CN100587978C - 太阳能电池及其制造方法 - Google Patents

太阳能电池及其制造方法 Download PDF

Info

Publication number
CN100587978C
CN100587978C CN200610156357A CN200610156357A CN100587978C CN 100587978 C CN100587978 C CN 100587978C CN 200610156357 A CN200610156357 A CN 200610156357A CN 200610156357 A CN200610156357 A CN 200610156357A CN 100587978 C CN100587978 C CN 100587978C
Authority
CN
China
Prior art keywords
electrode
insulating barrier
chemical compound
semiconductor substrate
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200610156357A
Other languages
English (en)
Other versions
CN1992355A (zh
Inventor
朴相昱
金大园
赵银喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1992355A publication Critical patent/CN1992355A/zh
Application granted granted Critical
Publication of CN100587978C publication Critical patent/CN100587978C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种太阳能电池的制造方法,该方法包括:在半导体衬底的第一表面上形成发射体层;在所述发射体层上形成绝缘层;在所述绝缘层上以特定图样形成化学化合物,该化学化合物包含与所述发射体层具有相同传导类型的掺杂剂;通过去除其上形成有化学化合物的绝缘层并扩散所述掺杂剂,形成高浓度发射体部分;去除所述化学化合物;以及形成被电连接到所述高浓度发射体部分的第一电极。

Description

太阳能电池及其制造方法
技术领域
本发明涉及太阳能电池及其制造方法,更具体地说,涉及一种能够通过简单工艺形成的太阳能电池及其制造方法。
背景技术
太阳能电池可由太阳能产生电能。太阳能电池对环境是有利的,而且其能源也是无尽的。此外,太阳能电池具有很长的使用寿命。太阳能电池的示例包括硅太阳能电池和染料敏化太阳能电池。
硅太阳能电池包括:半导体衬底和发射体层、绝缘层和前电极以及后电极,其中半导体衬底和发射体层构成具有不同传导类型的p-n接触区,绝缘层和前电极形成在该发射体层上,而后电极形成在该半导体衬底上。
发射体层是通过将特定的掺杂剂掺杂到半导体衬底的第一表面上而形成的。考虑到前电极与发射体层之间的接触电阻,这种掺杂可利用高浓度的掺杂剂来实现。
不过,为了使太阳能电池表面发生的复合最小化,这种掺杂可利用低浓度的掺杂剂来实现。也就是说,当发射体层形成为均一的掺杂浓度时,不能完全满足太阳能电池的必要特性。
考虑到这些,硅太阳能电池已经被设计为形成高浓度发射体部分,而且其与发射体层处于形成前电极的区域。为了形成高浓度发射体部分,采用了一种方法,其中在通过光刻和蚀刻处理对绝缘层进行图样化之后,再额外施加掺杂剂。不过,由于该方法需要昂贵的设备和材料来对绝缘层进行图样化,以及需要额外施加掺杂剂,因此导致复杂的制造过程。
发明内容
本发明提供一种太阳能电池及其制造方法,其中太阳能电池具有高浓度发射体部分,并能够通过简单和廉价的工艺来进行制造。
根据本发明的一方面,提供一种制造太阳能电池的方法,其包括:在半导体衬底的第一表面上形成发射体层;在所述发射体层上形成绝缘层;在所述绝缘层上以特定图样(pattern)施加化学化合物,该化学化合物包含与所述发射体层具有相同传导类型的掺杂剂;通过去除对应于所述化学化合物位置的所述绝缘层的部分并将所述掺杂剂朝向所述发射体层扩散,形成高浓度发射体部分;去除所述化学化合物;以及形成被电连接到所述高浓度发射体部分的第一电极。
在本发明的上述方面中,所述掺杂剂可包含磷(P),而所述化学化合物可包含五氧化二磷(P2O5)和/或三氯氧磷(POCl3)。
所述化学化合物可通过使用一方法而施加,所述方法选自由丝网印刷法、配制法(dispensing)、无电镀法和电镀法所组成的组中。
所述高浓度发射体部分可通过执行用于扩散所述掺杂剂的热退火处理而形成。
所述热退火处理可在约850℃-950℃的温度范围内执行。
所述化学化合物的所述图样可对应于该第一电极的图样。
该方法可进一步包括步骤:在所述半导体衬底的第二表面上形成第二电极,使得该第二电极被电连接到所述半导体衬底。
根据本发明的另一方面,提供一种太阳能电池,其包括:半导体衬底;形成在所述半导体衬底上的发射体层;形成在所述发射体层上并被电连接到所述发射体层的第一电极;和形成在所述发射体层上的未形成该第一电极的一或多个区域中的绝缘层。所述发射体层包括一对应于第一电极位置的高浓度发射体部分。所述绝缘层包括一与第一电极接触的基本不平的表面。
附图说明
通过参照附图来详细描述本发明的示例性实施例,本发明的上述及其它特征和优点将变得更明显,在附图中:
图1A-图1H为示出根据本发明实施例的太阳能电池的制造过程的剖视图。
具体实施方式
在下文中,将参照附图对太阳能电池及其制造方法的实施例进行描述。
图1A-图1H为示出根据本发明实施例的太阳能电池的制造过程的剖视图。
首先参照图1A,其中制备了由硅形成的p型半导体衬底10。不过,本发明并不仅限于此,因而也可制备n型半导体衬底。此外,半导体衬底可以由除硅以外的各种半导体材料形成。
为改进太阳能电池的特性,可以执行预处理,其中通过在半导体衬底10被蚀刻后使用洗涤溶液,通过利用碱性水溶液和/或混合酸溶液,来去除杂质。半导体衬底10中的损坏部分通过蚀刻被去除,因而半导体衬底10的表面变得不平。这样,有可能减少太阳能的损失。
随后,如图1B所示,掺杂剂被掺杂在半导体衬底10的前表面上,从而形成n型发射体层12。虽然在本实施例的示例中使用磷(P)作为掺杂剂以形成n型发射体层12,不过也可以使用除磷以外的各种材料作为掺杂剂。本发明并不仅限于此,因此,可使用任何材料,只要其使得发射体层12的传导类型与半导体衬底10的传导类型相反即可。这样,当使用n型半导体衬底时,可形成p型发射体层。
掺杂方法可以有多种,例如,可以为高温扩散方法、喷射方法、丝网印刷方法和/或离子浴方法。
掺杂之后,可执行通过使用氟酸水溶液来去除不必要形成的磷硅玻璃(PSG)的处理。
随后,如图1C所示,绝缘层14形成在发射体层12上。绝缘层14可为氮化硅层、氧化硅层或氧化钛层,其可通过使用各种方法,例如,等离子强化化学气相沉积法,电子束沉积法,丝网印刷法或喷射法而形成。
绝缘层14不仅用于减少入射进来的太阳光线的反射,还用于减少或阻止可能发生在半导体衬底10的表面上的电子损失。也就是说,由于悬空键(dangling bonding),可能在半导体衬底10的表面上发生电子损失,而能够通过形成绝缘层14来对此进行减少或阻止。
随后,如图1D所示,包含磷(P)的化学化合物16通过使用丝网印刷法而被施加在绝缘层14上。不过,本发明的实施例不限于此。也就是说,化学化合物16可以通过利用丝网印刷法、配制法、无电镀法或电镀法之类的各种方法,而被施加到绝缘层14上。化学化合物16以与形成在发射体层12上的第一电极(在图1H中用附图标记22表示)相同的图样而形成,使得高浓度发射体部分(在图1E中用附图标记12a表示)位于第一电极22的下方。
在化学化合物16中,磷以五氧化二磷(P2O5)和/或三氯氧磷(POCl3)的形式存在。虽然使用磷作为掺杂剂,但本发明并不仅限于此。也就是说,可使用任何材料作为掺杂剂,只要化学化合物16包括的掺杂剂具有与发射体层12相同的传导类型。绝缘层14使用包括通过热退火处理的掺杂剂的化合物来进行刻蚀。
随后,如图1E所示,绝缘层14被刻蚀以形成绝缘层14a,从而通过在半导体衬底10上执行热退火处理来形成高浓度发射体部分12a,其中半导体衬底10上形成有发射体层12、绝缘层14和化学化合物16。也就是说,在热退火处理过程中,包含在化学化合物16中的五氧化二磷(P2O5)和/或三氯氧磷(POCl3)去除位于化学化合物16下方的绝缘层14的部分,而包含在化学化合物16中的磷通过绝缘层14的被去除的部分而朝向半导体衬底10被扩散,从而在半导体衬底10上形成高浓度发射体部分12a。
在这种情况下,由于绝缘层14的部分通过已经进行丝网印刷的化学化合物16而被去除,因此,如图1E中的放大电路所示,根据丝网的图样,在绝缘层14a上形成了不平部分或表面14b。
如上所述,在本实施例中,当对绝缘层14进行图样化时,不需要光刻处理或掩膜蚀刻处理。这样,不需要昂贵的设备和/或材料,而其结果是,能够明显减少制造成本。此外,由于能够形成高浓度发射体部分12a而不需另外的掺杂处理,因此能够简化制造工艺。
热退火处理可在850℃-950℃的温度范围内执行。在超出950℃的高温条件下,半导体衬底10更有可能在热退火处理中被损坏。而在低于850℃的低温条件下,扩散的进行可能不够充分。
在热退火处理中,红外灯、烧炉等可用作热源。例如,当使用红外灯时,热退火处理可执行10秒至10分钟。
随后,如图1F所示,使用超纯水洗涤半导体衬底10,从而去除化学化合物16。在这种情况下,考虑到组成化学化合物16的材料,可使用表面活性剂。
然后,如图1G所示,铝料被丝网印刷在半导体衬底10的后表面上,然后执行热退火处理。其结果是,形成了被电连接到半导体衬底10的第二电极18。不过,本发明并不仅限于此。因此,第二电极18可由各种材料形成,而这也包括在本发明的范围之内。
铝通过热退火处理在半导体衬底10的后表面被扩散到一预定的厚度,从而形成p+型的后电场层20。后电场层20形成电场,以便阻止光激发的电子移动到半导体层10的后表面。
随后,如图1H所示,第一电极22形成在半导体衬底10的前表面上,使得第一电极22对应于去除了化学化合物16的区域,也就是,高浓度发射体部分12a的相邻区域。第一电极22可通过使用各种方法形成,例如使用无电镀法、电镀法、喷墨法或配制法形成。例如,第一电极22可由银(Ag)形成。
在本实施例的太阳能电池中,由于第一电极22形成在高浓度发射体部分12a,因此能够有效减小接触电阻。另外,由于浓度相对较低的发射体层12形成在未形成第一电极22的区域,因此有可能减小电荷损失。
当光入射到根据上述制造方法所制造的太阳能电池时,通过光电效应而形成的正空穴-电子对被分开,因而电子被积聚在n型发射体层12上,而正空穴被积聚在p型半导体衬底10上,从而产生电势差。该电势差允许电流流过第一电极22、第二电极18和外部电路(未示出)。如上所述,半导体衬底10的传导类型以及发射体层12和高浓度发射体部分12a的传导类型,能够以各种方式被修改,而这也包括在本发明的范围之内。
根据本发明的太阳能电池的制造方法,通过使用能够蚀刻绝缘层的化学化合物,能够以低成本对绝缘层进行图样化。该化学化合物包括与发射体层具有相同传导类型的掺杂剂,从而能够形成高浓度发射体部分,而同时将绝缘层图样化而无需另外的掺杂处理。这样,使用简单的工艺,就能够制造具有高浓度发射体部分的太阳能电池。
此外,由于第一电极形成在高浓度发射体部分上,因此,能够减小接触电阻。另外,由于浓度相对较低的发射体层形成在未形成第一电极的区域,因此,有可能减少电荷损失。因此,能够改进太阳能电池的各种特性。
虽然已经对本发明的示例性实施例和修改的示例进行了描述,但本发明并不仅限于这些实施例和示例,而是在不偏离本发明的所附权利要求书、详细的说明书以及附图的范围下,可以各种不同的形式进行修改。因此,实质上这种修改也属于本发明的范围。

Claims (16)

1、一种太阳能电池的制造方法,包括:
在半导体衬底的第一表面上形成发射体层;
在所述发射体层上形成绝缘层;
在所述绝缘层上以特定图样施加化学化合物,该化学化合物包含与所述发射体层具有相同传导类型的掺杂剂;
通过热退火处理用包含掺杂剂的化合物刻蚀所述绝缘层,以去除对应于所述化学化合物位置的所述绝缘层的部分,并将所述掺杂剂朝向所述发射体层扩散,从而形成高浓度发射体部分;
去除所述化学化合物;以及
形成被电连接到所述高浓度发射体部分的第一电极。
2、如权利要求1所述的方法,其中所述掺杂剂包含磷P。
3、如权利要求1所述的方法,其中所述化学化合物包含五氧化二磷P2O5和/或三氯氧磷POCl3
4、如权利要求1所述的方法,其中所述化学化合物通过使用一方法而施加,所述方法选自由丝网印刷法、配制法、无电镀法和电镀法所组成的组中。
5、如权利要求1所述的方法,其中所述化学化合物通过使用丝网印刷法而施加。
6、如权利要求1所述的方法,其中所述高浓度发射体部分通过执行用于扩散所述掺杂剂的热退火处理而形成。
7、如权利要求6所述的方法,其中所述热退火处理在850℃-950℃的温度范围内执行。
8、如权利要求7所述的方法,所述执行热退火处理的步骤包括:使用包括红外灯或烧炉的热源。
9、如权利要求1所述的方法,其中所述化学化合物的所述图样对应于该第一电极的图样。
10、如权利要求1所述的方法,进一步包括步骤:在所述半导体衬底的与所述第一表面相对的第二表面上形成第二电极,使得该第二电极被电连接到所述半导体衬底。
11、如权利要求10所述的方法,其中所述形成第二电极的步骤包括:在所述半导体衬底的第二表面上丝网印刷铝料。
12、如权利要求10所述的方法,其中所述形成第二电极的步骤进一步包括:在第二电极与所述半导体衬底之间形成后电场层。
13、如权利要求1所述的方法,其中所述发射体层通过使用一方法而形成,所述方法选自由高温扩散法、喷射法、丝网印刷法和离子浴法所组成的组中。
14、如权利要求1所述的方法,其中所述绝缘层包括氮化硅、氧化硅或氧化钛。
15、如权利要求1所述的方法,其中所述绝缘层通过使用一方法而形成,所述方法选自由等离子强化化学气相沉积法、电子束沉积法、丝网印刷法和喷射法所组成的组中。
16、如权利要求1所述的方法,其中第一电极在所述绝缘层的不平的表面与所述绝缘层接触。
CN200610156357A 2005-12-29 2006-12-29 太阳能电池及其制造方法 Active CN100587978C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050134211A KR101181820B1 (ko) 2005-12-29 2005-12-29 태양 전지의 제조 방법
KR1020050134211 2005-12-29

Publications (2)

Publication Number Publication Date
CN1992355A CN1992355A (zh) 2007-07-04
CN100587978C true CN100587978C (zh) 2010-02-03

Family

ID=37904021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610156357A Active CN100587978C (zh) 2005-12-29 2006-12-29 太阳能电池及其制造方法

Country Status (5)

Country Link
US (1) US7884375B2 (zh)
EP (1) EP1804299B8 (zh)
JP (1) JP2007184580A (zh)
KR (1) KR101181820B1 (zh)
CN (1) CN100587978C (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442629B2 (en) 2004-09-24 2008-10-28 President & Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US7057256B2 (en) 2001-05-25 2006-06-06 President & Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
KR101383940B1 (ko) * 2007-08-16 2014-04-10 엘지전자 주식회사 실리콘 태양전지 및 그 제조 방법
CN101373795A (zh) * 2007-08-20 2009-02-25 鸿富锦精密工业(深圳)有限公司 太阳能电池
KR100935322B1 (ko) * 2008-01-02 2010-01-06 삼성전기주식회사 고효율 태양전지 및 이의 제조방법
DE102008019402A1 (de) * 2008-04-14 2009-10-15 Gebr. Schmid Gmbh & Co. Verfahren zur selektiven Dotierung von Silizium sowie damit behandeltes Silizium-Substrat
KR100974221B1 (ko) 2008-04-17 2010-08-06 엘지전자 주식회사 레이저 어닐링을 이용한 태양전지의 선택적 에미터형성방법 및 이를 이용한 태양전지의 제조방법
US7964499B2 (en) * 2008-05-13 2011-06-21 Samsung Electronics Co., Ltd. Methods of forming semiconductor solar cells having front surface electrodes
EP2304803A1 (en) * 2008-06-11 2011-04-06 Solar Implant Technologies Inc. Solar cell fabrication using implantation
DE102008030693A1 (de) * 2008-07-01 2010-01-14 Institut Für Solarenergieforschung Gmbh Heterojunction-Solarzelle mit Absorber mit integriertem Dotierprofil
US8053867B2 (en) 2008-08-20 2011-11-08 Honeywell International Inc. Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants
US7951696B2 (en) * 2008-09-30 2011-05-31 Honeywell International Inc. Methods for simultaneously forming N-type and P-type doped regions using non-contact printing processes
KR100997669B1 (ko) 2008-11-04 2010-12-02 엘지전자 주식회사 스크린 인쇄법을 이용한 실리콘 태양전지 및 그 제조방법
US8518170B2 (en) 2008-12-29 2013-08-27 Honeywell International Inc. Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks
DE112010000774T5 (de) * 2009-01-16 2014-06-12 Newsouth Innovations Pty Limited Solarzellenverfahren und -strukturen
WO2010111107A2 (en) * 2009-03-26 2010-09-30 Bp Corporation North America Inc. Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions
US8749053B2 (en) 2009-06-23 2014-06-10 Intevac, Inc. Plasma grid implant system for use in solar cell fabrications
KR100952428B1 (ko) * 2009-07-10 2010-04-14 주식회사 순에너지 칼라 디자인 태양전지 제조방법
US8324089B2 (en) 2009-07-23 2012-12-04 Honeywell International Inc. Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US8614115B2 (en) * 2009-10-30 2013-12-24 International Business Machines Corporation Photovoltaic solar cell device manufacture
US8241945B2 (en) * 2010-02-08 2012-08-14 Suniva, Inc. Solar cells and methods of fabrication thereof
US8692198B2 (en) 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
US8524524B2 (en) * 2010-04-22 2013-09-03 General Electric Company Methods for forming back contact electrodes for cadmium telluride photovoltaic cells
EP2583312A2 (en) 2010-06-18 2013-04-24 Sionyx, Inc. High speed photosensitive devices and associated methods
CN102339884A (zh) * 2010-07-14 2012-02-01 太聚能源股份有限公司 具有空桥式接触结构的太阳能装置
US8889536B2 (en) * 2010-08-30 2014-11-18 Schott Solar Ag Method for forming a dopant profile
JP5379767B2 (ja) * 2010-09-02 2013-12-25 PVG Solutions株式会社 太陽電池セルおよびその製造方法
KR101037316B1 (ko) * 2010-09-30 2011-05-26 (유)에스엔티 태양전지의 선택적 에미터 형성장치
KR101247357B1 (ko) * 2011-05-19 2013-03-25 주식회사 디엠에스 태양전지 제조 방법
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
JP2014525091A (ja) 2011-07-13 2014-09-25 サイオニクス、インク. 生体撮像装置および関連方法
US8629294B2 (en) 2011-08-25 2014-01-14 Honeywell International Inc. Borate esters, boron-comprising dopants, and methods of fabricating boron-comprising dopants
US8975170B2 (en) 2011-10-24 2015-03-10 Honeywell International Inc. Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions
SG10201508582WA (en) 2011-11-08 2015-11-27 Intevac Inc Substrate processing system and method
CN103367124B (zh) * 2011-12-31 2016-01-13 英利能源(中国)有限公司 一种选择性发射极电池的制作方法
DE102012200559A1 (de) * 2012-01-16 2013-07-18 Deutsche Cell Gmbh Verfahren zur Herstellung eines Emitters einer Solarzelle und Solarzelle
KR20130096822A (ko) * 2012-02-23 2013-09-02 엘지전자 주식회사 태양 전지 및 그 제조 방법
US9064764B2 (en) 2012-03-22 2015-06-23 Sionyx, Inc. Pixel isolation elements, devices, and associated methods
MY178951A (en) 2012-12-19 2020-10-23 Intevac Inc Grid for plasma ion implant
JP6466346B2 (ja) 2013-02-15 2019-02-06 サイオニクス、エルエルシー アンチブルーミング特性を有するハイダイナミックレンジcmos画像センサおよび関連づけられた方法
US9939251B2 (en) 2013-03-15 2018-04-10 Sionyx, Llc Three dimensional imaging utilizing stacked imager devices and associated methods
WO2014209421A1 (en) 2013-06-29 2014-12-31 Sionyx, Inc. Shallow trench textured regions and associated methods

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320250A (en) * 1980-07-17 1982-03-16 The Boeing Company Electrodes for concentrator solar cells, and methods for manufacture thereof
US4322571A (en) * 1980-07-17 1982-03-30 The Boeing Company Solar cells and methods for manufacture thereof
US5536193A (en) * 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
US6084175A (en) * 1993-05-20 2000-07-04 Amoco/Enron Solar Front contact trenches for polycrystalline photovoltaic devices and semi-conductor devices with buried contacts
US6187604B1 (en) * 1994-09-16 2001-02-13 Micron Technology, Inc. Method of making field emitters using porous silicon
US6552414B1 (en) * 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
US5738961A (en) * 1997-03-03 1998-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Two-step photolithography method for aligning and patterning non-transparent layers
US6228181B1 (en) * 1997-10-02 2001-05-08 Shigeo Yamamoto Making epitaxial semiconductor device
AUPP437598A0 (en) * 1998-06-29 1998-07-23 Unisearch Limited A self aligning method for forming a selective emitter and metallization in a solar cell
GB2347013A (en) 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
US6524880B2 (en) * 2001-04-23 2003-02-25 Samsung Sdi Co., Ltd. Solar cell and method for fabricating the same
AUPR977301A0 (en) * 2001-12-28 2002-01-31 Energy Storage Systems Pty Ltd An electrode for an energy storage device
US6806629B2 (en) * 2002-03-08 2004-10-19 Chien-Min Sung Amorphous diamond materials and associated methods for the use and manufacture thereof
EP1378947A1 (en) * 2002-07-01 2004-01-07 Interuniversitair Microelektronica Centrum Vzw Semiconductor etching paste and the use thereof for localised etching of semiconductor substrates
JP2004193350A (ja) * 2002-12-11 2004-07-08 Sharp Corp 太陽電池セルおよびその製造方法
JP4325912B2 (ja) 2003-02-14 2009-09-02 京セラ株式会社 太陽電池素子及びその製造方法
US20080092944A1 (en) * 2006-10-16 2008-04-24 Leonid Rubin Semiconductor structure and process for forming ohmic connections to a semiconductor structure
WO2008090718A1 (ja) * 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha 太陽電池セル、太陽電池アレイおよび太陽電池モジュールならびに太陽電池アレイの製造方法
US20080290368A1 (en) * 2007-05-21 2008-11-27 Day4 Energy, Inc. Photovoltaic cell with shallow emitter

Also Published As

Publication number Publication date
CN1992355A (zh) 2007-07-04
KR101181820B1 (ko) 2012-09-11
EP1804299A1 (en) 2007-07-04
EP1804299B1 (en) 2015-06-17
KR20070071060A (ko) 2007-07-04
JP2007184580A (ja) 2007-07-19
EP1804299B8 (en) 2015-08-12
US7884375B2 (en) 2011-02-08
US20070290283A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
CN100587978C (zh) 太阳能电池及其制造方法
KR101083204B1 (ko) 백 컨택 태양전지 및 그 제조방법
US6524880B2 (en) Solar cell and method for fabricating the same
KR101002282B1 (ko) 태양 전지 및 그 제조 방법
KR101084067B1 (ko) 태양 전지 및 이의 제조 방법
US8586396B2 (en) Method for producing a silicon solar cell with a back-etched emitter as well as a corresponding solar cell
JP4879050B2 (ja) 太陽電池の製造方法
JP5006826B2 (ja) 太陽電池及びその製造方法
US20100190286A1 (en) Method for manufacturing solar cell
US7816167B2 (en) Method of fabricating a differential doped solar cell
KR100997113B1 (ko) 태양전지 및 그의 제조방법
JP2011503910A (ja) パターン付きエッチング剤を用いた太陽電池コンタクト形成プロセス
KR101464001B1 (ko) 태양 전지의 제조 방법 및 에칭 페이스트
US20120167968A1 (en) Method for producing solar cells having selective emitter
KR101464002B1 (ko) 태양 전지의 제조 방법
JP5165906B2 (ja) 光電変換素子の製造方法
KR20100093279A (ko) 태양 전지의 제조 방법
KR101093114B1 (ko) 후면접합 구조의 태양전지
CN107155378B (zh) 光电动势装置的制造方法
TWI399863B (zh) 快速升溫退火裝置及形成太陽能電池選擇性射極結構的方法
JP2015109361A (ja) 太陽電池の製造方法
KR100378347B1 (ko) 함몰전극형 태양전지의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ZHIJI SHIDUN TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: SAMSUNG SDI CO., LTD.

Effective date: 20150710

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150710

Address after: Virginia

Patentee after: Seiko Epson Corp.

Address before: Gyeonggi Do Korea Suwon

Patentee before: Samsung SDI Co., Ltd.