CN100575944C - 挠性电磁声学换能传感器 - Google Patents

挠性电磁声学换能传感器 Download PDF

Info

Publication number
CN100575944C
CN100575944C CN200580024740A CN200580024740A CN100575944C CN 100575944 C CN100575944 C CN 100575944C CN 200580024740 A CN200580024740 A CN 200580024740A CN 200580024740 A CN200580024740 A CN 200580024740A CN 100575944 C CN100575944 C CN 100575944C
Authority
CN
China
Prior art keywords
acoustic transducer
electromagnetic acoustic
pole
conductor layer
electric conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200580024740A
Other languages
English (en)
Other versions
CN101002087A (zh
Inventor
J·弗洛拉
M·阿利
G·鲍威尔斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute Inc
Original Assignee
Electric Power Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute Inc filed Critical Electric Power Research Institute Inc
Publication of CN101002087A publication Critical patent/CN101002087A/zh
Application granted granted Critical
Publication of CN100575944C publication Critical patent/CN100575944C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0422Shear waves, transverse waves, horizontally polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2638Complex surfaces

Abstract

由挠性部件和材料所设计的磁体阵列可以轻易地定形为配合各种弯曲表面和结构的外形。除了挠性外,结合这些磁体的EMAT在体积上小于传统的EMAT磁体,因此更容易地用于进入会受到限制的复杂结构。此外,该挠性磁体阵列还能以各种形状和配置轻易并且经济地制造,从而与刚性的传统磁体设计相比,增加了多用性、用途和成本效应。

Description

挠性电磁声学换能传感器
技术领域
包括挠性磁体的电磁声学换能器(EMAT)能与其所加到的物体表面一致(conform to),由此与由刚性而昂贵的部件所组成的传统EMAT设计相比以降低的制造成本提供优越的性能。
背景技术
电磁声学换能器(EMAT)是能在无需与材料接触的情况下在导电材料中发射和接收声波的电气装置。因为声波从诸如裂缝和空隙这类缺陷反射,EMAT一般用作探伤装置。主要通过EMAT设计及EMAT部件的电励磁确定由EMAT发射和接收的声波的特性,包括频率、强度、方式和波束形状。
EMAT在与压电换能器相比时具有几个优点。不同于声波在探头中产生并通过如油或水这类耦合介质传递到材料中的压电换能器,EMAT不需要任何流体耦合。EMAT能以较高的速度进行探伤,因而当将其用在在自动探伤系统中时能提供较高的容许能力。由于EMAT在被测材料表面的紧下方产生声波,它们为材料被污染、汹涌、加热到高温或高速移动的各种应用提供较高的精确度、可靠性和可重复性。因为EMAT的制造可以非常精密,EMAT或其部件能互换,同时特性或性能的变化最小。EMAT的简单构造提供几乎无限的设计类型来便于定型、控制和聚焦波束以实现所需要的声学效应。
EMAT通常由二个基本部件组成:磁体和绝缘导体线圈。无论永磁体还是电磁体(磁体)都用来产生穿入被测材料部件表面的磁场。由导体组成的线圈,通常被称为RF线圈,放置在磁体和测试材料之间。这些RF线圈用来在测试材料中感应高频磁场。来自磁体的场和来自RF线圈的场之间的相互作用在测试材料的原子或分子晶格内产生作用力。这些作用力的强度和方向随时间以RF线圈中电流相等的频率变化。这些振荡作用力产生通常在测试材料里沿着两个相反方向远离EMAT传播的声学波或声波。
图1所示的是用来产生垂直偏振切变(SV)波、兰姆波和表面波的EMAT配置,所述这些波又被称为雷利波。磁体1产生与测试中的金属部件或测试材料3垂直的磁场2。显示为但不局限于由绝缘导体组成的曲折线圈的曲折射频(RF)线圈4由交流电源5供能并产生在其端子之间在RF线圈4内流动的交流电流6。交流电流6产生交变场7,而交变场7环绕涡电流8并穿入测试材料3的表面。穿入的交变场7在测试材料3的表面中或附近感应出交变涡电流8。同样,还在测试材料3中产生环绕涡电流8的交变磁场9。来自涡电流8的交变场7和来自磁体1的交变磁场9相互作用以在测试材料3中并在各RF线圈4下面的产生洛伦兹力10。这些洛伦兹力10产生声波,例如水平偏振切变波,而该声波为超声波或本领域通常称为SH波11的声波并在测试材料3中从EMAT沿着相反的方向传播。
图2所示的是使用诸如永磁体阵列的磁体阵列和环绕RF线圈4以产生SH波11的EMAT。部分RF线圈4在磁体阵列12的下面,并且还紧靠着测试材料3。当RF线圈4接上交流电源5时,在测试材料中感应出涡电流8及其相关的交变磁场9。来自磁体12的磁场2和来自涡电流8的交变场7的相互作用在测试材料3中产生洛伦兹力10,而该洛伦兹力10靠近并且还平行于测试材料3的表面。这些洛伦兹力10产生在测试材料3中沿着相反方向传播的SH波11。
图3所示的是使用诸如电磁体之类的磁体1和RF线圈4以便在具有磁致伸缩属性的某些铁磁材料14中产生SH波11的EMAT。由绝缘导体组成的磁体线圈13绕在铁磁材料芯14上。当电源15激励磁体线圈13时,瞬态电流16在磁体线圈13的端子之间流动。瞬态电流16转而产生切向磁场17,部分切向磁场17穿入测试材料3的表面。切向磁场17感应出在磁体1的磁极下以及周围流动的瞬态涡电流18。
以频率高于磁体线圈13的瞬态电流16的组成频率的交流电流6对RF线圈4励磁。RF线圈4中的交流电流6在测试材料3中感应出交变涡电流8及其相关的磁场9。在测试材料3呈现磁致伸缩物理属性时,RF线圈4感应出的总磁场9与磁体1感应出的切向磁场17的矢量和将造成测试材料3的膨胀和收缩。测试材料的交替膨胀和收缩将导致SH波11从EMAT沿着两个方向传播。
发明内容
由挠性部件和材料所设计的磁体阵列可以轻易地定形为配合各种弯曲表面和结构的外形。除了挠性外,结合这些磁体的EMAT在体积上小于传统的EMAT磁体,因此更容易地用于进入会受到限制的复杂结构。此外,该挠性磁体阵列还能以各种形状和配置轻易并且经济地制造,从而与刚性的传统磁体设计相比,增加了多用性、用途和成本效应。
提供一种适于与非平面测试衬底的表面一致的电磁声学换能器。
在某些实施例中,该电磁声学换能包括一个可与非平面测试衬底表面相一致的磁体阵列,其中:该磁体包括磁极和互连段。
在一个实施例中,磁体阵列包括包含铁磁材料颗粒的挠性化合物,其中在导电时能产生垂直于各磁极面的磁场的导体设置在磁极之间。
在另一个实施例中,磁体阵列包括包含永磁材料的颗粒的挠性化合物,其中磁极可以选择性磁化,以提供与各个磁极面垂直的静态磁场。
提供了一种使用电磁声学换能器询问具有非平面表面的测试衬底的方法,其包括:
在表面的监控距离内使电磁声学换能器与测试衬底的表面一致;
通过来自电磁声学换能器磁体和导体的场的相互作用产生声波;
检测由测试衬底所反射的声波的至少一个特性。
附图说明
图1显示了包括用于在导电材料中产生和检测SH波、兰姆波和表面波的永磁体和RF线圈的EMAT;
图2显示了包括用于产生和检测水平极化切变波的永磁体阵列和RF线圈的EMAT;
图3显示了包括用于在呈现磁致伸缩属性的铁磁材料中产生水平极化SH波的电磁体和曲折RF线圈的EMAT;
图4显示了适合于在非平面导电材料中产生和检测SH波的挠性EMAT;
图5显示了包括以机械和磁方式连接的磁极片的挠性多极磁体阵列和包括RF线圈分布式的导体绕组;
图6显示了紧靠着挠性多极磁体阵列的磁极面放置的挠性RF线圈;
图6A显示了与图6的阵列中的磁极面的相关涡电流和磁场;
图7显示了嵌入挠性磁体阵列的磁极面的挠性RF线圈;
图7A显示了沿图7的A-A’线的嵌入式RF线圈导体的剖面。
具体实施方式
电磁声学换能器(EMAT)在制造时或之后能轻易地定形,以使该EMAT能够用来在没有严重损失对部件和结构的缺陷和属性的信号响应的情况下询问具有弯曲表面的部件和结构,相反,EMAT对测试材料表面的顺从性不足往往会造对信号响应造成相当大的损失。EMAT基本上有两个部分:磁体和提供RF信号的导体,如RF线圈。磁体可以由铁磁材料和导体的一个或多个磁芯构成。
公开了一种EMAT,其包括包含与提供RF信号的导体(例如,RF线圈)设计、制造并集成的材料的磁体或挠性多极磁体阵列。该EMAT在制造时或之后能轻易地定形,以使其可用于询问具有弯曲表面的部件和结构。这将显著地减少由于顺从性不足所造成的对这些部件和结构的缺陷或属性的信号响应损失,并减小EMAT到测试材料或基底表面的距离。
挠性多极磁体阵列可以成行制造,其中各行绕一点或数点具有一定的曲率半径,以使所生成的SH波在测试材料部件中聚焦。磁体阵列的相邻磁极之间的距离有所变化,该变化是距焦点的径向距离的函数。磁体阵列中的这种变化使SH波的垂直宽度改变。在其他实施例中,分别具有不同径向距离的两个或更多个磁体阵列可以前后排列在磁极之间,使得它们在规定的频率范围内工作时具有大致相同的SH波角和焦点。在又一个实施例中,磁体阵列可以具有嵌入在凹槽中的高频(RF)导体,该凹槽跨越磁极面并与焦点的径向投影共线。
挠性多极磁体阵列可以包括磁体和至少部分用含有铁磁材料(例如铁)或永磁材料(如钕铁硼)的颗粒的挠性材料(例如,硅橡胶)制造的磁极的阵列。
导体可以具有一定形状、宽度和厚度,以使它们能安装在磁极之间并由电流供能,以便在相邻的磁极之间产生交变磁极性。在其他实施例中,导体可以有一定形状、宽度和厚度,以使导体能安装在多层串联的磁极之间并电供能,以便在相邻的磁极之间产生交变磁极性。
图4所示的是可以与本领域公知的其它电气部件一起使用以便在弯曲金属部件(例如但不限于钢管20)内产生SH波的EMAT的顺从(conformable)、挠性的多极磁体阵列19。磁体1包含磁极21和互连连接件或互连段,两者均可以由铁磁或非铁磁材料构成。挠性多极磁体阵列19可以制造或组装为使其与EMAT需要施加到其上进行所需测试的材料结构的曲率一致。
一种制造挠性多极磁体阵列的方法是,模塑浸渍或填充铁磁材料颗粒14(例如但不限于铁)的顺从、挠性的化合物,例如但不限于硅橡胶。在这个实施例中,至少一个包括绝缘导体构成的RF线圈4安装在磁极21之间,以便在RF线圈4由电流供能时产生垂直于磁极21的各个面的磁场2。
在另一个实施例中,顺从、挠性的化合物浸渍有永磁材料14,例如但不限于钕铁硼。在这个实施例中,磁极21可以在使用前进行磁化,以提供垂直于磁极21各个面的静态磁场2。
图5所示的是可以与其它电气部件一起使用以产生SH波11的挠性多极磁体阵列19的平面图。它部分由北(N)和南(S)磁极21的阵列构成,该阵列通过磁性材料(未图示)的连杆以机械方式和磁方式进行连接。这样的实施例使用浸渍有铁磁材料或永磁材料颗粒,例如分别为铁化合物和钕铁硼化合物的挠性含碳氢化合物的材料,例如但不限于合成橡胶(例如硅橡胶)。这种混合物可以按各种配置模塑成包括一个或多个磁极21的挠性多极磁体阵列19,由此增强EMAT的性能,包括增加的SH波11强度、SH波11控制和聚焦。
挠性多极磁体阵列19可以包括编织在磁体21之间的绝缘导体22和第二绝缘导体23层,以使它们在具有垂直于磁极21的面和测试材料3的表面的主磁场矢量分量的方向上产生磁化。绝缘导体层22和第二绝缘导体层23可以按照在绝缘导体层22和第二绝缘导体层23由电流源27供能时在邻近的磁极21产生相反极性的图案设置在磁极21之间。在挠性多极磁体阵列用作永磁体阵列时,绝缘导体层22和第二绝缘导体层23可以不存在或去除,以增加对测试材料3表面的挠曲性和一致性。
磁体的组装可以包括在磁极之间插入绝缘导体层22、接着插入部分覆盖在绝缘导体层22上的第二绝缘导体层23。当绝缘导体层22和第二绝缘导体层23在接点24电连接时,挠性多极磁体阵列19的内部磁极21由两个由电流源27在端子25、26处供能时沿着相同方向传送电流的相互编织的绝缘导体(绝缘导体层22和第二绝缘导体层23)有效环绕,在一个实施例中该电流源是直流电流源。与绝缘导体层22和第二绝缘导体层23类似附加导体层对可以安装在绝缘导体层22和第二绝缘导体层23上并与所述层串联或并联,以提供增加的磁化电流和增加的垂直于磁极21各个面的磁场。
如图5所示,可以对磁极21的阵列进行定形和定位以使它们以近似径向距离28共同产生聚焦SH波11。各个磁极21的宽度29可以是距焦点32的径向距离28的函数,与距磁体1的中心的径向距离28成比例地增加。磁极之间的距离30连同RF线圈4的励磁频率一起确定SH波11相对测试材料3表面的法线方向的角度。在工作范围里,减少距离30或降低RF励磁频率将造成SH波11相对测试材料3(即测试衬底)的表面的角度的增加。
相邻磁极21之间的距离30以径向距离28的函数形式变化使得SH波11的垂直宽度的改变。例如,两个磁极21之间的距离与到该磁极21对的径向距离28成比例地减小会导致SH波11的垂直宽度减少和检测缺陷的分辨率增大。同样,分别在磁极21之间具有不同径向距离的两个或两个以上的挠性多极磁体阵列19可以前后排列以使它们在规定的频率范围里工作时具有近似相同的焦点32。
图6所示的RF线圈4由附着到电绝缘材料的挠性衬底31的导体构成。RF线圈4附着到磁极21的面上,以使它们紧靠着测试材料3。当交流电源5的交流电压加到RF线圈4上时,当电压在图6和图6A所示的方向上为正的瞬间,洛伦兹力10加到测试材料3上。在各列磁极21的上下相邻磁极21之间,洛伦兹力10处于径向相反方向。这应归因于相邻磁极21的相反极性。随着感应涡电流8及其相关的磁场9在相邻各列磁极21下反向,在给定行的磁极21中,洛伦兹力10处于相同方向。这些交变作用相加产生朝着焦点32传播的SH波11。
多极电磁体阵列19的磁极21可以保证增加RF导体33到测试材料的电磁耦合。如图7所示,通过将RF导体33嵌入在铁磁材料14的磁极21内能进一步增强这种电磁耦合。如图7A所示,嵌入的RF导体33和磁极21可以更靠近测试材料3,因而增加穿入测试材料3的交变磁场量。由交变场7感应的感应涡电流8的振幅增加,这转而增加洛伦兹力10的强度和测试材料中的总SH波11。
应该理解本发明所描述的实施例只是示范性的,并且所属领域的普通技术人员可以在不偏离本发明的精神和范围情况下进行许多变化和修改。所有这些变化和修改倾向于包括在如本申请所描述的本发明的范围内。应该理解所述的实施例不仅可进行选择而且还能组合。

Claims (18)

1.一种适于和非平面测试衬底的表面一致的电磁声学换能器,其中,所述电磁声学换能器适于用于超声切变波的生成和检测,并且包括顺从于所述非平面测试衬底表面的挠性多极磁体阵列,其中,所述磁体包括具有磁极面的磁极和互连段,且所述磁极以多行设置。
2.根据权利要求1所述的电磁声学换能器,其特征在于:所述挠性多极磁体阵列包括包含铁磁材料颗粒的挠性化合物,其中,至少一个在导电时能产生垂直于各所述磁极面的磁场的电导体设置在所述磁极之间。
3.根据权利要求2所述的电磁声学换能器,其特征在于:至少一个电导体层设置在所述磁极之间,以沿着具有垂直于所述磁极面和所述测试衬底表面的主磁场矢量分量的方向产生磁化。
4.根据权利要求3所述的电磁声学换能器,其特征在于:所述至少一个电导体层以在所述至少一个电导体层的至少一个电导体导电时在邻近的磁极内产生相反极性的图案设置在所述磁极之间。
5.根据权利要求3所述的电磁声学换能器,其特征在于:第二电导体层至少部分地覆盖在所述至少一个电导体层上,并与其电连接,其中,所述至少一个电导体层和所述第二电导体层二者之内的磁极由在导电时沿着相同方向传送电流的所述至少一个电导体层和所述第二电导体层有效地环绕。
6.根据权利要求5所述的电磁声学换能器,其特征在于:至少一对附加电导体层设置在所述至少一个电导体层和所述第二电导体层上并与所述至少一个电导体层和所述第二电导体层串联或并联。
7.根据权利要求1所述的电磁声学换能器,其特征在于:所述挠性多极磁体阵列包括含有永磁材料的颗粒的挠性化合物,其中,所述磁极被选择性磁化,以产生与各磁极面垂直的静态磁场。
8.根据权利要求1所述的电磁声学换能器,其特征在于:以行形成所述挠性多极磁体阵列,其中各行绕能够将产生的声波聚焦在所述测试衬底中的至少一个焦点具有曲率半径。
9.根据权利要求8所述的电磁声学换能器,其特征在于:相邻磁极的距离作为距所述焦点的径向距离的函数变化。
10.根据权利要求8所述的电磁声学换能器,包括至少二个前后排列的挠性多极磁体阵列,其中,各阵列的磁极之间的径向距离不同,而焦点大致相同,其中,所述至少二个阵列能产生大致相同的声波角。
11.根据权利要求8所述的电磁声学换能器,其特征在于:所述挠性多极磁体阵列具有嵌入在所述铁磁材料的磁极之内的射频导体。
12.根据权利要求1所述的电磁声学换能器,其特征在于:所述磁体包括铁。
13.根据权利要求7所述的电磁声学换能器,其特征在于:所述磁体包括钕铁硼。
14.根据权利要求2所述的电磁声学换能器,其特征在于:所述挠性化合物是合成橡胶。
15.根据权利要求14所述的电磁声学换能器,其特征在于:所述合成橡胶包括硅橡胶。
16.根据权利要求7所述的电磁声学换能器,其特征在于:所述挠性化合物是合成橡胶。
17.根据权利要求16所述的电磁声学换能器,其特征在于:所述合成橡胶包括硅橡胶。
18.一种采用根据权利要求1所述的电磁声学换能器询问具有非平面表面的测试衬底的方法,包括:
在表面的监控距离内使所述电磁声学换能器与所述测试衬底的表面一致;
通过来自所述电磁声学换能器磁体和所述电导体的场的相互作用产生声波;
检测由所述测试衬底所反射的声波的至少一个特性。
CN200580024740A 2004-07-23 2005-07-20 挠性电磁声学换能传感器 Expired - Fee Related CN100575944C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59063604P 2004-07-23 2004-07-23
US60/590,636 2004-07-23

Publications (2)

Publication Number Publication Date
CN101002087A CN101002087A (zh) 2007-07-18
CN100575944C true CN100575944C (zh) 2009-12-30

Family

ID=35787708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580024740A Expired - Fee Related CN100575944C (zh) 2004-07-23 2005-07-20 挠性电磁声学换能传感器

Country Status (13)

Country Link
US (1) US7165453B2 (zh)
EP (1) EP1774310A4 (zh)
JP (2) JP5129566B2 (zh)
KR (1) KR100954308B1 (zh)
CN (1) CN100575944C (zh)
AU (1) AU2005269701B2 (zh)
BR (1) BRPI0513738A (zh)
CA (1) CA2573029C (zh)
MX (1) MX2007000807A (zh)
NZ (1) NZ552605A (zh)
RU (1) RU2369865C2 (zh)
WO (1) WO2006014714A2 (zh)
ZA (1) ZA200700224B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755921A (zh) * 2012-10-19 2015-07-01 欧洲航空防务及航天公司 用于物体的接触式测量的超声波探头及其制造方法
CN106018569A (zh) * 2016-07-26 2016-10-12 北京工业大学 一种基于柔性磁铁的电磁声表面波传感器

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697375B2 (en) * 2004-03-17 2010-04-13 Baker Hughes Incorporated Combined electro-magnetic acoustic transducer
KR100573735B1 (ko) * 2004-04-07 2006-04-25 재단법인서울대학교산학협력재단 비자성체 배관의 비접촉식 굽힘 진동 발생 및 측정 장치
US7426867B2 (en) * 2005-09-30 2008-09-23 General Electric Company Electromagnetic acoustic transducers for use in ultrasound inspection systems
US7726193B2 (en) * 2007-09-27 2010-06-01 Baker Hughes Incorporated Electromagnetic acoustic transducer with cross-talk elimination
EP2318829B1 (en) 2008-07-24 2016-05-25 Airbus Operations Limited Ultrasonic inspection device for contoured workpieces
US8408065B2 (en) * 2009-03-18 2013-04-02 Bp Corporation North America Inc. Dry-coupled permanently installed ultrasonic sensor linear array
KR101073686B1 (ko) * 2009-04-08 2011-10-14 서울대학교산학협력단 분절형 자기변형 패치 배열 트랜스듀서, 이를 구비한 구조 진단 장치 및 이 트랜스듀서의 작동 방법
AT508478B1 (de) * 2009-06-26 2012-01-15 Tdw Delaware Inc Sensorarray für die inspektion der innenwand eines rohres
US8319494B2 (en) * 2009-06-26 2012-11-27 Tdw Delaware Inc. Pipeline inspection tool with double spiral EMAT sensor array
KR101068350B1 (ko) * 2009-07-03 2011-09-28 (주)디지털초음파 접촉 sh-도파 자왜변환기
US20120103097A1 (en) * 2010-10-29 2012-05-03 Borja Lopez Jauregui Flexible EMAT Arrays for Monitoring Corrosion and Defect Propagation in Metal Components and Structures
RU2573443C2 (ru) * 2010-11-18 2016-01-20 Конинклейке Филипс Электроникс Н.В. Медицинское устройство с ультразвуковыми преобразователями, встроенными в гибкую пленку
DE102011015677A1 (de) * 2011-03-31 2012-10-04 Rosen Swiss Ag Akustischer Durchflussmesser
US8746070B2 (en) 2011-04-08 2014-06-10 Tejas Testing & Inspection, Inc. Phased array ultrasonic examination system and method
DE102011018954B4 (de) * 2011-04-29 2017-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraschallprüfkopf und Verfahren zur zerstörungsfreien Prüfung eines flächig ausgebildeten Prüfkörpers
CN102415900B (zh) * 2011-08-19 2013-03-13 厦门大学 一种生物医用非接触式电磁超声检测系统
US8879688B2 (en) * 2012-05-22 2014-11-04 The Boeing Company Reconfigurable detector system
GB201214273D0 (en) 2012-08-09 2012-09-26 Airbus Uk Ltd .Improvements to radius inspection tools
DE102012019217B4 (de) 2012-10-01 2014-08-07 Rosen Swiss Ag Akustischer Durchflussmesser und Verfahren zur Bestimmung des Flusses in einem Objekt
JP2014077716A (ja) * 2012-10-11 2014-05-01 Jfe Steel Corp 電磁超音波の送受信方法および装置
US9404896B2 (en) * 2012-11-19 2016-08-02 General Electric Company Two-dimensional TR probe array
TWI524996B (zh) 2013-01-25 2016-03-11 財團法人工業技術研究院 可撓性電子裝置
JP6582506B2 (ja) * 2014-08-11 2019-10-02 株式会社リコー エネルギー変換装置およびスピーカー構造
EP3194953B1 (en) * 2014-09-19 2019-07-17 Crocus Technology Inc. Apparatus for magnetic sensor based surface shape analysis
KR101587740B1 (ko) * 2014-11-10 2016-01-22 한국가스공사 접촉식 자왜 피도파 변환기 모듈
CA2979033A1 (en) 2015-03-09 2016-09-15 Intekrin Therapeutics, Inc. Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy
GB201513076D0 (en) 2015-07-24 2015-09-09 Rachele Rollin A soft modular fitness device
GB201604440D0 (en) 2016-03-16 2016-04-27 Imp Innovations Ltd Guided wave testing
US10436018B2 (en) * 2016-10-07 2019-10-08 Baker Hughes, A Ge Company, Llc Downhole electromagnetic acoustic transducer sensors
NL2018403B1 (en) * 2017-02-21 2018-09-21 Zeeland Refinery N V An electrically controlled transducer arrangement for remote, non-destructive inspection of metallic surfaces and an object comprising such transducer arrangement.
CN110996951A (zh) 2017-04-03 2020-04-10 科赫罗斯生物科学股份有限公司 治疗进行性核上性麻痹的PPARγ激动剂
GB2561551A (en) * 2017-04-11 2018-10-24 Univ Warwick Electromagnetic acoustic transducer based receiver
US11549918B2 (en) 2017-10-27 2023-01-10 Olympus America Inc. Ultrasonic scanner with interchangeable wedge and flexible probe
GB2576244B (en) * 2018-06-27 2021-02-17 Olympus Scientific Solutions Tech Inc Flexible ceramic coil circuit for high temperature non-destructive inspection
US11442042B2 (en) 2018-06-27 2022-09-13 Olympus Scientific Solutions Americas Corp. Flexible ceramic coil circuit for high temperature non-destructive inspection
CN109444262B (zh) * 2018-10-22 2021-06-11 北京工业大学 一种基于倾斜静磁场的斜入射式电磁声传感器
GB201903741D0 (en) * 2019-03-19 2019-05-01 Res & Innovation Uk A multipole magnet
CN113826008A (zh) * 2019-03-29 2021-12-21 赛迪恩解决方案私人有限公司 用于减少过滤器单元中膜表面上的浓度极化和膜污染的装置和方法
CN110174466B (zh) * 2019-05-29 2022-11-01 湖北工业大学 一种电磁超声激励探头及其构建方法
CN110414122B (zh) * 2019-07-24 2020-04-28 湖北工业大学 一种斜入射线聚焦sv波曲面曲折线圈的设计方法
FR3105554B1 (fr) * 2019-12-20 2021-11-26 Commissariat Energie Atomique Mesure passive d’ondes acousto-elastiques
US11561205B2 (en) * 2020-04-30 2023-01-24 Ulc Technologies, Llc Electro-magnetic acoustic transducer (EMAT) having electromagnet array for generating configurable bias magnetic field patterns
CN111505119B (zh) * 2020-05-08 2020-12-08 清华大学 柔性超声波疲劳损伤检测装置及其制造方法
CN113189201A (zh) * 2021-04-19 2021-07-30 中国石油天然气集团有限公司 一种基于电磁超声换能器的无缝钢管斜向缺陷检测系统
KR102528608B1 (ko) * 2021-05-14 2023-05-08 한양대학교 산학협력단 플렉시블한 전자기음향 트랜스듀서를 이용한 곡면 구조물의 내부결함 진단장치
WO2023275898A1 (en) * 2021-06-30 2023-01-05 Nikhil Das S Apparatus and method for generating and transmitting ultrasonic waves into a target
CN113984892B (zh) * 2021-09-28 2023-04-07 西安交通大学 一种用于球面板材缺陷检测的半柔性阵列式电磁超声探头

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674946A (en) * 1970-12-23 1972-07-04 Magnepan Inc Electromagnetic transducer
US3944963A (en) * 1974-08-21 1976-03-16 Western Electric Co., Inc. Method and apparatus for ultrasonically measuring deviation from straightness, or wall curvature or axial curvature, of an elongated member
GB1477508A (en) * 1974-08-21 1977-06-22 Rank Organisation Ltd Measuring apparatus
BE840456A (fr) * 1975-04-22 1976-10-07 Dispositif de mesure precise des dimensions d'un objet par ultra-sons
US4102207A (en) * 1976-12-16 1978-07-25 The United States Of America As Represented By The Secretary Of The Air Force Electromagnetic ultrasound transducer
US4058002A (en) * 1976-12-23 1977-11-15 The United States Of America As Represented By The Secretary Of The Air Force Dispersive electromagnetic surface acoustic wave transducer
JPS53118686U (zh) * 1977-02-28 1978-09-20
US4170142A (en) * 1977-07-15 1979-10-09 Electric Power Research Institute, Inc. Linear transducer array and method for both pulse-echo and holographic acoustic imaging
US4203069A (en) * 1977-12-29 1980-05-13 Electric Power Research Institute, Inc. Method and apparatus for non-destructively testing electrically conductive elongate cylindrical components using an eddy current producing coil with a rotor to concentrate the magnetic field in a selected area
US4210028A (en) * 1978-05-30 1980-07-01 Electric Power Research Institute, Inc. Method and apparatus for ultrasonically measuring concentrations of stress
US4195530A (en) * 1978-08-14 1980-04-01 Republic Steel Corporation Ultrasonic inspection
US4305661A (en) * 1979-02-27 1981-12-15 Diffracto, Ltd. Method and apparatus for determining physical characteristics of objects and object surfaces
US4248092A (en) * 1979-04-25 1981-02-03 Electric Power Research Institute, Inc. Method and apparatus for efficiently generating elastic waves with a transducer
US4303885A (en) * 1979-06-18 1981-12-01 Electric Power Research Institute, Inc. Digitally controlled multifrequency eddy current test apparatus and method
US4290308A (en) * 1979-09-17 1981-09-22 Electric Power Research Institute, Inc. Method of monitoring defects in tubular products
US4320661A (en) * 1979-10-19 1982-03-23 Electric Power Research Institute, Inc. Electromagnetic acoustic transducer for tube inspection
US4307612A (en) * 1979-10-19 1981-12-29 Electric Power Research Institute, Inc. Method and means for ultrasonic inspection
US4296486A (en) * 1980-01-24 1981-10-20 Rockwell International Corporation Shielded electromagnetic acoustic transducers
US4403860A (en) * 1980-03-27 1983-09-13 Diffracto Ltd. Apparatus for determining dimensions
US5825017A (en) * 1980-03-27 1998-10-20 Sensor Adaptive Machines Inc. Method and apparatus for determining dimensions
JPS56149096A (en) * 1980-04-22 1981-11-18 Seiko Instr & Electronics Electromagnetic buzzer
US4393711A (en) * 1980-11-13 1983-07-19 Electric Power Research Institute, Inc. Apparatus and method for ultrasonic detection of flaws in power plant piping systems
US4428237A (en) * 1980-11-13 1984-01-31 Electric Power Research Institute, Inc. System and method for measuring ultrasonic return signals
US4432931A (en) * 1981-10-02 1984-02-21 Electric Power Research Institute, Inc. Inspection system
US4434663A (en) * 1982-01-11 1984-03-06 Rockwell International Corporation Electromagnetic acoustic transducer
US4546314A (en) * 1982-12-13 1985-10-08 Schlumberger Technology Corp. Method and apparatus for measuring the inside diameter of a metallic pipe in a well
US4546315A (en) * 1982-12-13 1985-10-08 Schlumberger Technology Corporation Apparatus for measuring the inside diameter of a metallic pipe in a well
US4526037A (en) * 1983-06-13 1985-07-02 Combustion Engineering, Inc. Nozzle inner radius inspection system
JPS60113554U (ja) * 1984-01-06 1985-08-01 三菱重工業株式会社 電磁超音波探触装置
JPS61107154A (ja) * 1984-10-31 1986-05-26 Toshiba Corp 超音波トランスジユ−サ
JPS62132168A (ja) * 1985-12-04 1987-06-15 Hitachi Ltd 電磁超音波測定装置用探触子
DE3630887A1 (de) * 1986-03-26 1987-10-08 Hommelwerke Gmbh Vorrichtung zur messung kleiner laengen
JPH01121849U (zh) * 1987-12-21 1989-08-18
US4982158A (en) * 1988-06-23 1991-01-01 Electric Power Research Institute, Inc. Method and apparatus for magnetic detection of flaws
US5023549A (en) * 1989-03-07 1991-06-11 Electric Power Research Institute, Inc. Eddy current probe with sensor supporting expandable elastic membrane for inspecting hollow cylindrical structures
US5359898A (en) * 1991-06-04 1994-11-01 The Babcock & Wilcox Company Hydrogen damage confirmation with EMATs
US5237874A (en) * 1991-10-07 1993-08-24 The Babcock & Wilcox Company Rotating electromagnetic acoustic transducer for metal inspection
US5691476A (en) * 1993-09-07 1997-11-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for ultrasonic imaging and device for performing the method
US5608691A (en) * 1994-05-31 1997-03-04 The Babcock & Wilcox Company EMAT with integral electrostatic shield
US6188643B1 (en) * 1994-10-13 2001-02-13 Schlumberger Technology Corporation Method and apparatus for inspecting well bore casing
US5705741A (en) * 1994-12-22 1998-01-06 Tencor Instruments Constant-force profilometer with stylus-stabilizing sensor assembly, dual-view optics, and temperature drift compensation
WO1996022527A1 (en) * 1995-01-17 1996-07-25 The Penn State Research Foundation Bore probe for tube inspection with guided waves and method therefor
US5698787A (en) * 1995-04-12 1997-12-16 Mcdonnell Douglas Corporation Portable laser/ultrasonic method for nondestructive inspection of complex structures
US5608164A (en) * 1995-07-27 1997-03-04 The Babcock & Wilcox Company Electromagnetic acoustic transducer (EMAT) for ultrasonic inspection of liquids in containers
JP3052050B2 (ja) * 1995-12-13 2000-06-12 株式会社荏原製作所 蛇行コイル型電磁超音波トランスデューサ
US6109108A (en) * 1995-12-13 2000-08-29 Ebara Corporation Electromagnetic acoustic transducer EMAT and inspection system with EMAR
JP3212536B2 (ja) * 1997-05-16 2001-09-25 三菱重工業株式会社 アレイ式電磁超音波探傷装置
US6070467A (en) * 1997-10-17 2000-06-06 Gas Research Institute Electromagnetic acoustic transducer (EMAT) system and method for eliminating noise produced by static discharge
US6215836B1 (en) * 1998-05-07 2001-04-10 Electric Power Research Institute, Inc. Apparatus and method for ultrasonically examining remotely located welds in cast stainless steel nuclear steam supply systems
JP2000088816A (ja) * 1998-09-17 2000-03-31 Osaka Gas Co Ltd Ppm電磁超音波トランスジューサを用いた探傷装置及びppm電磁超音波トランスジューサ
US6082198A (en) * 1998-12-30 2000-07-04 Electric Power Research Institute Inc. Method of ultrasonically inspecting turbine blade attachments
US6282964B1 (en) * 1999-09-17 2001-09-04 The Babcock & Wilcox Co Electromagnetic acoustic transducer (EMAT) inspection of cracks in boiler tubes
JP4183366B2 (ja) * 2000-04-20 2008-11-19 三菱重工業株式会社 フェーズドアレイ式超音波探傷装置
ATE310589T1 (de) * 2000-07-07 2005-12-15 Fraunhofer Ges Forschung Elektromagnetischer ultraschallwandler
US6578424B1 (en) * 2000-09-27 2003-06-17 Digital Wave Corporation Hand-held variable angle membrane (VAM) ultrasonic scanning head for the noninvasive detection of corrosion, MIC and foreign objects in pipes
US6736011B2 (en) * 2000-12-07 2004-05-18 Electric Power Research Institute, Inc. Inspection of shrunk-on steam turbine disks using advanced ultrasonic techniques
US6666095B2 (en) * 2001-11-30 2003-12-23 The Regents Of The University Of California Ultrasonic pipe assessment
JP4576002B2 (ja) * 2002-02-14 2010-11-04 ファロ テクノロジーズ インコーポレーテッド 内蔵ラインレーザスキャナを備えた携帯可能な座標測定装置
JP2003274488A (ja) * 2002-03-18 2003-09-26 Chuo Seisakusho Ltd 電磁超音波探触子
JP4052897B2 (ja) * 2002-08-08 2008-02-27 株式会社ジェイテクト 転がり軸受装置
JP4225002B2 (ja) * 2002-08-09 2009-02-18 株式会社ジェイテクト 転がり軸受装置の被検出体用位置決め治具および転がり軸受装置の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755921A (zh) * 2012-10-19 2015-07-01 欧洲航空防务及航天公司 用于物体的接触式测量的超声波探头及其制造方法
CN104755921B (zh) * 2012-10-19 2018-07-27 欧洲航空防务及航天公司 用于物体的接触式测量的超声波探头及其制造方法
CN106018569A (zh) * 2016-07-26 2016-10-12 北京工业大学 一种基于柔性磁铁的电磁声表面波传感器
CN106018569B (zh) * 2016-07-26 2019-02-01 北京工业大学 一种基于柔性磁铁的电磁声表面波传感器

Also Published As

Publication number Publication date
JP2008507697A (ja) 2008-03-13
BRPI0513738A (pt) 2008-05-13
RU2369865C2 (ru) 2009-10-10
AU2005269701A1 (en) 2006-02-09
JP2012123019A (ja) 2012-06-28
CA2573029A1 (en) 2006-02-09
WO2006014714A2 (en) 2006-02-09
JP5129566B2 (ja) 2013-01-30
KR100954308B1 (ko) 2010-04-21
CA2573029C (en) 2009-12-22
US7165453B2 (en) 2007-01-23
KR20070051256A (ko) 2007-05-17
RU2007102488A (ru) 2008-09-10
EP1774310A2 (en) 2007-04-18
WO2006014714A3 (en) 2006-08-10
EP1774310A4 (en) 2012-04-25
US20060027022A1 (en) 2006-02-09
CN101002087A (zh) 2007-07-18
AU2005269701B2 (en) 2008-08-21
MX2007000807A (es) 2007-05-23
ZA200700224B (en) 2008-05-28
NZ552605A (en) 2009-01-31

Similar Documents

Publication Publication Date Title
CN100575944C (zh) 挠性电磁声学换能传感器
US8564281B2 (en) Noncontact measuring of the position of an object with magnetic flux
US7546770B2 (en) Electromagnetic acoustic transducer
KR102473453B1 (ko) 유도 이동센서
JP6835724B2 (ja) 誘導性変位センサ
CN103837606B (zh) 多相位结构的电磁超声换能器及超声波高效激发的方法
US8356519B2 (en) Non-contact type transducer for rod member having multi-loop coil
CN110174466A (zh) 一种电磁超声激励探头及其构建方法
Katragadda et al. Alternative magnetic flux leakage modalities for pipeline inspection
RU2298786C2 (ru) Электромагнитные акустические измерительные преобразователи
KR20120093860A (ko) 고온 동작의 유도성 위치 감지 장치
US20190094184A1 (en) Electro-Magnetic Acoustic Transducer (EMAT) for both Lamb and Shear Horizontal Wave Transduction
Vinogradov Magnetostrictive transducer for torsional guided waves in pipes and plates
JP2014066654A (ja) 電磁超音波探触子および電磁超音波探傷装置
Fan et al. Lift‐Off Performance of Ferrite Enhanced Generation EMATs
JP4734522B2 (ja) 電磁超音波探触子
RU2206888C1 (ru) Электромагнитно-акустический преобразователь
CN219830966U (zh) 空间立体环绕式电磁超声纵波线性相控阵探头
JP3504430B2 (ja) 斜角電磁超音波トランスデューサ
RU185529U1 (ru) Электромагнитно-акустический преобразователь
JPH0215018B2 (zh)
JPS63286761A (ja) 電磁超音波トランスジュ−サ
UA140470U (uk) Електромагнітно-акустичний перетворювач для ультразвукового контролю виробів з феромагнітних матеріалів
JPS62132168A (ja) 電磁超音波測定装置用探触子
JPS5822961A (ja) 回転周波数検出装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1109655

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1109655

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091230

Termination date: 20140720

EXPY Termination of patent right or utility model