CN100596000C - 在汽车用ipm型电动机中使用的永久磁铁的制造方法 - Google Patents

在汽车用ipm型电动机中使用的永久磁铁的制造方法 Download PDF

Info

Publication number
CN100596000C
CN100596000C CN200580046295A CN200580046295A CN100596000C CN 100596000 C CN100596000 C CN 100596000C CN 200580046295 A CN200580046295 A CN 200580046295A CN 200580046295 A CN200580046295 A CN 200580046295A CN 100596000 C CN100596000 C CN 100596000C
Authority
CN
China
Prior art keywords
film
layer
permanent magnet
electroplating
vickers hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200580046295A
Other languages
English (en)
Other versions
CN101099285A (zh
Inventor
小松敏泰
真谷康隆
高桥一成
椛泽明
冈田秀德
宫尾幸光
金子裕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Technology & Research Industrial Corp
Proterial Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Metals Ltd filed Critical Honda Motor Co Ltd
Publication of CN101099285A publication Critical patent/CN101099285A/zh
Application granted granted Critical
Publication of CN100596000C publication Critical patent/CN100596000C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/001Magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种永久磁铁的制造方法,该永久磁铁兼有优良的耐蚀性、耐磨性及耐冲击性,用于汽车IPM型电动机。在R-Fe-B系永久磁铁的表面由电镀法形成作为第1层的膜厚3~15μm的Ni膜,然后,由电镀法形成作为第2层的膜厚3~15μm的Cu或Sn膜,由非电解镀法形成作为第3层的膜厚4~7μm的Ni-P合金膜,在设第2层的Cu或Sn电镀膜的维氏硬度为1时,第3层的Ni-P合金膜具有2.5~4.5的维氏硬度。

Description

在汽车用IPM型电动机中使用的永久磁铁的制造方法
技术领域
本发明涉及一种插入到汽车用IPM型电动机的转子磁轭内的槽中使用的永久磁铁的制造方法。
背景技术
在搭载于电动汽车、混合动力汽车的电动机中,为了其高性能化,使用在永久磁铁材料中具有最高的磁特性的R-Fe-B系永久磁铁(R为稀土类元素)。该R-Fe-B系永久磁铁由于包含反应性高的R,所以,容易在大气中氧化腐蚀。因此,在其使用时,为了确保耐蚀性,实施某种表面处理,例如在其表面形成Ni镀膜、Al蒸镀膜、树脂涂覆膜等。
用于进一步提高R-Fe-B系永久磁铁的耐蚀性的方法提出有许多,专利申请数量也多。例如,在专利文献1中,公开了这样的方法,即,为了获得耐蚀性优良的R-Fe-B系永久磁铁,在其表面形成作为第1保护层的Ni膜,作为第2保护层的、比第1保护层软的Cu或Sn膜,作为第3保护层的、比第2保护层硬的Ni膜。在专利文献2~4中,也公开了用于提高耐蚀性的Ni膜-Cu膜-Ni或Ni-P膜的组合的多层膜。在专利文献5公开了用于提高耐蚀性和确保耐磨性的、硬度低的无光泽Ni膜与硬度高的有光泽Ni膜的组合的多层膜。另外,在专利文献6公开了这样的技术,该技术在铁系烧结材料的表面形成维氏硬度400~500左右的Ni-P膜,提高铁系烧结材料的耐磨性。
专利文献1:日本特开平1-321610号公报
专利文献2:日本特开平5-205926号公报
专利文献3:日本专利第3377605号公报
专利文献4:日本特开平7-331486号公报
专利文献5:日本特开平9-7810号公报
专利文献6:日本特开2003-97429号公报
发明内容
随着电动汽车、混合动力汽车的高性能化,对搭载于其上的电动机也提出了高性能化要求,结果,采用IPM型(Interior PermanentMagnet:内部磁铁型)电动机代替SPM型(Surface PermanentMagnet:表面磁铁型)电动机。IPM型电动机例如使用图1所示转子1组装而成,转子1为在设于磁轭2内的槽3中插入磁铁4的构造,该磁轭2通过层叠硅钢片而制作。由于磁轭通过冲裁硅钢片然后进行层叠而制作,所以,在其槽表面存在毛刺、冲裁的刀痕等凹凸。因此,当将在表面形成了耐蚀性膜的R-Fe-B系永久磁铁插入到槽时,有时上述凹凸使膜产生伤痕,结果,磁铁的耐蚀性产生问题,磁特性劣化,存在电动机特性下降的问题。另外,槽内部与磁铁间的间隙非常小,插入磁铁时在磁铁施加大的应力,还存在膜产生裂纹和缺口的问题。另外,IPM型电动机的回转高达6000rpm以上,回转时在槽内的磁铁施加磁铁的大的磁吸引力,而且作用大的离心力。为此,磁铁在槽内朝径向移动,磁铁与磁轭产生冲撞,所以,还存在膜产生伤痕或磨损、在膜上产生裂纹和缺口的问题。
鉴于以上那样的问题,在汽车用IPM型电动机用的R-Fe-B系永久磁铁的表面处理方法中,除了耐蚀性(指不容易产生伤痕)外,还要求耐磨性(指不容易磨损)和耐冲击性(指不容易产生裂纹和缺口)。
然而,当为了确保耐磨性而提高在磁铁的表面形成的膜的硬度时,膜的耐冲击性朝劣化的方向发展,容易在膜产生裂纹和缺口,另一方面,当为了确保耐冲击性而使膜具有柔性时,膜的耐磨性朝劣化的方向发展,膜变得容易产生伤痕,容易磨损,存在相反的问题。因此,作为IPM型电动机用的磁铁的表面处理方法,在直接适用记载于上述专利文献1~6等的已有表面处理方法的场合,不能解决这样的问题。在专利文献1~5中,虽然公开了多种多层膜,但其目的在于提高耐蚀性,没有从对在用于汽车用IPM型电动机的磁铁那样的特殊环境中使用的磁铁同时地赋予耐磨性和耐冲击性这样的观点进行记载、启示。另外,仅是如专利文献6那样在最表层形成硬质膜,不能确保耐磨性和耐冲击性。
因此,本发明的目的在于提供一种兼有优良的耐蚀性、耐磨性及耐冲击性的、用于汽车用IPM型电动机的永久磁铁的制造方法。
本发明者通过对上述问题进行认真研究后发现,在R-Fe-B系永久磁铁的表面,隔着作为底层的预定膜厚的Ni电镀膜层叠具有缓冲材料的功能的、预定膜厚的Cu或Sn电镀膜,在最表层形成预定硬度和膜厚的Ni-P合金非电解镀膜,从而可解决上述问题。
根据上述发现获得的本发明的、插入到汽车用IPM型电动机的转子磁轭内的槽中使用的永久磁铁的制造方法如技术方案1所述的那样,具有这样的特征:在R-Fe-B系永久磁铁的表面由电镀法形成作为第1层的膜厚3~15μm的Ni膜,然后,由电镀法形成作为第2层的膜厚3~15μm的Cu或Sn膜,由非电解镀法形成作为第3层的膜厚4~7μm的Ni-P合金膜,在设第2层的Cu或Sn电镀膜的维氏硬度为1时,第3层的Ni-P合金膜具有2.5~4.5的维氏硬度,第3层的膜的维氏硬度为400~700。
另外,技术方案2所述的制造方法在技术方案1所述的制造方法的基础上,还具有这样的特征:使用pH被调整为6.0~8.0的Ni镀液形成第1层的膜。
另外,技术方案3所述的制造方法在技术方案1或2所述的制造方法的基础上,还具有这样的特征:第3层的膜含有5~12wt%的P。
另外,技术方案4所述的制造方法在技术方案1或2所述的制造方法的基础上,还具有这样的特征:第1层~第3层的膜的合计膜厚为15~25μm。
另外,本发明的插入到汽车用IPM型电动机的转子磁轭内的槽中使用的永久磁铁如技术方案6所述的那样,具有这样的特征:在R-Fe-B系永久磁铁的表面,隔着膜厚3~15μm的Ni电镀膜具有膜厚3~5μm的Cu或Sn电镀膜,另外,还具有膜厚4~7μm的Ni-P合金非电解镀膜,在设上述Cu或Sn电镀膜的维氏硬度为1时,Ni-P合金非电解镀膜具有2.5~4.5的维氏硬度,第3层的膜的维氏硬度为400~700。
按照本发明,在R-Fe-B系永久磁铁的表面形成具有缓冲材料的功能而且膜硬度非常高、滑动性优良的多层膜,所以,即使插入到汽车用IPM型电动机的转子磁轭内的槽中使用,也可有效地抑制膜产生伤痕或磨损,抑制在膜上产生裂纹和缺口,使磁铁具有优良的耐蚀性、耐磨性及耐冲击性。
附图说明
图1为用于IPM型电动机的转子的一例的透视图。
符号说明
1转子
2磁轭
3槽
4磁铁
具体实施方式
本发明的插入到汽车用IPM型电动机的转子磁轭内的槽中使用的永久磁铁的制造方法的特征在于:在R-Fe-B系永久磁铁的表面由电镀法形成作为第1层的膜厚3~15μm的Ni膜,然后,由电镀法形成作为第2层的膜厚3~15μm的Cu或Sn膜,由非电解镀法形成作为第3层的膜厚4~7μm的Ni-P合金膜,在设第2层的Cu或Sn电镀膜的维氏硬度为1时,第3层的Ni-P合金膜具有2.5~4.5的维氏硬度。
第1层的Ni电镀膜可使用公知的瓦特(ワツト)液、磺胺(スルフアミン)液等形成,但特别是从R-Fe-B系永久磁铁的紧密接触性、极力减少磁铁成分从磁铁表面的溶出等观点出发,例如最好使用日本专利2908637号公报记载的pH调整为6~8的Ni电镀液(中性Ni电镀液)。作为构成中性Ni电镀液的电镀液组成,例如可列举出这样的组成,即,含硫酸镍70~200g/L,柠檬酸铵和/或柠檬酸钠25~150g/L,硼酸10~30g/L,氯化铵和/或硫酸钠5~50g/L,应力抑制剂3~15g/L,将pH调整为6.0~8.0。其液温为40~60℃即可。
将第1层的Ni电镀膜的膜厚规定为3~15μm的原因在于,如不到3μm,则有可能不能获得提高与作为底层的上层电镀膜的紧密接触性的效果,如超过15μm,则存在导致成本增大、磁铁有效体积减少的危险。
第2层的Cu或Sn电镀膜具有缓冲材料的功能。Cu电镀膜例如使用公知的焦磷酸铜电镀液等形成。作为构成焦磷酸铜电镀液的组成,例如可列举出这样的组成,即,含焦磷酸铜20~105g/L,焦磷酸钾100~370g/L,氨水2~5mL/L,光泽剂适量,将pH调整为8.0~9.0。其液温为50~60℃即可。Sn电镀膜例如使用公知的酸性锡电镀液等形成即可。作为构成酸性锡电镀液的电镀液组成,例如可列举出这样的组成,即,含硫酸亚锡30~50g/L,硫酸80~200g/L,光泽剂适量,将pH调整为0.1~2.0。其液温为10~30℃即可。
规定第2层的Cu或Sn电镀膜的膜厚为3~15μm的原因在于,当不到3μm时,存在不能获得作为缓冲材料的功能的危险,当超过15μm时,存在导致成本增大、磁铁有效体积减少的危险。第2层的Cu或Sn电镀膜的膜厚最好为7~15μm。
第3层的Ni-P合金非电解镀膜例如使用以Ni离子和次磷酸盐为主成分的公知酸性液或碱性液形成即可。作为适当的电镀液组成,例如可列举出这样的组成,即,含硫酸镍15~40g/L,次磷酸钠20~40g/L,除此以外,含适量的稳定剂、配位剂等,将pH调整为4.0~5.0。其液温为80~95℃即可。
在设第2层的Cu或Sn电镀膜的维氏硬度为1时,规定第3层的Ni-P合金非电解镀膜具有2.5~4.5的维氏硬度,其原因在于,如不到2.5,则硬度过低,当将磁铁插入到槽中时,存在膜受到损伤、对磁铁的耐蚀性产生不良影响的危险,并存在膜超过必要地磨损的危险,如超过4.5,则硬度过高,存在不能忽视的应力施加于第2层的Cu或Sn电镀膜间、在膜产生裂纹和缺口的危险。在设第2层的Cu或Sn电镀膜的维氏硬度为1时,第3层的Ni-P合金非电解镀膜的优选维氏硬度为3.0~4.0。在使用上述那样的电镀液形成第2层的Cu或Sn电镀膜的场合,可使其维氏硬度为100~200。在该场合,最好第3层的Ni-P合金非电解镀膜的维氏硬度为400~700。这样的维氏硬度的Ni-P合金非电解镀膜可通过在膜中含有5~12wt%的P而获得。膜中的P含量可通过调整电镀液中的P浓度而进行调整。
规定第3层的Ni-P合金非电解镀膜的膜厚为4~7μm的原因在于,不到4μm时,存在不能获得作为第3层的膜的功能,当超过7μm时,存在导致成本增大、磁铁有效体积减少的危险。第3层的Ni-P合金非电解镀膜的优选膜厚为5~7μm。
第1层~第3层的膜的优选膜厚合计为15~25μm。
实施例
根据以下的实施例和比较例更详细地说明本发明,但本发明不限于此。以下的实施例和比较例例如记载于美国专利4770723号公报、美国专利4792368号公报,使用14Nd-79Fe-6B-1Co组成(at%)的纵40.45mm×横18.5mm×高4.5mm尺寸的板状烧结磁铁(以下称磁铁体试验片)进行,该板状烧结磁铁通过在将公知的铸锭粉碎并进行微粉碎后进行成形、烧结、热处理、表面加工而获得。
A.试样1~5的制造方法(实施例)
(工序1)
将200个磁铁体试验片和表观容量1.5L、直径6.0mm的钢球收容到耐热塑料制的圆筒夹具中,该圆筒夹具具有一边为450mm的正六边形的截面形状,长160mm。然后,将该圆筒夹具浸渍到含硝酸钠0.2mol/L和硫酸1.5vol%的液温30℃的酸洗液中,按4rpm的转速回转,进行4分钟酸洗,然后立即用纯水(25℃)进行30秒钟超声波清洗,再迅速地转移到在磁铁体试验片的表面形成第1层的镍电镀膜的成膜工序。该成膜工序使用液温50℃的电镀液进行,一边在4rpm的转速下使圆筒回转,一边按电流密度0.25A/dm2进行,该电镀液含硫酸镍·6水合物130g/L、柠檬酸铵30g/L、硼酸15g/L、氯化铵8g/L、邻磺酰苯酰亚胺8g/L,用氨水将pH调整为6.5。成膜后,将圆筒浸渍到纯水(25℃)中,对在表面形成了Ni电镀膜的磁铁体试验片充分地进行水洗。
(工序2)
然后,使用液温50℃的电镀液,一边在4rpm的转速下使圆筒回转,一边按电流密度0.23A/dm2在第1层的Ni电镀膜的表面形成第2层的Cu电镀膜,该电镀液含焦磷酸铜25g/L、焦磷酸钾110g/L、氨水3mL/L、以及适量光泽剂,用氨水将pH调整为8.5。成膜后,将圆筒浸渍到纯水(25℃)中,对在表面形成多层电镀膜的磁铁体试验片充分地进行水洗。
(工序3)
然后,作为Ni-P合金非电解电镀液,含硫酸镍·6水合物27g/L、次磷酸钠30g/L,除此以外,含适量的稳定剂、配位剂等,用氨水或硫酸将pH调整为4.0,使用液温90℃的该电镀液,一边在4rpm的转速下使圆筒回转,一边进行处理,在第2层的Cu电镀膜的表面形成第3层的Ni-P合金非电解镀膜。此后,将圆筒浸渍到纯水(25℃)中,对在表面形成3层构造的多层膜的磁铁体试验片充分地进行水洗。然后,从圆筒夹具中将其取出,再用纯水(25℃)进行3分钟的超声波清洗,接着将其收容于离心干燥机中,在温度70℃、转速500rpm的条件进行6分钟离心干燥,获得成品(试样1~5)。
B.试样6的制造方法(比较例)
由与上述A的工序1和工序2同样的工序获得在表面形成了第1层的Ni电镀膜和第2层的Cu电镀膜的磁铁体试验片,作为Ni-P合金非电解电镀液,含硫酸镍·6水合物20g/L、次磷酸钠15g/L,除此以外,含适量的稳定剂、配位剂,用氨水将pH调整为6.0,使用液温90℃的该电镀液,一边在4rpm的转速下使圆筒回转,一边对该磁铁体试验片进行处理,在第2层的Cu电镀膜的表面形成第3层的Ni-P合金非电解镀膜。此后,将圆筒浸渍到纯水(25℃)中,对在表面形成3层构造的多层膜的磁铁体试验片充分地进行水洗。然后,从圆筒夹具中将其取出,再用纯水(25℃)进行3分钟的超声波清洗,接着将其收容于离心干燥机中,在温度70℃、转速500rpm的条件进行6分钟离心干燥,获得成品(试样6)。
C.试样7的制造方法(比较例)
由与上述A的工序1和工序2同样的工序获得在表面形成了第1层的Ni电镀膜和第2层的Cu电镀膜的磁铁体试验片,作为Ni电镀液,含硫酸镍·6水合物240g/L、氯化铵·6水合物45g/L、硼酸30g/L、2-丁炔-1,4-二醇0.2g/L、邻磺酰苯酰亚胺1g/L,用碳酸镍将pH调整为4.2,使用液温50℃的该电镀液,一边在5rpm的转速下使圆筒回转,一边对该磁铁体试验片按电流密度0.2A/dm2在第2层的Cu电镀膜的表面形成第3层的Ni电镀膜。此后,将圆筒浸渍到纯水(25℃)中,对在表面形成3层构造的多层膜的磁铁体试验片充分地进行水洗。然后,从圆筒夹具中将其取出,再用纯水(25℃)进行3分钟的超声波清洗,接着将其收容于离心干燥机中,在温度70℃、转速500rpm的条件进行6分钟离心干燥,获得成品(试样7)。
表1示出由上述A~C制造的试样1~7的膜的膜厚。另外,表2示出第2层的Cu电镀膜与第3层膜的维氏硬度(Hv)两者的比例(设第2层的Cu电镀膜的维氏硬度为1的场合的第3层膜的维氏硬度)。维氏硬度的测定根据显微维氏硬度计测定法进行,即,在膜的表面按压头5g、时间10秒的条件形成压痕,测定该压痕的大小,换算菱形的对角线的长度而计算出。
[表1]
*膜厚通过调整镀覆时间而多样化
[表2]
 第2层Cu膜的Hv   第3层膜的Hv   Hv比例
  试样1   156   543   3.5
  试样2   163   545   3.3
  试样3   167   576   3.5
  试样4   172   580   3.4
  试样5   175   583   3.3
  试样6   163   781   4.8
  试样7   162   352   2.2
*第2层Cu膜的Hv在结束试样制造的工序2的时刻测定
评价1:
相对试样1、3、4、6、7进行电动机最大转速6000rpm以上的电动机加减速耐久试验。结果,试样1的Ni-P合金非电解镀膜约磨损2μm。试样3的Ni-P合金非电解镀膜磨损约5μm。试样4的Ni-P合金非电解镀膜全部磨损,Cu电镀膜磨损约3μm(合计磨损量为约8μm)。虽然试样6的Ni-P合金非电解镀膜基本上未磨损,但在Cu电镀膜与Ni-P合金非电解镀膜间发生裂纹。试样7在50圈(サイクル)时Ni电镀膜的表面发生伤痕,不能进一步继续试验。
根据以上结果可以得知,成为最表层的第3层膜的维氏硬度不论是过高还是过低,都不能赋予磁铁优良的耐蚀性、耐磨性及耐冲击性。
评价2:
在试样2、3、4、5的表面的任意2个部位进行施加108~109次1×10-4~3×10-4J的能量的严酷冲击疲劳试验。结果,在所有试样的磁铁体试验片都未发生裂纹和缺口。试样2的Ni-P合金非电解镀膜全部磨损,Cu电镀膜磨损约8μm(合计磨损约13μm)。试样3的Ni-P合金非电解镀膜和Cu电镀膜全部磨损,Ni电镀膜约磨损3μm(合计磨损量约15μm)。试样4和试样5的全部膜都磨损,磁铁体试验片也磨损其一部分(合计磨损量约27μm )。
根据以上结果可知,在第2层的Cu电镀膜的膜厚为7μm以上的场合,其磨损量与5μm的场合相比,要少于膜厚的差以上。可以说,通过控制第3层的Ni-P合金非电解镀膜的下层膜的膜厚可显著提高耐磨性,具有从此前的发现预想不到的效果。
评价3:耐蚀性试验
对试样1~7全部进行在50℃×95%恒温恒湿槽内放置72小时的耐蚀性试验后得知,在所有试样上都未生锈,具有优良的耐蚀性。
产业上利用的可能性
本发明在可提供兼有优良的耐蚀性、耐磨性及耐冲击性的用于汽车IPM型电动机的永久磁铁的制造方法这一点具有产业上的利用可能性。

Claims (5)

1.一种永久磁铁的制造方法,该永久磁铁插入到汽车用IPM型电动机的转子磁轭内的槽中使用,其特征在于:在R-Fe-B系永久磁铁的表面由电镀法形成作为第1层的膜厚3~15μm的Ni膜,然后,由电镀法形成作为第2层的膜厚3~15μm的Cu或Sn膜,由非电解镀法形成作为第3层的膜厚4~7μm的Ni-P合金膜,当设第2层的Cu或Sn电镀膜的维氏硬度为1时,第3层的Ni-P合金膜具有2.5~4.5的维氏硬度,
第3层的膜的维氏硬度为400~700。
2.根据权利要求1所述的永久磁铁的制造方法,其特征在于:使用pH被调整为6.0~8.0的Ni电镀液形成第1层的膜。
3.根据权利要求1或2所述的永久磁铁的制造方法,其特征在于:第3层的膜含有5~12wt%的P。
4.根据权利要求1或2所述的永久磁铁的制造方法,其特征在于:第1层~第3层的膜的合计膜厚为15~25μm。
5.一种永久磁铁,插入到汽车用IPM型电动机的转子磁轭内的槽中使用,其特征在于:在R-Fe-B系永久磁铁的表面,隔着膜厚3~15μm的Ni电镀膜具有膜厚3~15μm的Cu或Sn电镀膜,进而还具有膜厚4~7μm的Ni-P合金非电解镀膜,当设上述Cu或Sn电镀膜的维氏硬度为1时,Ni-P合金非电解镀膜具有2.5~4.5的维氏硬度,
第3层的膜的维氏硬度为400~700。
CN200580046295A 2004-11-25 2005-11-21 在汽车用ipm型电动机中使用的永久磁铁的制造方法 Expired - Fee Related CN100596000C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004341118A JP2006158012A (ja) 2004-11-25 2004-11-25 自動車用ipm型モータに使用される永久磁石の製造方法
JP341118/2004 2004-11-25
PCT/JP2005/021357 WO2006057216A1 (ja) 2004-11-25 2005-11-21 自動車用ipm型モータに使用される永久磁石の製造方法

Publications (2)

Publication Number Publication Date
CN101099285A CN101099285A (zh) 2008-01-02
CN100596000C true CN100596000C (zh) 2010-03-24

Family

ID=36497953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580046295A Expired - Fee Related CN100596000C (zh) 2004-11-25 2005-11-21 在汽车用ipm型电动机中使用的永久磁铁的制造方法

Country Status (5)

Country Link
US (1) US20080118747A1 (zh)
EP (1) EP1816730A1 (zh)
JP (1) JP2006158012A (zh)
CN (1) CN100596000C (zh)
WO (1) WO2006057216A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785460B2 (en) * 2004-08-10 2010-08-31 Hitachi Metals, Ltd. Method for producing rare earth metal-based permanent magnet having copper plating film on the surface thereof
JP2008010726A (ja) * 2006-06-30 2008-01-17 Daido Electronics Co Ltd 希土類ボンド磁石
DE102007005770A1 (de) * 2006-12-29 2008-07-03 Robert Bosch Gmbh Motorische Antriebseinheit für eine Scheibenwischvorrichtung in einem Fahrzeug
JP5284811B2 (ja) * 2009-01-30 2013-09-11 Tdk株式会社 希土類永久磁石
JP4978665B2 (ja) * 2009-06-29 2012-07-18 Tdk株式会社 金属磁石及びそれを用いたモータ
JP5071509B2 (ja) * 2010-03-31 2012-11-14 Tdk株式会社 希土類永久磁石及びそれを用いたモータ
KR101152728B1 (ko) * 2010-07-23 2012-06-15 박계정 전기자동차용 전기모터
KR101244574B1 (ko) * 2011-12-29 2013-03-25 주식회사 효성 자속집중형 모터의 로터 구조
DE102012202687A1 (de) * 2012-02-22 2013-08-22 Robert Bosch Gmbh Korrosionsschutzüberzug für Nd2Fe14B-Magnete
CN104213162B (zh) * 2013-06-04 2018-08-21 天津三环乐喜新材料有限公司 一种汽车用永磁材料电镀锌合金的表面处理方法
CN104630852B (zh) * 2013-11-12 2018-12-18 天津三环乐喜新材料有限公司 具有多层复合电镀层的稀土永磁体及其复合电镀的方法
CN104900359B (zh) * 2015-05-07 2017-09-12 安泰科技股份有限公司 复合靶气相沉淀制备晶界扩散稀土永磁材料的方法
DE102016208692A1 (de) 2016-05-20 2017-11-23 Zf Friedrichshafen Ag Rotor einer elektrischen Maschine mit einem Blechpaket
EP3407468A1 (de) * 2017-05-22 2018-11-28 Ovalo GmbH Rotor für einen elektromotor und herstellungsverfahren eines solchen rotors
US10763715B2 (en) 2017-12-27 2020-09-01 Rolls Royce North American Technologies, Inc. Nano-crystalline coating for magnet retention in a rotor assembly
US20220186394A1 (en) * 2020-12-11 2022-06-16 Honeywell International Inc. Electroplate laminated structure and methods of fabricating the same
CN112725751B (zh) * 2020-12-16 2022-03-25 太原理工大学 一种超薄钕铁硼永磁体表面防护涂层的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057631C (zh) * 1991-11-27 2000-10-18 日立金属株式会社 改善了耐蚀性的稀土元素/过渡金属系永久磁体及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718549A (en) * 1971-06-14 1973-02-27 Kewanee Oil Co Alkaline nickel plating solutions
JP3135174B2 (ja) * 1991-11-27 2001-02-13 日立金属株式会社 耐食性を改善したr−tm−b系永久磁石及びその製造方法
JP3377605B2 (ja) * 1994-06-22 2003-02-17 日本ニュークローム株式会社 耐食性磁性合金
EP1065777B1 (en) * 1999-06-30 2004-10-13 Shin-Etsu Chemical Co., Ltd. Rare earth-based sintered magnet and permanent magnet synchronous motor therewith
JP3796567B2 (ja) * 2000-12-27 2006-07-12 信越化学工業株式会社 R−Fe−B系永久磁石及びその製造方法
JP2004039917A (ja) * 2002-07-04 2004-02-05 Tdk Corp 永久磁石の製造方法及び永久磁石

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057631C (zh) * 1991-11-27 2000-10-18 日立金属株式会社 改善了耐蚀性的稀土元素/过渡金属系永久磁体及其制造方法

Also Published As

Publication number Publication date
EP1816730A1 (en) 2007-08-08
WO2006057216A1 (ja) 2006-06-01
US20080118747A1 (en) 2008-05-22
CN101099285A (zh) 2008-01-02
JP2006158012A (ja) 2006-06-15

Similar Documents

Publication Publication Date Title
CN100596000C (zh) 在汽车用ipm型电动机中使用的永久磁铁的制造方法
CN104213162B (zh) 一种汽车用永磁材料电镀锌合金的表面处理方法
CN112899684B (zh) 钕铁硼磁体电镀铜镍工艺
CN109256256B (zh) 一种表面电镀锌镍合金的钕铁硼磁体及其制备工艺
CN102115899B (zh) 用于锡镍合金镀液和采用该镀液对钕铁硼永磁材料进行电镀的方法
CN104213164A (zh) 一种钕铁硼永磁体表面保护方法
CN101597780A (zh) 一种制备电池外壳用的镍-银合金钢带的方法
CN101794657A (zh) 稀土类永磁体
JP4506965B2 (ja) R−t−m−b系希土類永久磁石及びその製造方法
JP4983619B2 (ja) 永久磁石
CN111101173A (zh) 钕铁硼永磁材料多层镀镍及除氢工艺
CN104630852B (zh) 具有多层复合电镀层的稀土永磁体及其复合电镀的方法
WO2004076709A1 (ja) 鉄系部品およびその製造方法
CN215440725U (zh) 一种烧结钕铁硼磁体无磁闭路效应的电镀层结构
CN211771558U (zh) 一种钕铁硼复合镀层
CN113430607A (zh) 钕磁铁的无氟电镀工艺
JPH07161516A (ja) ボンド磁石およびその製造方法
JP2004039917A (ja) 永久磁石の製造方法及び永久磁石
JP3614754B2 (ja) 表面処理方法および磁石の製造方法
JPS58204196A (ja) 加工部耐食性に優れた電気亜鉛合金めつき鋼板の製造法
JP2968605B2 (ja) 永久磁石の製造方法
Olsen Plating of magnesium high pressure die castings
CN115948780A (zh) 保证钕铁硼低热减磁率条件下实现镜面光滑的电镀工艺
JP4180049B2 (ja) R−t−b系永久磁石
CN105506694A (zh) 钕铁硼电镀层的防护工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080815

Address after: Tokyo, Japan

Applicant after: Honda Technology & Research Industrial Corporation

Co-applicant after: Hitachi Metals Co., Ltd.

Address before: Tokyo, Japan

Applicant before: Honda Technology & Research Industrial Corporation

Co-applicant before: Neomax Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100324

Termination date: 20151121

EXPY Termination of patent right or utility model