CN103545398B - 基区渐变的单向载流子传输的双异质结光敏晶体管探测器 - Google Patents

基区渐变的单向载流子传输的双异质结光敏晶体管探测器 Download PDF

Info

Publication number
CN103545398B
CN103545398B CN201310485411.XA CN201310485411A CN103545398B CN 103545398 B CN103545398 B CN 103545398B CN 201310485411 A CN201310485411 A CN 201310485411A CN 103545398 B CN103545398 B CN 103545398B
Authority
CN
China
Prior art keywords
ingaasp
band gap
inp
gradual change
gap wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310485411.XA
Other languages
English (en)
Other versions
CN103545398A (zh
Inventor
霍文娟
谢红云
江之韵
张良浩
张万荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201310485411.XA priority Critical patent/CN103545398B/zh
Publication of CN103545398A publication Critical patent/CN103545398A/zh
Application granted granted Critical
Publication of CN103545398B publication Critical patent/CN103545398B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier

Abstract

基区渐变的单向载流子传输的双异质结光敏晶体管探测器属于半导体光电子技术领域,是一种可同时实现高响应度、高截止频率的光敏晶体管(UTC-DHPT)探测器。本发明包括:一InP衬底,利用金属有机化合物化学气相沉积(MOCVD)方法在InP衬底上依次制备出InP缓冲层、InGaAsP次集电区、InGaAsP集电区、两层不同材料带隙波长的InGaAsP过渡层、材料带隙波长渐变的InGaAsP基区、InP发射区、InP盖层、InGaAs欧姆接触层;一发射极,采用溅射的方法制作在InGaAs欧姆接触层上;一基极,采用溅射的方法制作在InGaAsP基区之上;一集电极,采用蒸镀的方法制作在InP衬底上。

Description

基区渐变的单向载流子传输的双异质结光敏晶体管探测器
技术领域
本发明属于半导体光电子技术领域,是一种可同时实现高响应度、高截止频率的基区渐变的单向载流子传输双异质结光敏晶体管(UTC-DHPT)探测器。
背景技术
全球宽带综合网业务量的飞速增长,要求作为骨干网的光通信网络有更大的信息传输容量和更快的信息处理速度。对光接收端(Receiver)来说,需要有高速率,高响应度,高增益和低噪声等性能。光探测器作为Receiver中的关键器件,要有相当出色的探测效率和高速工作的能力。另一方面,目前的RoF系统多采用基于光外差的中频传输方案,基站需要在光探测吸收的同时完成光注入锁定、混频和变频等功能。因此对接收机Receiver光探测器提出了越来越高的性能要求。
目前应用于Receiver的探测器多是PIN光探测器或APD光探测器。PIN探测器本身没有光增益,产生的光电流较小。芯片制作工艺复杂。APD探测器基于雪崩倍增机理,本身能产生电流增益放大光生电流,但会引入较大噪声,限制了Receiver的接收灵敏度。
异质结光敏晶体管(HPT)使用异质结双极晶体管(HBT)器件结构,集成光探测和电放大两种功能。在较低的直流偏置下,HPT同时实现光接收和光电流放大,克服了PIN探测器和APD探测器固有的缺点。另一方面,用于RoF基站的HPT,在光探测吸收的同时,利用其非线性可以完成注入锁定、混频、变频等功能,这是PIN和APD所不能实现的,HPT器件的制作工艺与HBT完全兼容,为多功能光接收机Receiver的OEIC芯片提供方便。
传统的HPT大多采用单异质结外延结构,用基区和集电区同时作为吸收区,光生载流子(包括电子和空穴)集中产生于耗尽区和集电区,空穴的迁移率较低,其在集电区中的缓慢输运严重地限制了器件的光电响应速度,器件在提高响应度与响应速度之间存在着矛盾。
单行载流子光电探测器(UTC-PD)是一种新型的探测器,器件中只有电子作为载流子流过结区,因此,相对于传统的PIN探测器而言,它具有更快的响应速度、更高的饱和电流和更宽的线性动态范围。将UTC思想运用到HPT中,缓解了空穴低迁移率对对光电响应速度的限制,实现了器件的单载流子传输,大大地提高了器件的响应速度,缓解了其在响应度和响应速度的矛盾,使其可以同时具有高响应度和高响应速度。
发明内容
有鉴于此,本发明的主要目的是提供一种InP/InGaAsP单向载流子传输的双异质结光敏晶体管(UTC-DHPT)探测器,具有高响应度、高特征频率,且易于与HBT的集成。
为达到上述目的,本发明提供了一种可同时实现高响应度和高特征频率的InP/InGaAsP基区渐变的单向载流子传输双异质结光敏晶体管(UTC-DHPT)探测器,包括:
一InP衬底,利用金属有机化合物化学气相沉积(MOCVD)方法在InP衬底上依次制备出InP缓冲层、InGaAsP次集电区、InGaAsP集电区、两层不同材料带隙波长的InGaAsP过渡层、材料带隙波长渐变的InGaAsP基区、InP发射区、InP盖层、InGaAs欧姆接触层;一发射极,采用溅射的方法制作在InGaAs欧姆接触层上;一基极,采用溅射的方法制作在InGaAsP基区之上;一集电极,采用蒸镀的方法制作在InP衬底上。
上述方案中InGaAsP集电区的材料带隙波长为1.1μm,n型轻掺杂(<1.0×1017cm-3),厚度介于0.3μm到0.5μm之间;
上述方案中过渡层包括两层:(1)厚度为0.01μm、材料带隙波长为1.3μm的i型InGaAsP;(2)厚度为0.01μm、材料带隙波长为1.4μm的i型InGaAsP;
上述方案中InGaAsP基区的材料带隙其中所述的InGaAsP基区材料的带隙波长为线性渐变的,材料带隙波长从1.55μm渐变到1.4μm,p型重掺杂(≥1.0×1018cm-3),厚度介于0.1μm到0.15μm之间;
上述方案中InP发射区为n型中等掺杂(≥1.0×1017cm-3且<1.0×1018cm-3),厚度介于0.05μm到0.1μm之间;
上述方案中InGaAsP基区与InP发射区形成e-b异质结,其中所述的InGaAsP集电区与InGaAsP基区形成c-b异质结,进而器件形成e-b结和b-c结双异质。
上述方案中发射极为钛金合金材料;
上述方案中基极为钛金合金材料;
上述方案中集电极为金锗镍合金材。
附图说明
为进一步说明本发明的技术特征,结合以下附图,对本发明作一详细的描述,其中:
图1是InP/InGaAsPUTC-DHPT探测器的结构图
图2为器件不加过渡层时0V的能带图。
图3为器件加过渡层时2V的能带图。
图4为使用SilvacoTCAD模拟器件在不同光强下集电极电流随Vce的变化图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
请参阅图1所示,本发明实施例提供的InP/InGaAsP单向载流子传输的双异质结光敏晶体管(UTC-DHPT)探测器,包括:
一InP衬底1,利用金属有机化合物化学气相沉积(MOCVD)方法在InP衬底上依次制备出InP缓冲层2、InGaAsP次集电区3、InGaAsP集电区4、InGaAsP过渡层5和6、材料带隙波长渐变InGaAsP基区7、InP发射区8、InP盖层9、InGaAs欧姆接触层10;一发射极13,采用溅射的方法制作在InGaAs欧姆接触层上;一基极12,采用溅射的方法制作在InGaAsP基区之上;一集电极11,采用溅射的方法制作在InP衬底上。
其中所述的InGaAsP集电区的掺杂杂质Si的浓度为1.0×1016cm-3,材料的带隙波长为1.1μm,厚度为0.4μm;
其中所述的i型InGaAsP过渡层5的厚度为0.01μm,材料带隙波长为1.3μm;
其中所述的i型InGaAsP过渡层6的厚度为0.01μm,材料带隙波长为1.4μm;
其中所述的InGaAsP基区7材料的带隙波长为线性渐变的,从1.55μm线性渐变到1.4μm,杂质Zn的浓度为1.0×1018cm-3,厚度为0.1μm;
其中所述的InP发射区8的厚度为0.05μm,杂质Si的浓度为1.0×1017cm-3
其中所述的集电极11为金锗镍合金材;
其中所述的基极12为钛金合金材料;
其中所述的发射极13为钛金合金材料。
其中所述的InGaAsP基区7材料的带隙波长是线性渐变的,可在基区内部形成内建电场,促进电子在基区的渡越,电场增强因子依赖内建电场的强度通常取值为4到10之间,这样会大大提高器件的放大倍数,进而提高器件的响应度。
其中所述的InGaAsP基区7与InP发射区8形成e-b异质结,其中所述的InGaAsP集电区4与InGaAsP基区7形成c-b异质结,进而器件形成e-b结和b-c结双异质,且只用n型重掺杂InGaAsP基区7作为吸收层。当光垂直入射时,光生载流子产生于基区,空穴作为多数载流子通过快速弛豫到达e-b结界面,增加e-b结耗尽区的正电荷,降低e-b结势垒,发射区大量的电子翻越e-b结尖峰势垒扩散到达基区。整个器件中只有光生电子由基区传输到集电区,消除了单异质结中空穴低迁移率的限制,电子的高迁移率得到了很好的利用,实现了器件的单载流子传输,可在提高器件的响应度的同时提高器件的响应速度。
其中所述的InGaAsP集电区4与InGaAsP基区7形成c-b异质结,异质结的导带尖峰势垒会阻碍电子由InGaAsP基区7进入InGaAsP集电区4,i型InGaAsP过渡层5、6可以减小或者消除尖峰势垒对电子的阻碍作用,从而使器件获得高的响应度和响应速度。附图2为器件不加过渡层时0V的能带图,图3为器件加过渡层时2V的能带图,从这两幅图可以明显地看出过渡层的加入能够有效降低b-c结的导带尖峰。附图4为使用SilvacoTCAD模拟器件在不同光强下集电极电流随Vce的变化图,由图可以得出渐变基区器件的响应度达到64.5A/W,比均匀掺杂基区器件的响应度提高了3.6倍。另外通过模拟得出器件的截止频率由传统的HPT的46.7GHz提高到115.4GHz。

Claims (4)

1.基区渐变的单向载流子传输的双异质结光敏晶体管探测器,其特征在于:
一InP衬底,利用金属有机化合物化学气相沉积方法在InP衬底上依次制备出InP缓冲层、InGaAsP次集电区、InGaAsP集电区、两层不同材料带隙波长的InGaAsP过渡层、材料带隙波长渐变的InGaAsP基区、InP发射区、InP盖层、InGaAs欧姆接触层;
一发射极,采用溅射的方法制作在InGaAs欧姆接触层上;
一基极,采用溅射的方法制作在InGaAsP基区之上;
一集电极,采用蒸镀的方法制作在InP衬底上;
所述的InGaAsP集电区的材料带隙波长为1.1μm,n型轻掺杂,掺杂浓度>1.0×1014cm-3且<1.0×1017cm-3,厚度介于0.3μm到0.5μm之间;
所述的过渡层包括两层:(1)厚度为0.01μm、材料带隙波长为1.3μm的i型InGaAsP;(2)厚度为0.01μm、材料带隙波长为1.4μm的i型InGaAsP;
所述的InGaAsP基区材料的带隙波长为线性渐变的,材料带隙波长从1.55μm逐渐变化到1.4μm,p型重掺杂,掺杂浓度≥1.0×1018cm-3,厚度介于0.1μm到0.15μm之间;
所述的InP发射区为n型中等掺杂,掺杂浓度≥1.0×1017cm-3且<1.0×1018cm-3,厚度介于0.05μm到0.1μm之间;
所述的带隙波长渐变的InGaAsP基区与InP发射区形成e-b异质结,带隙波长渐变的InGaAsP基区与InGaAsP集电区形成c-b异质结,进而器件形成e-b结和b-c结双异质结,且只用带隙波长渐变的n型重掺杂InGaAsP基区作为吸收层。
2.如权利要求1所述的基区渐变的单向载流子传输的双异质结光敏晶体管探测器,其中所述的集电极为金锗镍合金材料。
3.如权利要求1所述的基区渐变的单向载流子传输的双异质结光敏晶体管探测器,其中所述的基极为钛金合金材料。
4.如权利要求1所述的基区渐变的单向载流子传输的双异质结光敏晶体管探测器,其中所述的发射极为钛金合金材料。
CN201310485411.XA 2013-10-16 2013-10-16 基区渐变的单向载流子传输的双异质结光敏晶体管探测器 Expired - Fee Related CN103545398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310485411.XA CN103545398B (zh) 2013-10-16 2013-10-16 基区渐变的单向载流子传输的双异质结光敏晶体管探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310485411.XA CN103545398B (zh) 2013-10-16 2013-10-16 基区渐变的单向载流子传输的双异质结光敏晶体管探测器

Publications (2)

Publication Number Publication Date
CN103545398A CN103545398A (zh) 2014-01-29
CN103545398B true CN103545398B (zh) 2016-06-08

Family

ID=49968661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310485411.XA Expired - Fee Related CN103545398B (zh) 2013-10-16 2013-10-16 基区渐变的单向载流子传输的双异质结光敏晶体管探测器

Country Status (1)

Country Link
CN (1) CN103545398B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131400A1 (zh) * 2015-02-16 2016-08-25 上海交通大学 高灵敏度的纳米光晶体管及其制作方法和应用其的光通信器件及光谱分光器件
CN105140330B (zh) * 2015-09-23 2017-03-29 北京邮电大学 一种低功耗、零偏压单行载流子光电探测器
CN105226129B (zh) * 2015-10-20 2017-02-01 北京工业大学 一种SiGe/Si异质结光敏晶体管探测器
CN105390556A (zh) * 2015-11-09 2016-03-09 中国科学院上海微系统与信息技术研究所 一种用于单行载流子光电二极管的吸收区结构
CN108091720A (zh) * 2016-11-22 2018-05-29 中国科学院苏州纳米技术与纳米仿生研究所 单行载流子光电探测器及其制备方法
CN106784123B (zh) * 2016-11-23 2018-10-30 苏州苏纳光电有限公司 单行载流子光电探测器及其制作方法
CN106505116B (zh) * 2016-11-30 2019-04-05 苏州苏纳光电有限公司 单行载流子探测器及其制作方法
CN106409940B (zh) * 2016-12-14 2017-10-27 中国科学院上海微系统与信息技术研究所 单行载流子光电二极管的收集区结构
CN107195709B (zh) * 2017-05-19 2019-06-11 中山大学 一种三族氮化物基异质结光电晶体管
CN107240616B (zh) * 2017-06-12 2018-11-13 北京工业大学 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
FR3111233B1 (fr) * 2020-06-04 2022-06-24 Thales Sa Phototransistor à hétérojonction comprenant une couche d'avalanche
CN113422294A (zh) * 2021-06-22 2021-09-21 江苏索尔思通信科技有限公司 一种倒台结构的脊波导激光器芯片制作方法
CN114093958A (zh) * 2021-11-19 2022-02-25 电子科技大学 一种高速率大光敏面的单载流子光电探测器结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4254429A (en) * 1978-07-08 1981-03-03 Shunpei Yamazaki Hetero junction semiconductor device
US4887134A (en) * 1986-09-26 1989-12-12 Canon Kabushiki Kaisha Semiconductor device having a semiconductor region in which either the conduction or valence band remains flat while bandgap is continuously graded
AU2003223423A1 (en) * 2002-04-05 2003-10-27 Kopin Corporation Bipolar transistor with graded base layer
US7462892B2 (en) * 2005-07-26 2008-12-09 Sony Corporation Semiconductor device
CN101814537B (zh) * 2009-02-19 2012-03-28 中国科学院半导体研究所 氮化镓基雪崩型探测器及其制作方法
CN101894831B (zh) * 2009-05-20 2012-08-22 中国科学院半导体研究所 紫外-红外双波段探测器及其制作方法

Also Published As

Publication number Publication date
CN103545398A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
CN103545398B (zh) 基区渐变的单向载流子传输的双异质结光敏晶体管探测器
Zhang et al. Low-noise GaN ultraviolet pin photodiodes on GaN substrates
Loh et al. Selective epitaxial germanium on silicon-on-insulator high speed photodetectors using low-temperature ultrathin Si0. 8Ge0. 2 buffer
CN105140330A (zh) 一种低功耗、零偏压单行载流子光电探测器
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN107452820B (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
CN104659145B (zh) 低暗电流的共振隧穿二极管高灵敏度探测器
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
Shi et al. Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth
CN105097964B (zh) 一种有源区高斯掺杂型pπn紫外探测器
CN103022218A (zh) 一种InAs雪崩光电二极管及其制造方法
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
CN109273552A (zh) 一种单行载流子光电混频器及电磁波相控阵天线接收前端
Javadi Theoretical efficiency limit of graphene-semiconductor solar cells
CN109148636A (zh) 一种单光子探测器及其制备方法
Hwang et al. All transparent high-performance solar-blind n-ITO/p-NiO/n-ZnO ultraviolet heterojunction bipolar phototransistor
CN109192796A (zh) 一种UVC增强型PIN结构的4H-SiC紫外探测器
Lee et al. High quality In0. 53Ga0. 47As Schottky diode formed by graded superlattice of In0. 53Ga0. 47As/In0. 52Al0. 48As
CN107240616B (zh) 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
CN108305907B (zh) 一种新型同质结pin紫外探测器
Lee et al. Ultraviolet bandpass Al0. 17Ga0. 83N∕ GaN heterojunction phototransitors with high optical gain and high rejection ratio
Zhu et al. Optimization of GaN/InGaN heterojunction phototransistor
CN104505421A (zh) 一种具有自熄灭自恢复功能的雪崩光电二极管
CN105914254B (zh) 一种基于InGaAs‑InP异质结光电晶体管的结构优化方法
CN103545399A (zh) 行波电极渐变耦合脊波导InP双异质结光敏晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160608

Termination date: 20191016

CF01 Termination of patent right due to non-payment of annual fee