiH3F),Si2H2F等,以及一种环状硅烷化合物,诸如环丁硅烷(Si4H8),环戊硅烷(Si5H2O),环己硅烷(Si0H12)等。
至于加入一种原子用以调节能带隙,即以加宽或缩小带隙,或用于降低定域能级的气态原料,可以列举出各种各样化合物。
具体说,加入一种原子用以加宽带隙的可用的气体原料,有碳化合物中的,诸如甲烷(CH4),乙炔(C2H2),乙烯(C2H2),乙烷(C2H6),四甲基甲硅烷〔Si(CH34〕以及三甲基甲硅烷〔SiH(CH33〕;还有氮化合物中的,诸如氮气(N2),铵(NH3),和H2NNH2、NH4N3、F4N,及氧化物中的O2,O3,CO2,NO,NO2,NO3N2O,N2O3和N2O4等。
作为适用的气体原料,用以加入一种原子,以缩小带隙,有含锗化合物,如四氢锗(GeH4),四氟锗(GeF4)等等,以及含锡化合物,例如四氢锡(SnH4)。
作为适用的气体原料,用以加入一种原子以降低定域能级的有:例如,氢气(H2)以及卤素气体,例如,氟(F2),氯(Cl2)等等。
为了有效地达到本发明的目的,使用这种降低定域能级的原子是一个重要因素。
欲逐步改变一区域中的带隙;包含在该区域中的这种降低定域能级的原子量的可取范围是1%到60%原子数,比较可取的范围是50%到40%原子数,最可取的范围是10%到35%原子数。
此外,在本发明中,用周期表中第三族或/和第四族元素作为掺杂剂,加入到需要逐步改变带隙的区域,用以控制电导率。
以第三族元素作为掺杂剂,可列举出硼和铝、镓、铟、铊等。在这些元素中,尤以硼和镓更可取。
以第四族元素作为掺杂剂,可以列出磷、砷、锑、铋等,在这些元素中,以磷和锑更可取。
在本发明中,可把这些掺杂剂均匀地或不均匀地分布在所说区域中,包含在所说区域中的该掺杂剂的量,其可取范围是原子5%或更为可取的范围是原子3%或更少,更可取的范围是1原子%或更少。
现在要说明,根据本发明制造一半导体器件的工序,以及实施该工序所用的生产设备。
图7表示一种代表性的生产装置,适于实施生产半导体器件用的工序,诸如生产本发明的一种改进的渐变带隙晶体管和一种改进的渐变带隙二极管。
图7所示的生产装置是电容耦合型,该装置包括一个能严密封闭的淀积室701,该淀积室有一反应室702,一个阳极703,一个电加热器704用以加热基片708,一个加热器704用的控制装置705,一个阴极706,一个高频电源707,一个排气系统709,一个真空计770,一个输气管710,气体储存管711至714,压力计721至724以及781至784,主阀731 至734,二次阀741至744,主流量控制器761至764以及阀751至754。
应用该生产装置例如,可以用如下方法生产本发明的渐变带隙三极管。
也即,首先把基片708牢固地固定在阳极703上,抽空淀积室701中的空气使反应室702中的气压降到约1×10°。然后开启控制装置705把基片708加热到50℃至600℃,当基片708保持在预定温度之后,把生成集电极的气体原料以预定流量从气体储存器通过质量流控制器引入反应空间702。接着,当用真空计770测得反应空间702的内压力达到预定真空度0.1~10乇时,就开启高频功率源,把0.1W/cm2~10W/cm2的高频功率输入反应空间102,在造成预定时期的释光放电之后,就有0.05μm~10μm厚的集电区层沉积在基片708上,此后,沉积室701中的空气达到足够的真空度,将已形成集电区层的基片708冷却到室温,然后,破坏沉积室701的真空,并从中取出基片708,再进行腐蚀处理,按一定尺寸在基片708上制造集电区使之达到预定的形状。
把这样处理过的基片708重新放入沉积室701中,并重复上述形成薄膜的步骤,使在以前形成的集电区上沉积厚度约为2μm的基区层,在此情况下,为了在沉积基区层的同时能连续改变其带隙,就要这样执行形成薄膜的工序,连续地减少或增加气体原材料的流量,以便加入调节带隙的原子,与此同时,根据需要,适当改变放电功率,稀释气体的浓度以及基片的温度。
此后,把在以前形成的集电区上沉积了基区层的基片708,从 沉积室701取出,进行图形处理,使之成为预计的图形。
接着,把这样处理过的基片708放入沉积室701,重复上述形成薄膜的步骤,使在以前形成的基区上沉积一层发射区。此后,用处理集电区一样的方法,对发射区进行腐蚀处理,这样就制成实际所需要的渐变带隙晶体管。
本发明所属的渐变带隙二极管也可以用图7所示的生产装置进行制造。
把基片708牢固地附着在阳极703上,抽去沉积室中的空气,使反应空间702内的气压降到约1×10-6乇。然后,开启控制装置705,把基片708加热到50℃~600℃。当基片708保持在预定温度后,以预定流量把形成欧姆接触层的气体原材料从气体储存器经质量流控制器导入反应空间702。之后,用真空计770观察反应空间702内的气压,当达到预定的0.01~10乇真空度时,开启高频功率源,向反应空间702内输入0.01W/Cm2~10W/Cm2的高频功率。在进行预定时期的辉光放电后,在基片708上沉积一层厚0.01~1μm的欧姆接触层。此后,沉积室701内的空气已达到足够真空度,将已具有欧姆接触层的基片708冷却到室温。然后,破坏沉积室701的真空状态,从该沉积室取出基片708,再进行腐蚀处理,按一定尺寸把基片708上的欧姆接触层腐蚀成预定的形状。把这样处理过的基片708重新放入沉积室701,重复上述形成薄膜的程序,在先前形成的欧姆接触层上先后沉积了厚度各小于100μm的第一层区域和第二层区域。在此情况下,为了在沉积每一层区域时,同时连续改变其带隙,应这样执行形成薄膜的步骤,即连续地减少或增加气体原材 料的流量,以便加入调节带隙的原子,与此同时,根据需要,适当改变放电功率,稀释气体的浓度以及基片的温度。
並按前述的相同方法,从沉积室701中取出在原先形成的欧姆接触层上沉积了第一和第二层区域的基片708,然后进行图形处理,使其具有预定的图案。最后,重复上述形成薄膜的工序,在先前形成的第二层区域上沉积另一层所需的欧姆接触层。这样就制成一个实际所需的渐变带隙二极管。
在图8中示出了另一种代表性的生产装置。
图8中的生产装置是图7所示生产装置的局部改进,对图7所示的装置加上氢基气体供应系统。图8的装置包括一个氢气储存器815、压力计825和885、一支主阀835、一支次级阀845、一支质量流控制器865、阀855、一支输氢气管891、一个激活室892以及一台微波功率源893。
应用图8所示生产装置也能有效地制造半导体器件,诸如本发明所述的改进的渐变带隙晶体管以及改进的渐变带隙二极管。
〔本发明的优选实施例〕
现将参照下面的例子更详细地叙述本发明的优点,这些例子仅仅用来达到解释性目的,对本发明的范围没有限制作用。
例1
应用图7所示的装置,制作了一个如图1所示型式的渐变带隙晶体管,其能带结构示于图2(a)。
应用Corning玻璃板7059(Corning玻璃器皿公司的产品)作基片101,每一组成层是按表1所列之条件形成的。
应用RHEED(反射高能电子衍射)对形成的晶体管的每一组成层的化学成分进行测量,其结果表明,每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS(二次离子质谱仪)测定基区中锗原子含量的结果表明,包含在基区中的锗原子的密度从0原子%连续变化到30原子%。
並且,不包含锗原子的非晶层区域的带隙为1.7eV,包含30%锗原子的非晶层区域的带隙为1.45eV。
更进一步发现,所制成的晶体管的频率特性与下面将要介绍的对比例1中制造的晶体管的频率特性相比,改善了的1.7倍。
例2
应用图7所示的装置,制造了如图1所示型式的渐变带隙晶体管,其能带结构示于图2(b)。
用Corning玻璃板7059(Corning玻璃器皿公司产品)作基片101,按表2所列之条件形成每一组成层。
应用RHEED测量所制造的晶体管的每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS测量基区中碳原子含量的结果表明,碳原子的密度从20原子%连续变化到0原子%。
並且,在包括20%碳原子的非晶层区域的带隙为2.0eV
更进一步发现,与下面叙述的对比例1中制成的晶体管相比,本例所制成的晶体管的频率特性改善了约1.5倍。
例3
应用图7所示的装置,制成了如图1所示型式的渐变带隙晶体管, 其能带结构如图2(c)所示。
用Corning玻璃板7059(Corning玻璃器皿公司的产品)作为基片101,按表3所列之条件形成每一组成层。
应用RHEED对所制成的晶体管的每一组成层测量其化学成分,发现每一组成层是由含硅的非晶材料组成的。
此外,用SIMS在基区中测量碳原子含量的结果表明,所含碳原子的密度从30原子%连续变化到0原子%。
进一步发现,含碳原子的非晶层带隙的最宽部分是2.2eV。
更进一步发现,与下面将要叙述的对比例1中形成的晶体管相比,例3所制成的晶体管对可见光响应的信噪比(S/N)改善了约2倍。
对比例1
应用图7所示的装置,按表4所列之条件,制造了图1所示型式的晶体管,其中的基片101是用Corning玻璃板7059(Corning玻璃器皿公司产品)。
例4
应用图7所示装置,制造了图4所示型式的渐变带隙二极管,其能带结构示于图5(a)。
用Corning玻璃板7059(Corning玻璃器皿公司的产品)作基片101,並按表5所列之条件形成每一组成层。
应用RHEED测量制成的二极管的每一组成层的化学成分,发现每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS测量第二层区域中锗原子含量的结果表明,所含锗原子的密度从0原子%连续变化到30原子%。
进一步发现,不含锗原子的非晶层区域的带隙为1.7eV,而 含30%锗原子的非晶层区域的带隙为1.45eV。
更进一步发现,与将要在下面叙述的对比例2中制成的两种二极管相比,例4中所制成的二极管的开关周期改善了约1.6倍。
对比例2
除了在形成第二层区域时,把GeF4流率保持在0.10SCCM之外,重复例4中的步骤,以得到两种二极管。
例5
应用图7所示的装置,制成图4所示型式的渐变带隙二极管,其能带结构示于5(b)中。
用Corning玻璃板7059(Corning玻璃器皿公司产品)作基片101,並按表6所列之条件形成每一组成层。
应用RHEED测量所制造的二极管的每一组成层的化学成分,发现每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS测量第一层区域中碳原子含量的结果表明,所含碳原子的密度从20原子%连续变化到0原子%。
进一步发现,含20%碳原子的非晶层区域的带隙为2.0eV。
更进一步发现,与下面将要叙述的对比例3所制成的二极管相比,例5所制成的二极管的信噪比改善了约1.5倍。
对比例3
除了放电功率保持在0.50W/Cm2以外,重复例5中的步骤,以得到两种二极管。
例6
应用图7所示的装置,制造图4所示型式的渐变带隙二极管,其能带结构示于图5(c)。
用Corning玻璃板7059(Corning玻璃器皿公司产品)作为基片101,並按表7所列之条件形成每一组成层。
应用RHEED测量所制成的二极管的每一组成层的化学成分,其结果表明每一组成层是由含硅的非晶材料组成的
此外,应用SIMS测量第二层区域中氮原子含量的结果表明,所含氮原子的密度从30原子%连续变化到0原子%。
进一步发现,第二层区域带隙最宽部分为2.2eV。
更进一步发现,与对比例2中所制的二极管相比,例6中所制的二极管的信噪比改善了约2.1倍。
例7
应用图7所示的装置,按表8所列之条件制造了一种改进的雪崩二极管,其能带结构示于图6(a)和图6(b)。在图6(a)和图6(b)中表示了导带601(a)和601(b),价带602(a)和602(b)和费米能级603(b)。图6(a)表示在不施加电压情况下的能带结构,图6(b)表示在施加电压情况下的能带结构。
应用Corning玻璃板7059(corning玻璃器皿公司产品)作为基片。
应用RHEED测量所得雪崩二极管每一组成层的化学成分表明,每一组成层是由含硅的非晶材料组成的。
並发现,与在形成i-型层时不用GeF4所制成的光敏二极管相比,例7中所得的雪崩二极管对可见光响应的信噪比改善了约2倍。
例8
应用图8所示的装置,按表9所列之条件,制造图4所示型式的 渐变带隙二极管,其能带结构如图5(a)所示。其中,用Corning玻璃板7059(Corning玻璃器皿公司产品)作为基片101。
並且,在形成第二层区域(渐变带隙层)时,从氢气(H2)储存器815把氢气(H2)导入激活室892,与此同时由微波功率源893向激活室输入100W/Cm2的微波功率,以产生氢基,並以20SCCM的流量把氢基连续引入反应空间702。
应用RHEED测量所得二极管每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的。
此外,应用SIMS测量第二层区域中的锗原子含量,其结果表明,所含锗原子的密度从0原子%连续变化到30原子%。
进一步发现,不含锗原子的非晶层区域的带隙为1.7eV,而含30%锗原子的非晶层区域的带隙为1.45eV。
除以上所述之外,还制造了一个包含一个玻璃板、一层半透明铬电极、一层非晶半导体薄膜(0.5μm厚)和另一层半透明铬电极的器件。至于该非晶半导体薄膜,是重复形成上述第二层区域的步骤形成的。应用AM1光源在所得的器件上测量光电动势,所得结果表明为0.25V。
由上述带隙以及光电动势测量结果能判断出,在上述第二层区域中,只有导带是相对于费米能级渐变的。
与下面对比例4中所制造的二极管相比,例8中所得的二极管的开关周期改善了约1.6倍
对比例4
除了在形成第二层区域过程中不使用任何氢基,並保持放电功率为0.5W/Cm2恒值以外,重复例8中的步骤,以获得对比样品 二极管。
至于所得样品二极管在第二层区域的带隙,在不含锗原子的非晶层区域中为1.7eV,在含有锗原子非晶层区域中为1.45eV。
重复例8的步骤,制造一个用来测量光电动势的样品器件,该样品器件具有上述对比样品的第二层区域作为半导体薄膜。
在所制成的样品器件上测量光电动势的结果为0.1V。
从上述测量结果能判断出在对比样品的第二层区域中,导带和价带两者都是渐变的
例9
应用图8所示的装置,按表10所列之条件,制造了图4所示型式的渐变带隙二极管,其能带结构示于图5(b),其中用Corning玻璃板7059(Corning玻璃器皿公司产品)作基片101。
並且,在形成第二层区域(渐变带隙层)时,从氢气储存器815把氢气(H2)导入激活室892。与此同时,由微波功率源893向该激活室输入100W/Cm2微波功率,以产生氢基,並以50SCCM流量把氢基连续引入反应空间702。
应用RHEED测量所得二极管每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的。
此外,用SIMS测量第二层区域中碳原子含量的结果表明,所含碳原子密度从20原子%连续变化到0原子%。
进一步发现,含碳原子非晶层区域的带隙为2.0eV
除以上所述之外,还制造了包括一块玻璃板、一层半透明铬电极、一层非晶半导体薄膜(厚度为0.5μm)和另一层半透明铬电极的器件。关于非晶半导体薄膜,是重复形成上述第二层区域的步骤形成 的,应用AM1光源在所得器件上测量光电动势,其结果为0.3V。
从上述带隙和光电动势测量的结果能判断出,在上述第二层区域中只有导带是相对于费米能级渐变的。
与下面对比例5中所制造的二极管相比,例9中所得的二极管的信噪比提高了约1.5倍。
对比例5
除了不用氢基並在形成第二层区域过程中保持放电功率为0.5W/Cm2恒值外,重复例9中的步骤,以得到对比样品二极管。
关于所得样品二极管的第二层区域的带隙,在不含碳原子的非晶层区域为1.7eV,在含有碳原子的非晶层区域为1.45eV。
重复例9中的步骤,制成一个用于测量光电动势的样品器件,该样品器件以上述对比样品第二层区域作为半导体薄膜。
在所得样品器件上测量光电动势,其结果为0.12V
从上述测量结果能判断出,在该对比样品的第二层区域中,导带和价带两者是渐变的。
例10
应用图8所示的装置,按表11所列之条件制造了一个图4所示型式的渐变带隙二极管,其能带结构示于图5(c),其中用corning玻璃板7059(Corning玻璃器皿公司产品)作为基片101。
並且,在制造第二层区域(渐变带隙层)时,从氢气储存器815把氢气(H2)导入激活室892,与此同时,由微波功率源893向激活室输入微波功率100W/Cm2,以产生氢基,並以50SCCM流量把氢基连续引入反应空间702。
应用RHEED测量所得二极管每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的
此外,应用SIMS测量第二层区域中氮原子含量的结果表明,所含氮原子的密度从30原子%连续变化到0原子%。
进一步发现,第二层区域带隙的最宽部分是2.2eV
除上面所述之外,还制造了一个包括一块玻璃板、一层半透明铬电极、一层非晶半导体薄膜(厚度为0.5μm)和另一层半透明铬电极的器件。至于非晶半导体薄膜,是重复形成上述第二层区域的步骤形成的。用AM1光源测量在所制造的器件上的光电动势,其所得结果为0.32V。
从上面带隙和光电动势测量结果能够判断出,在上述第二层区域中只有导带相对于费米能级渐变。
与对比例4中所得的二极管相比,本例所制造的二极管的信噪比改善了约2.1倍。
例11
应用图8所示的装置,制造了一个雪崩二极管,其能带结构如图6(a)所示,其中用Corning玻璃板7059(Corning玻璃器皿公司产品)作为基片。
並且,在形成第二层区域(渐变带隙层)时,从氢气储存器815把氢气(H2)导入激活室892。与此同时,由微波功率源893向该激活室加入100W/Cm2的微波功率,以产生氢基,並以50SCCM流量把氢基引入反应空间702。
应用RHEED测量所得雪崩二极管每一组成层的化学成分,其结果表明,每一组成层是由含硅的非晶材料组成的。
进一步发现,与在形成i-型层时不用GeF4所制成的二极管相比,例11中所得的二极管对可见光响应的信噪比改善了约2倍。
Figure 87107592_IMG2
Figure 87107592_IMG5
Figure 87107592_IMG7
Figure 87107592_IMG8
Figure 87107592_IMG11
Figure 87107592_IMG12

Claims (11)

1、一种包括带隙渐变半导体层区的半导体器件,所述层区处在迭置在基片上的含P型非单晶硅半导体材料的P型半导体层区和含n型非单晶硅半导体材料的n型半导体层区之间,所述带隙渐变半导体层区与所述p型半导体层区和所述n型半导体层区构成一个结。
所述带隙渐变半导体层区包括包含作为主组分的硅原子、带隙调节原子及原子百分比为1-60作为降低定域能级的氢原子或卤素原子的非单晶半导体材料,所述带隙渐变半导体层区有一个区域,其中带隙在结以外的位置上连续变化,所述带隙渐变半导体层区具有一导带和一价带,价带和导带中只有一个是连续渐变的。
2、如权利要求1的器件,其中所述带隙调节原子是从包括碳、氮和氧原子的组中选出的至少一种带隙增宽原子。
3、如权利要求1的器件,其中所述带隙调节原子是从包括锗和锡原子的组中选出的至少一种带隙变窄原子。
4、如权利要求1的器件,其中所述带隙渐变区包含一种掺杂剂。
5、如权利要求4的器件,其中所述掺杂物选自B、Al、Ga、Zn和Tl。
6、如权利要求4的器件,其中所述掺杂物选自P、As、Sb和Bi。
7、如权利要求1的器件,其中带隙连续变化并在光照射到的一侧变宽。
8、一种半导体器件,它包括迭置在衬底上的n型半导体层区和p型半导体层区,二层区在其之间形成结,所述p型半导体层区包括包含作为主组分的硅原子的p型非单晶半导体材料,所述n型半导体层区包括包含作为主组分的硅原子的n型非单晶半导体材料,其中所述n型半导体层区和p型半导体层区之一包括一带隙渐变半导体层区,该层区包括进一步包含掺杂原子、带隙调节原子及作为降低定域能级的原子百分比为1-60的氢原子或卤素原子的非单晶半导体材料,所述带隙渐变半导体层区具有一个结以外的区,在其中带隙连续渐变并在光照射到的一侧变宽,所述带隙渐变半导体层区有一导带和一禁带,导体和禁带中只有一个是连续渐变的。
9、如权利要求8的器件,其中所述带隙调节原子是从碳、氮和氧原子中选出的一或多种带隙展宽原子。
10、如权利要求8的器件,其中所述带隙调节原子是从锗和锡中选出的一或多种带隙减小原子。
CN87107592A 1986-09-26 1987-09-25 具有一连续渐变带隙半导体区域的半导体器件 Expired CN1009688B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP229246/86 1986-09-26
JP61229246A JPS6384082A (ja) 1986-09-26 1986-09-26 半導体素子
JP229249/86 1986-09-26
JP61229249A JPS6384083A (ja) 1986-09-26 1986-09-26 半導体素子

Publications (2)

Publication Number Publication Date
CN87107592A CN87107592A (zh) 1988-10-12
CN1009688B true CN1009688B (zh) 1990-09-19

Family

ID=26528708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN87107592A Expired CN1009688B (zh) 1986-09-26 1987-09-25 具有一连续渐变带隙半导体区域的半导体器件

Country Status (3)

Country Link
US (2) US4887134A (zh)
CN (1) CN1009688B (zh)
DE (1) DE3732418A1 (zh)

Families Citing this family (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212658B (en) * 1987-11-13 1992-02-12 Plessey Co Plc Solid state light source
IT1227877B (it) * 1988-11-25 1991-05-14 Eniricerche S P A Agip S P A Procedimento per la deposizione via plasma di strati multipli dimate riale amorfo a composizione variabile
US6127692A (en) * 1989-08-04 2000-10-03 Canon Kabushiki Kaisha Photoelectric conversion apparatus
US5260560A (en) * 1990-03-02 1993-11-09 Canon Kabushiki Kaisha Photoelectric transfer device
US5396103A (en) * 1991-05-15 1995-03-07 Minnesota Mining And Manufacturing Company Graded composition ohmic contact for P-type II-VI semiconductors
US5401952A (en) * 1991-10-25 1995-03-28 Canon Kabushiki Kaisha Signal processor having avalanche photodiodes
US5352912A (en) * 1991-11-13 1994-10-04 International Business Machines Corporation Graded bandgap single-crystal emitter heterojunction bipolar transistor
US8018058B2 (en) * 2004-06-21 2011-09-13 Besang Inc. Semiconductor memory device
US20050280155A1 (en) * 2004-06-21 2005-12-22 Sang-Yun Lee Semiconductor bonding and layer transfer method
US7800199B2 (en) * 2003-06-24 2010-09-21 Oh Choonsik Semiconductor circuit
US7470598B2 (en) * 2004-06-21 2008-12-30 Sang-Yun Lee Semiconductor layer structure and method of making the same
US8058142B2 (en) 1996-11-04 2011-11-15 Besang Inc. Bonded semiconductor structure and method of making the same
US7633162B2 (en) * 2004-06-21 2009-12-15 Sang-Yun Lee Electronic circuit with embedded memory
US6426265B1 (en) 2001-01-30 2002-07-30 International Business Machines Corporation Incorporation of carbon in silicon/silicon germanium epitaxial layer to enhance yield for Si-Ge bipolar technology
US7078741B2 (en) * 2002-02-01 2006-07-18 Picometrix, Inc. Enhanced photodetector
US20100133695A1 (en) * 2003-01-12 2010-06-03 Sang-Yun Lee Electronic circuit with embedded memory
US7799675B2 (en) * 2003-06-24 2010-09-21 Sang-Yun Lee Bonded semiconductor structure and method of fabricating the same
US8071438B2 (en) * 2003-06-24 2011-12-06 Besang Inc. Semiconductor circuit
US7867822B2 (en) 2003-06-24 2011-01-11 Sang-Yun Lee Semiconductor memory device
US7632738B2 (en) * 2003-06-24 2009-12-15 Sang-Yun Lee Wafer bonding method
US7863748B2 (en) * 2003-06-24 2011-01-04 Oh Choonsik Semiconductor circuit and method of fabricating the same
US8471263B2 (en) * 2003-06-24 2013-06-25 Sang-Yun Lee Information storage system which includes a bonded semiconductor structure
US20100190334A1 (en) * 2003-06-24 2010-07-29 Sang-Yun Lee Three-dimensional semiconductor structure and method of manufacturing the same
US8455978B2 (en) 2010-05-27 2013-06-04 Sang-Yun Lee Semiconductor circuit structure and method of making the same
US20110143506A1 (en) * 2009-12-10 2011-06-16 Sang-Yun Lee Method for fabricating a semiconductor memory device
US8367524B2 (en) * 2005-03-29 2013-02-05 Sang-Yun Lee Three-dimensional integrated circuit structure
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8378715B2 (en) 2009-04-14 2013-02-19 Monolithic 3D Inc. Method to construct systems
US8427200B2 (en) 2009-04-14 2013-04-23 Monolithic 3D Inc. 3D semiconductor device
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US8384426B2 (en) * 2009-04-14 2013-02-26 Monolithic 3D Inc. Semiconductor device and structure
US8362800B2 (en) 2010-10-13 2013-01-29 Monolithic 3D Inc. 3D semiconductor device including field repairable logics
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US8405420B2 (en) * 2009-04-14 2013-03-26 Monolithic 3D Inc. System comprising a semiconductor device and structure
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US8395191B2 (en) 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US8754533B2 (en) * 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
US8373439B2 (en) 2009-04-14 2013-02-12 Monolithic 3D Inc. 3D semiconductor device
US9711407B2 (en) * 2009-04-14 2017-07-18 Monolithic 3D Inc. Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer
US7986042B2 (en) 2009-04-14 2011-07-26 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11018133B2 (en) 2009-10-12 2021-05-25 Monolithic 3D Inc. 3D integrated circuit
US10366970B2 (en) 2009-10-12 2019-07-30 Monolithic 3D Inc. 3D semiconductor device and structure
US8450804B2 (en) 2011-03-06 2013-05-28 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US10354995B2 (en) 2009-10-12 2019-07-16 Monolithic 3D Inc. Semiconductor memory device and structure
US11984445B2 (en) 2009-10-12 2024-05-14 Monolithic 3D Inc. 3D semiconductor devices and structures with metal layers
US10910364B2 (en) 2009-10-12 2021-02-02 Monolitaic 3D Inc. 3D semiconductor device
US8536023B2 (en) 2010-11-22 2013-09-17 Monolithic 3D Inc. Method of manufacturing a semiconductor device and structure
US8294159B2 (en) 2009-10-12 2012-10-23 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11374118B2 (en) 2009-10-12 2022-06-28 Monolithic 3D Inc. Method to form a 3D integrated circuit
US10388863B2 (en) 2009-10-12 2019-08-20 Monolithic 3D Inc. 3D memory device and structure
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US8581349B1 (en) 2011-05-02 2013-11-12 Monolithic 3D Inc. 3D memory semiconductor device and structure
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US8476145B2 (en) 2010-10-13 2013-07-02 Monolithic 3D Inc. Method of fabricating a semiconductor device and structure
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US12027518B1 (en) 2009-10-12 2024-07-02 Monolithic 3D Inc. 3D semiconductor devices and structures with metal layers
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US8373230B1 (en) 2010-10-13 2013-02-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8723335B2 (en) 2010-05-20 2014-05-13 Sang-Yun Lee Semiconductor circuit structure and method of forming the same using a capping layer
US8642416B2 (en) 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US11482440B2 (en) 2010-12-16 2022-10-25 Monolithic 3D Inc. 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US10497713B2 (en) 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US11018191B1 (en) 2010-10-11 2021-05-25 Monolithic 3D Inc. 3D semiconductor device and structure
US11469271B2 (en) 2010-10-11 2022-10-11 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US8114757B1 (en) 2010-10-11 2012-02-14 Monolithic 3D Inc. Semiconductor device and structure
US11227897B2 (en) 2010-10-11 2022-01-18 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US10290682B2 (en) 2010-10-11 2019-05-14 Monolithic 3D Inc. 3D IC semiconductor device and structure with stacked memory
US11600667B1 (en) 2010-10-11 2023-03-07 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11158674B2 (en) 2010-10-11 2021-10-26 Monolithic 3D Inc. Method to produce a 3D semiconductor device and structure
US11315980B1 (en) 2010-10-11 2022-04-26 Monolithic 3D Inc. 3D semiconductor device and structure with transistors
US11024673B1 (en) 2010-10-11 2021-06-01 Monolithic 3D Inc. 3D semiconductor device and structure
US11257867B1 (en) 2010-10-11 2022-02-22 Monolithic 3D Inc. 3D semiconductor device and structure with oxide bonds
US10896931B1 (en) 2010-10-11 2021-01-19 Monolithic 3D Inc. 3D semiconductor device and structure
US11063071B1 (en) 2010-10-13 2021-07-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US12094892B2 (en) 2010-10-13 2024-09-17 Monolithic 3D Inc. 3D micro display device and structure
US10833108B2 (en) 2010-10-13 2020-11-10 Monolithic 3D Inc. 3D microdisplay device and structure
US11855100B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11404466B2 (en) 2010-10-13 2022-08-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11327227B2 (en) 2010-10-13 2022-05-10 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US8379458B1 (en) 2010-10-13 2013-02-19 Monolithic 3D Inc. Semiconductor device and structure
US11929372B2 (en) 2010-10-13 2024-03-12 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11984438B2 (en) 2010-10-13 2024-05-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US10679977B2 (en) 2010-10-13 2020-06-09 Monolithic 3D Inc. 3D microdisplay device and structure
US11164898B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11605663B2 (en) 2010-10-13 2023-03-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11163112B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US12080743B2 (en) 2010-10-13 2024-09-03 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11855114B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11869915B2 (en) 2010-10-13 2024-01-09 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11437368B2 (en) 2010-10-13 2022-09-06 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US10978501B1 (en) 2010-10-13 2021-04-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11133344B2 (en) 2010-10-13 2021-09-28 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11694922B2 (en) 2010-10-13 2023-07-04 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11043523B1 (en) 2010-10-13 2021-06-22 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US10943934B2 (en) 2010-10-13 2021-03-09 Monolithic 3D Inc. Multilevel semiconductor device and structure
US10998374B1 (en) 2010-10-13 2021-05-04 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11854857B1 (en) 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11862503B2 (en) 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11121021B2 (en) 2010-11-18 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure
US11107721B2 (en) 2010-11-18 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure with NAND logic
US11610802B2 (en) 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11482438B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11508605B2 (en) 2010-11-18 2022-11-22 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11164770B1 (en) 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11031275B2 (en) 2010-11-18 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11615977B2 (en) 2010-11-18 2023-03-28 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11735462B2 (en) 2010-11-18 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US12100611B2 (en) 2010-11-18 2024-09-24 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11355381B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
US12033884B2 (en) 2010-11-18 2024-07-09 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11521888B2 (en) 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11482439B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors
US11443971B2 (en) 2010-11-18 2022-09-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11018042B1 (en) 2010-11-18 2021-05-25 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11495484B2 (en) 2010-11-18 2022-11-08 Monolithic 3D Inc. 3D semiconductor devices and structures with at least two single-crystal layers
US11211279B2 (en) 2010-11-18 2021-12-28 Monolithic 3D Inc. Method for processing a 3D integrated circuit and structure
US11923230B1 (en) 2010-11-18 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11094576B1 (en) 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11569117B2 (en) 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US12068187B2 (en) 2010-11-18 2024-08-20 Monolithic 3D Inc. 3D semiconductor device and structure with bonding and DRAM memory cells
US11901210B2 (en) 2010-11-18 2024-02-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11804396B2 (en) 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11004719B1 (en) 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11355380B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US11784082B2 (en) 2010-11-18 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
CN102832269B (zh) * 2011-06-17 2016-06-22 中国科学院微电子研究所 光电探测叠层、半导体紫外探测器及其制造方法
US10388568B2 (en) 2011-06-28 2019-08-20 Monolithic 3D Inc. 3D semiconductor device and system
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US11410912B2 (en) 2012-04-09 2022-08-09 Monolithic 3D Inc. 3D semiconductor device with vias and isolation layers
US11476181B1 (en) 2012-04-09 2022-10-18 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11164811B2 (en) 2012-04-09 2021-11-02 Monolithic 3D Inc. 3D semiconductor device with isolation layers and oxide-to-oxide bonding
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11694944B1 (en) 2012-04-09 2023-07-04 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11735501B1 (en) 2012-04-09 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11881443B2 (en) 2012-04-09 2024-01-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US10600888B2 (en) 2012-04-09 2020-03-24 Monolithic 3D Inc. 3D semiconductor device
US11088050B2 (en) 2012-04-09 2021-08-10 Monolithic 3D Inc. 3D semiconductor device with isolation layers
US11616004B1 (en) 2012-04-09 2023-03-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11594473B2 (en) 2012-04-09 2023-02-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11916045B2 (en) 2012-12-22 2024-02-27 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11063024B1 (en) 2012-12-22 2021-07-13 Monlithic 3D Inc. Method to form a 3D semiconductor device and structure
US11784169B2 (en) 2012-12-22 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11217565B2 (en) 2012-12-22 2022-01-04 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US12051674B2 (en) 2012-12-22 2024-07-30 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US11018116B2 (en) 2012-12-22 2021-05-25 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11961827B1 (en) 2012-12-22 2024-04-16 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11309292B2 (en) 2012-12-22 2022-04-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11967583B2 (en) 2012-12-22 2024-04-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US10651054B2 (en) 2012-12-29 2020-05-12 Monolithic 3D Inc. 3D semiconductor device and structure
US11430668B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11004694B1 (en) 2012-12-29 2021-05-11 Monolithic 3D Inc. 3D semiconductor device and structure
US10600657B2 (en) 2012-12-29 2020-03-24 Monolithic 3D Inc 3D semiconductor device and structure
US11430667B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11177140B2 (en) 2012-12-29 2021-11-16 Monolithic 3D Inc. 3D semiconductor device and structure
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US10892169B2 (en) 2012-12-29 2021-01-12 Monolithic 3D Inc. 3D semiconductor device and structure
US10903089B1 (en) 2012-12-29 2021-01-26 Monolithic 3D Inc. 3D semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US11087995B1 (en) 2012-12-29 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US11869965B2 (en) 2013-03-11 2024-01-09 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US10325651B2 (en) 2013-03-11 2019-06-18 Monolithic 3D Inc. 3D semiconductor device with stacked memory
US11935949B1 (en) 2013-03-11 2024-03-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US12094965B2 (en) 2013-03-11 2024-09-17 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US11923374B2 (en) 2013-03-12 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US12100646B2 (en) 2013-03-12 2024-09-24 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11398569B2 (en) 2013-03-12 2022-07-26 Monolithic 3D Inc. 3D semiconductor device and structure
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US11088130B2 (en) 2014-01-28 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
US11720736B2 (en) 2013-04-15 2023-08-08 Monolithic 3D Inc. Automation methods for 3D integrated circuits and devices
US11030371B2 (en) 2013-04-15 2021-06-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11270055B1 (en) 2013-04-15 2022-03-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
US11574109B1 (en) 2013-04-15 2023-02-07 Monolithic 3D Inc Automation methods for 3D integrated circuits and devices
US11487928B2 (en) 2013-04-15 2022-11-01 Monolithic 3D Inc. Automation for monolithic 3D devices
US11341309B1 (en) 2013-04-15 2022-05-24 Monolithic 3D Inc. Automation for monolithic 3D devices
CN103545398B (zh) * 2013-10-16 2016-06-08 北京工业大学 基区渐变的单向载流子传输的双异质结光敏晶体管探测器
US11031394B1 (en) 2014-01-28 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure
US10297586B2 (en) 2015-03-09 2019-05-21 Monolithic 3D Inc. Methods for processing a 3D semiconductor device
US11107808B1 (en) 2014-01-28 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure
US12094829B2 (en) 2014-01-28 2024-09-17 Monolithic 3D Inc. 3D semiconductor device and structure
US10381328B2 (en) 2015-04-19 2019-08-13 Monolithic 3D Inc. Semiconductor device and structure
US10825779B2 (en) 2015-04-19 2020-11-03 Monolithic 3D Inc. 3D semiconductor device and structure
US11056468B1 (en) 2015-04-19 2021-07-06 Monolithic 3D Inc. 3D semiconductor device and structure
US11011507B1 (en) 2015-04-19 2021-05-18 Monolithic 3D Inc. 3D semiconductor device and structure
US11956952B2 (en) 2015-08-23 2024-04-09 Monolithic 3D Inc. Semiconductor memory device and structure
US12100658B2 (en) 2015-09-21 2024-09-24 Monolithic 3D Inc. Method to produce a 3D multilayer semiconductor device and structure
US11937422B2 (en) 2015-11-07 2024-03-19 Monolithic 3D Inc. Semiconductor memory device and structure
US11114427B2 (en) 2015-11-07 2021-09-07 Monolithic 3D Inc. 3D semiconductor processor and memory device and structure
CN115942752A (zh) 2015-09-21 2023-04-07 莫诺利特斯3D有限公司 3d半导体器件和结构
US11978731B2 (en) 2015-09-21 2024-05-07 Monolithic 3D Inc. Method to produce a multi-level semiconductor memory device and structure
US10522225B1 (en) 2015-10-02 2019-12-31 Monolithic 3D Inc. Semiconductor device with non-volatile memory
US12120880B1 (en) 2015-10-24 2024-10-15 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US10418369B2 (en) 2015-10-24 2019-09-17 Monolithic 3D Inc. Multi-level semiconductor memory device and structure
US12035531B2 (en) 2015-10-24 2024-07-09 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US11114464B2 (en) 2015-10-24 2021-09-07 Monolithic 3D Inc. 3D semiconductor device and structure
US11296115B1 (en) 2015-10-24 2022-04-05 Monolithic 3D Inc. 3D semiconductor device and structure
US10847540B2 (en) 2015-10-24 2020-11-24 Monolithic 3D Inc. 3D semiconductor memory device and structure
US12016181B2 (en) 2015-10-24 2024-06-18 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US11991884B1 (en) 2015-10-24 2024-05-21 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US11329059B1 (en) 2016-10-10 2022-05-10 Monolithic 3D Inc. 3D memory devices and structures with thinned single crystal substrates
US11869591B2 (en) 2016-10-10 2024-01-09 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11251149B2 (en) 2016-10-10 2022-02-15 Monolithic 3D Inc. 3D memory device and structure
US11711928B2 (en) 2016-10-10 2023-07-25 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11812620B2 (en) 2016-10-10 2023-11-07 Monolithic 3D Inc. 3D DRAM memory devices and structures with control circuits
US11930648B1 (en) 2016-10-10 2024-03-12 Monolithic 3D Inc. 3D memory devices and structures with metal layers
US11296106B2 (en) 2019-04-08 2022-04-05 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US10892016B1 (en) 2019-04-08 2021-01-12 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11158652B1 (en) 2019-04-08 2021-10-26 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11763864B2 (en) 2019-04-08 2023-09-19 Monolithic 3D Inc. 3D memory semiconductor devices and structures with bit-line pillars
CN113899458A (zh) * 2021-09-22 2022-01-07 Oppo广东移动通信有限公司 光学传感器及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710786A (en) * 1978-03-16 1987-12-01 Ovshinsky Stanford R Wide band gap semiconductor alloy material
US4254429A (en) * 1978-07-08 1981-03-03 Shunpei Yamazaki Hetero junction semiconductor device
US4353081A (en) * 1980-01-29 1982-10-05 Bell Telephone Laboratories, Incorporated Graded bandgap rectifying semiconductor devices
IN157494B (zh) * 1980-09-09 1986-04-12 Energy Conversion Devices Inc
US4460669A (en) * 1981-11-26 1984-07-17 Canon Kabushiki Kaisha Photoconductive member with α-Si and C, U or D and dopant
US4579797A (en) * 1983-10-25 1986-04-01 Canon Kabushiki Kaisha Photoconductive member with amorphous germanium and silicon regions, nitrogen and dopant
NL8501769A (nl) * 1984-10-02 1986-05-01 Imec Interuniversitair Micro E Bipolaire heterojunctie-transistor en werkwijze voor de vervaardiging daarvan.

Also Published As

Publication number Publication date
CN87107592A (zh) 1988-10-12
DE3732418A1 (de) 1988-04-14
US5093704A (en) 1992-03-03
US4887134A (en) 1989-12-12

Similar Documents

Publication Publication Date Title
CN1009688B (zh) 具有一连续渐变带隙半导体区域的半导体器件
CN1163972C (zh) 半导体元件及其制造方法
CN1194385C (zh) 第三族氮化物半导体器件和其半导体层的生产方法
CN1156021C (zh) 有特定掺杂层的光电元件
CN1225029C (zh) 光能转换装置
CN1160483C (zh) 薄膜制备方法和淀积设备
CN1140933C (zh) 光电元件及其制备方法
CN1135635C (zh) 增强光电器件和电子器件的光和电特性的等离子淀积工艺
CN1069933C (zh) 形成淀积膜的方法和设备
CN1269225C (zh) 光电元件
CN1020525C (zh) 具有抗反射层的叠层光生伏打器件
CN1181220C (zh) 涂层工件的制造方法、方法的应用及其装置
CN1244163C (zh) 光电导薄膜和使用此薄膜的光生伏打器件
CN1237796A (zh) 形成微晶硅系列薄膜的工艺和适于实施所述工艺的装置
CN1214467C (zh) 半导体器件,半导体层及其生产方法
CN1825630A (zh) 光电动势元件
CN1516293A (zh) 制造半导体构件的方法和制造太阳电池的方法
CN1270420A (zh) Ⅲ族类氮化物半导体器件及其制造方法
CN1638153A (zh) 光电转换装置
CN1501513A (zh) 叠层型光电元件
CN1384551A (zh) 薄膜多晶太阳能电池及其形成方法
CN1706050A (zh) 层积型光电变换装置
CN1670917A (zh) 制造化合物半导体的方法和制造半导体器件的方法
CN1545485A (zh) 在用于量子计算机的硅晶体中的替代的施主原子
CN1229874C (zh) 光电元件、其制造方法、及使用其的建筑材料和发电装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee