CN100543074C - 包含ppta和纳米管的复合材料 - Google Patents

包含ppta和纳米管的复合材料 Download PDF

Info

Publication number
CN100543074C
CN100543074C CNB200580008971XA CN200580008971A CN100543074C CN 100543074 C CN100543074 C CN 100543074C CN B200580008971X A CNB200580008971X A CN B200580008971XA CN 200580008971 A CN200580008971 A CN 200580008971A CN 100543074 C CN100543074 C CN 100543074C
Authority
CN
China
Prior art keywords
nanotube
mixture
ppta
temperature
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200580008971XA
Other languages
English (en)
Other versions
CN1934180A (zh
Inventor
H·伯斯图尔
H·希维伦加
A·克林克哈默尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Aramid GmbH
Original Assignee
Teijin Aramid GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Aramid GmbH filed Critical Teijin Aramid GmbH
Publication of CN1934180A publication Critical patent/CN1934180A/zh
Application granted granted Critical
Publication of CN100543074C publication Critical patent/CN100543074C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及一种包含PPTA(聚对苯二甲酰对苯二胺)和长径比至少为100、截面直径为5nm或更小的纳米管的复合材料,该复合材料含有至多12wt%的纳米管,可通过将纳米管添加到硫酸中,降低温度以使混合物凝固,将PPTA添加到该固态混合物中,加热至凝固点以上,并使混合物混合,纺丝,将混合物铸塑或模塑成复合材料而得到。所涉及的方法包括步骤:a)在硫酸凝固点以上的温度下,将长径比至少为100、截面直径为5nm或更小的纳米管添加到硫酸中;b)降低温度至硫酸凝固点以下,并充分混合一段时间,使混合物凝固;c)将PPTA添加到固态混合物中;以及d)加热至凝固点以上,并使混合物混合。

Description

包含PPTA和纳米管的复合材料
本发明涉及包含PPTA(聚对苯二甲酰对苯二胺)和纳米管的复合材料,含有该复合材料的纺丝原液,制备所述原液的方法以及由其制得的复丝纤维。
单壁碳纳米管(SWNT)和芳香聚酰胺的复合物从WO 03/085049中已知。根据该文献,将芳香聚酰胺添加到SWNT中以形成复合物。还公开了可以将芳香聚酰胺和SWNT在酸中混合,以形成纺丝原液;该纺丝原液可以纺成纤维或膜。在80-85℃下,将SWNT和PPTA在硫酸中混合数小时,得到均相纺丝原液混合物。优选的芳香聚合物是PPTA。该文献中所用的方法存在各种缺点。例如,如果制备纤维,则仅能获得单丝纤维。此外,拉伸强度和模量较低。所得初生纤维的拉伸强度为0.33-0.35GPa,模量为13-19GPa。该方法的另一缺点是混合物中需要大量SWNT。根据该文献,基于SWNT和PPTA总重量的约5-10wt%的SWNT是获得具有以上拉伸强度和模量的复合材料所必须的。由于SWNT是极其昂贵的化合物,所以这是该产品商业化的沉重负担。
在EP1336673中,公开了制备含有碳纳米管的复合材料的方法。该复合材料是聚乙烯基材料,但已概括地公开了也可以使用例如PPTA的其它聚合物。现发现,当使用PPTA,而不是聚乙烯时,该文献所公开的方法并没有形成本发明的复合产物,即可以纺丝的产物。这还在对比实施例4和5中得到验证。
在WO 03/080513中,公开了一种包含在液态介质中聚合材料和纳米结构的高分散混合物的组合物。该聚合材料选自一大类聚合物,包括芳香聚酰胺。该文献的具体实施例描述了专门由环氧树脂制成的复合材料。现发现,当使用液态介质(硫酸)中PPTA和纳米结构(SWNT)的高分散混合物时,该文献所公开的方法并没有形成本发明的复合产物,即可以纺丝的产物,如对比实施例4和5中证实的。
存在一种对这样的纳米管和芳香聚酰胺的复合材料的需要:该材料具有更高的拉伸强度和更高的模量,由也适合制备复丝纤维和纱线的纺丝原液得到;它可以含有少量的纳米管,而不会不利地造成拉伸强度和模量的损失。该复合材料还应该具有优异的压缩强度,优选具有阻燃性。
本发明的目的是对包含纳米管和芳香聚酰胺的复合材料的已知制造方法实现充分改进。为此,本发明涉及包含PPTA(聚对苯二甲酰对苯二胺)和长径比至少为100、截面直径为5nm或更小的纳米管的复合材料;该复合材料含有至多12wt%(基于纳米管和PPTA的总重量)的纳米管,可通过将纳米管添加到硫酸中,降低温度以使该混合物凝固,将PPTA添加到该固态混合物中,加热至凝固点以上,并使该混合物混合,纺丝,将混合物铸塑或模塑成复合材料而得到。
更具体地,本发明涉及制备纺丝原液的方法,包括下列步骤:
a)在硫酸凝固点以上的温度下,将长径比至少为100、截面直径为5nm或更小的纳米管添加到硫酸中;
b)降低温度至硫酸凝固点以下,并充分混合一段时间,使混合物凝固;
c)将PPTA添加到固态混合物中;以及
d)加热至凝固点以上,并使混合物混合。
在本发明范围内,浓硫酸的凝固点要理解为是在搅拌冷却下,液态硫酸中首次开始形成固相时的温度。浓硫酸的凝固点的值可以在文献中找到。术语“浓硫酸”表示重量浓度至少为96%的硫酸。可以使用含有至多20wt%游离SO3的浓硫酸。用在本发明方法步骤b)中的硫酸可以在其凝固点以下的任何温度。但是,考虑到应用极低温度所带来的经济和技术缺陷,所选定的温度一般不会比待用硫酸的凝固点低50℃以上。硫酸冷却至其凝固点以下的温度优选低于0℃。而且,为防止固态硫酸预熔化,优选地应使用冷却到比其凝固点至少低5℃的硫酸。待与硫酸混合的PPTA的温度可以等于、或高于或低于室温,但必须选定为使得在添加和混合工艺过程中,混合物保持固态。因此,要避免待与硫酸混合的PPTA具有极高温度。为防止由PPTA带入体系内的热,或在混合工艺中产生的热导致混合物过早熔化,可能有必要在将硫酸和纳米管的混合物与芳香聚酰胺混到一起的过程中进行冷却。该温度应该优选保持在硫酸凝固点以下,直至该混合物已达到用作纺丝物质所要求的均一性。如果需要,可以在将PPTA与硫酸混合之前,将其冷却到室温以下,例如到硫酸的凝固温度以下。可以以各种方式制备冷却到其凝固点以下的硫酸。该过程优选要使得在降硫酸与呈精细分散态的芳香聚酰胺合并并混合之前,该硫酸已呈精细分散态。在本发明范围中,精细分散态要理解为物质由各个测量尺寸小于约2mm、优选小于约0.5mm的颗粒组成。这种颗粒可以聚结在一起形成聚积体,而该聚积体在混合过程中又分成单个颗粒。特别地,该精细分散的硫酸的存在态可以非常类似于雪。该硫酸应该一直如此精细分散,以使一旦将其与PPTA混合,即形成适合用作纺丝物质的混合物。
为实现本发明方法的优点,必要但非充分的条件是浓硫酸/纳米管/PPIA混合物应该在硫酸凝固点以下的温度相互混合。当制造纺丝物质时,本发明关键的是在将硫酸与芳香聚酰胺接触之前,硫酸已冷却到其凝固点以下。将温度在其凝固点以上的液态硫酸与精细分散的PPTA混在一起,随后在硫酸凝固点以下的温度,在低剪切速率的条件下进行搅拌,一般会得到不适合或几乎不适合纺丝的非均匀混合物。
意外地,该凝固步骤显著改善了由以上纺丝原液制得的复合材料的拉伸强度和模量,并使其可以使用少量的纳米管。可制得的复合材料是纤维和膜等。因此,本发明的又一目的是可由以上提到的纺丝原液得到纤维,特别是复丝纤维。更具体地,复丝纤维优选含有至少5根丝,更优选含有至少20根丝。
在制备硫酸、PPTA和无机须晶的混合物中采用该凝固步骤的类似方法从US 5,512,368中已知。因而,根据该文献的实施例1,将碳化硅须晶添加到浓硫酸中,并与其混合,随后冷冻该混合物,并添加PPTA。该混合物可以用作制备单丝微复合纤维的纺丝原液。但是,用在该方法中的须晶与本发明中的纳米管不具可比性。根据该文献,须晶是无机材料,特别是碳化硅或硅石,其长径比优选为5-50,对于约2-20μm的平均长度,截面尺寸为约0.1-1.5μm。因而,这些须晶的尺寸量级大于此处要求保护的碳纳米管,并且由于其大尺寸,它在纤维材料中的含量一般较高,例如实施例1中的25wt%。
根据本发明,纳米管是完全由碳得到的分子。这种分子的例子有布基球(buckyball)或富勒烯(Buckminsterfullerene)(C60=呈球状的60个碳原子)。但是,这种分子可以被改性,例如通过与具有例如羟基、氨基和羧基官能团的不饱和分子的Diels-Alder反应改性。这种改性纳米管也包括在本发明寻求保护的范围中。术语“纳米管”特指管状分子,例如管状富勒烯,它是两端可以被两个C60半球封端、其侧壁仅具有六边形和/或五边形单元的管。其它多壁碳纳米管(MWNT:同心碳圆柱),例如形成在碳电弧放电工艺过程中的,也在本纳米管定义内。但是优选地,该纳米管是单壁碳纳米管(SWNT)。单壁碳纳米管是其中单层石墨(石墨层,graphene)卷成管的管。石墨层由碳原子以象“鸡网”的六边形结构组成。这种卷成可以以各种方式实现。例如,碳-碳键可以与管轴平行或垂直。或者,碳-碳键可以在与管轴平行和垂直之间取向。不同卷成的管通过双指数(n,m)彼此进行区分,其中n和m是整数。该双指数表示在形成管的平面六边形晶格中连接两个原子所要求的单位矢量(a1和a2)的数目。
由不同生产工艺得到的SWNT材料中的主要杂质是多壳纳米碳囊(生成的使催化剂大颗粒失活的“布基葱(buckyonion)”),它呈空心状,或填充有过渡金属、无定形碳纳米颗粒、MWNT、没有封端的封催化剂颗粒、基材颗粒(例如SiO2)、石墨和富勒烯。可以在将SWNT用在复合材料中之前去除这些杂质。含有至少约85% SWNT的高纯SWNT材料比低纯材料优选。例如在WO98/39250中,在氧化条件下加热SWNT,以去除无定形碳和其它污染材料。在浓度高到足以蚀刻无定形碳、但不要太高以致不能防止SWNT被蚀刻的氧化剂(例如HNO3、H2O2和H2SO4的混合物、或KMnO4)水溶液中,(在120℃下)回流SWNT。适用的浓度优选为2.0-2.6M硝酸。
根据本发明的纳米管具有至少100的长径比和5nm或更小的截面直径。优选地,纳米管的长径比大于150,更优选大于200,截面直径小于约2nm。
根据本发明,SWNT是重要的纳米管,因为它们可以增强PPTA纤维,例如通过结合到空区(void region)中,或通过在两个晶区之间桥接。在空区中,SWNT应该与晶体中的聚合物链相互作用。这可以通过范德华作用力来实现。但是,也可以以下面方式来改性SWNT的表面:在SWNT表面上的基团与不会参与晶体中氢键的酰胺基(大致是芳香聚酰胺,例如Twaron
Figure C200580007924D0011090712QIETU
中1/3的酰胺键)之间形成氢键。为形成原纤维中晶区之间的桥,SWNT应该延伸穿过各晶区。因此优选地,SWNT的长度至少为100nm(桥接3个晶区)。
优选地,该纳米管在纤维轴向上没有曲率。曲率可以急剧降低纳米管/聚合物复合材料的机械性能。虽然期望纳米管在穿过液晶相和拉丝的纤维方向上对齐,但应该特别注意曲率。当纳米管沿纤维轴完全对齐时,结果最好。
本发明中所用的术语PPTA表示聚对苯二甲酰对苯二胺,它是通过聚合作为芳香二胺单体的对苯二胺(PPD)和作为对位取向芳香二酰卤单体的对苯二酰氯(TDC)而制得的聚合物。本发明通篇定义的PPTA也包括这种聚合物:其少量(低于10mol%,优选低于5mol%,最优选低于2mol%)PPD和/或TDC被其它芳香二胺或二酰卤单体代替,例如2,6-萘二酰氯、2-氯对苯二酰氯、间苯二酰氯和2,5-二氨基-苯磺酸。
优选地,在步骤a)中使混合物在10-90℃下混合10分钟-6小时,更优选在室温-70℃下混合30分钟-4小时,最优选在45-55℃下混合。纳米管在添加之前优选首先被干燥,优选在升高温度(例如约80℃)下在真空中进行2-24小时。最优选地,在制冰之前使纳米管完全分散(各个纳米管均匀分布)在硫酸中。优选地,通过超声工艺来分散纳米管,以改善和加速分散体的形成。超声处理可以利用通常的超声装置来进行,一般在10-90℃下超声10分钟-24小时,例如在室温下超声3小时。一旦通过将温度降低到硫酸凝固点以下,一般到7--20℃,优选到2--12℃,溶液转变为冰,即可以将其与PPTA混合,以形成固态纺丝溶液。在将PPTA添加到该混合物中之前,温度优选保持在-5-0℃。
完全分散在硫酸中的纳米管可以渗入PPTA多孔结构中。为获得纳米管在PPTA纺丝溶液中的完全分散体,混合是非常关键的。在升高温度之前,使该混合物混合至少1小时,然后优选地在混合下将温度升高到室温。
根据本发明方法,使用通过混合PPTA和浓硫酸/纳米管的固态混合物而制得的物质。优选地,直到硫酸和芳香聚酰胺已完全混合成均匀混合物,才允许将混合物的温度逐渐升高到所用硫酸的凝固点以上。虽然接着可能期望固态硫酸颗粒熔化,以形成硫酸液相,但该相在实际操作中是观察不到的。尽管该浓硫酸/纳米管和PPTA的混合物一般含有75-85wt%的浓硫酸,它们甚至在所用硫酸的凝固点以上的温度下,例如室温以上仍具有干而沙质的特性。显然,所存在的硫酸完全被聚合物颗粒吸收。对于这种待纺丝的混合物,当然必须将其加热到更高的温度。根据聚合物的组成、聚合物的浓度和固有粘度,该温度必须为20-120℃。
可以以各种方式进行步骤c),将硫酸/纳米管和芳香聚酰胺混在一起。可以将硫酸/纳米管添加到芳香聚酰胺中,或者相反进行。也可以将这两种物质同时引入某合适空间中。该纺丝物质的连续制备可以例如在由带有冷却元件和旋转螺杆的壳体组成的混合器作用下进行。将液态硫酸或液态硫酸和纳米管的混合物进料到该壳体的入口端,在其中将它冷却。下面将精细分散的芳香聚酰胺添加到硫酸温度已充分降低的部分中。旋转螺杆接着也充当混合设备。接着固态混合物到达该壳体的排放端,它已足够均匀,可用作纺丝物质。特别合适的方法是:将液态浓硫酸引入带有冷却设备和搅拌器的容器中,随后在搅拌和冷却下使其转化为雪状物质,随后在连续搅拌下添加精细分散的芳香聚酰胺混合物。
通过应用常规的加热装置,在步骤d)中将PPTA/纳米管/硫酸混合物的温度升高到凝固点以上。
所得复合材料的拉伸强度至少为1.5GPa,优选至少为2GPa;模量至少为50GPa,优选至少为70GPa;并可由含有基于纳米管和PPTA总重量为12wt%或更少、优选约5wt%或更少、最优选约1wt%或更少的纳米管的组合物制得。
本发明的组合物,特别是由纺丝溶液制得的膜和纤维适合用在要求高韧度、高模量和高压缩强度的应用领域,例如用于汽车的复合材料、防弹材料,包括软弹道和硬弹道。
下面是本发明的实验例子,它用来说明本发明,不应解释为限制性的。
实施例1
在6升的Drais混合器(型号FH6)中制备纺丝溶液(纺丝原液)。在纺丝溶液的所有制备步骤过程中,用氮气清洗Drais混合器。该Drais混合器的混合室是双壁室。利用下面步骤来制备纺丝溶液。
·将2001g硫酸(99.8wt%)添加到已预热的混合室(壁温=50℃)中,同时用氮气清洗该体系。
·将混合物加热到50℃。
·将4.94g单壁碳纳米管(SWeNTTM,85%纯化干(冻干)SWNT级S-P95-干;South West Nanotechnologies,Norman,USA)添加到硫酸中。该SWNT已在80℃下在真空中干燥了8-10小时。
·在50℃的温度下使该溶液(液态硫酸和SWNT)(混合速度=20rpm)混合120分钟。
·将混合物转移到塑料储瓶中,并将混合物超声(Bandelin,Sonorex superRK 1028H,35kHz)(不加热)3小时。
·将该混合物转移到Drais混合器中,并将温度降低到-10℃(混合室的壁温,结果混合物温度约为-2℃),静置2小时。硫酸变成固体。
·在45分钟后将温度升高到-2℃(混合室的壁温),并将489g PPTA(相对粘度5.1)添加到该固态混合物中,并在-2℃的壁温下混合1小时。
·停止冷却,进行11小时的混合。混合物的温度缓慢升高到室温。
实施例2
已纯化SWNT的官能化
根据下面步骤纯化SWNT:
将3.11g SWNT(购自Nanoledge)在混合器(Waring商用混合器)中300ml去离子水中浸湿。为达到充分润湿,15分钟内在炉中(室温,压力小于50mbar)真空下将该悬浮体抽空3次。12小时后SWNT沉降。将上层清液抽掉,并将糊状物质转移到离心管中,以4000rpm离心30分钟(Heraeus,Megafuge 1.0)。将所得的糊、178.6g去离子水和58.17g HNO3(65%)引入耐高压烧杯中,并在微波炉(Milestone Microsynth)中加热到180℃(10bar)。在5分钟内达到180℃的温度(1000W),并将该温度保持1小时(80W)。使用去离子水将该冷却混合物离心数次(4000rpm,30分钟),直至上层清液的pH值约为7。将糊悬浮在约300g NMP(N-甲基吡咯烷酮)中,搅拌,并以2000rpm离心30分钟。抽掉上层清液,并重复该步骤4次。用300g IPA(异丙醇)将糊再离心3次。在真空炉(10-1mbar)中60℃下将糊干燥24小时。
按如下步骤进行4-氨基-苯基柠康酰亚胺(APCI)或4-氨基-苯基马来酰亚胺(APMI)与纯化SWNT之间的反应:
室温下在真空炉中对100g NMP中含有0.10g以上纯化SWNT和0.20gAPMI的反应管和100g NMP中含有0.11g以上纯化SWNT和0.21g APCI的管进行抽空,随后在室温下进行30分钟的超声处理(Bandelin,Sonorex Digital10P),并再次抽空。将这两个带有磁力搅拌器的反应管在140℃下在氮气和水冷却下加热24小时。通过旋转蒸发仪(120℃,15mbar)脱除大部分溶剂。将余下物质悬浮在约400gIPA中,并以4000rpm离心(Heraeus,Megafuge 1.0)30分钟。重复该步骤4次。在真空炉(10-1mbar)中160℃下将该改性SWNT干燥48小时。利用XPS分析该改性SWNT,得到该改性SWNT的原子组成。得到下面的原子重量百分比(n%)。
 
样品 碳含量(n%) 氧含量(n%) 氮含量(n%)
纯化SWNTAPMI改性的SWNTAPCI改性的SWNT 94.187.491.2 4.79.06.1 0.63.22.0
利用这些数值,并结合APCI和APMI的分子结构,可以计算基于氮的官能度。得到下面的官能度值。
 
样品 基于氮的官能度(mmol/g)
APMI改性的SWNT 1.10
APCI改性的SWNT 0.61
实施例3
在RandCastle纺丝机(一种小规模纺丝机,MicrotruderTM RCP-0250)上将实施例1的纺丝溶液进行纺丝。将该纺丝机调节为适应PPTA工艺,以经受得住与硫酸的接触。
RandCastle纺丝机由以下部件构成:
i)进料斗
ii)挤出机(直径=6mm,长度=240mm;仅有150mm用于输送和熔化纺丝溶液)
iii)用于加热挤出机螺杆的4个加热单元
iv)喷丝嘴(不锈钢滤嘴:120;325;325;120目,6个纺丝孔,直径=80μm,L/d=0.2)
使用含碳纳米管的纺丝溶液进行下面实验(见表1)。
表1:纺丝过程中的工艺设置
 
样品 挤出速率(g/min) 挤出速率(m/min) 拉伸后的速度(m/min) 拉丝比(DR) 挤出机转速(rpm) 丝直径(μm)
1 0.77 14.59 74 5.1 40 17.4
在该实验中,保持0.5cm的空气间隙。
利用80-350ml/min的水流补充凝固介质(水)。水温大约为21-24℃。
将纱线卷在筒管上。随后,对纱线进行中和、洗涤和干燥。采用下面的步骤:
·用水洗涤(缓慢流动的水)卷在筒管上的纱线约60分钟。
·随后,向水中添加碳酸氢盐,以中和纱线(持续约1天),再用水洗涤纱线(持续约1天)。
·在空气中干燥纱线约1晚。
所得纤维的性质如下。
Figure C200580008971D00121
LD=线密度
BT=断裂强度
TS=拉伸强度
EAB=断裂时伸长率
CMA=模量
按如下进行纱线单丝的机械测试。
将丝线置于21±1℃、65±2%相对湿度的条件下(ASTM D1776-98)。根据ASTM D1577-96(选项C-振动式纤度计)测定长度为20mm的各丝的线密度。使用带有
Figure C200580008971D00122
EL-550涂层的Instron 2712-001丝夹(filament clamp),在Instron 5543拉伸测试仪上进行拉伸测试。标距设为100mm。使用20mN/tex的预张力。所用的丝夹速度为10mm/min。线密度和机械性质是10根单丝的平均值。根据ASTM D885-98测定各丝的机械性质。
对比实施例4
根据EP 1336673中公开的现有方法,使用柱塞式纺丝机。
在6升Drais混合器中制备液态纺丝溶液(纺丝原液)。在纺丝原液的所有制备步骤过程中,用氮气清洗Drais混合器。该Drais混合器的混合室是双壁室。利用下面步骤来制备纺丝溶液。
·将2022g硫酸(99.8wt%)添加到已预热的混合室(壁温=90℃)中,同时用氮气清洗该体系。
·将混合物加热到90℃。
·添加5g单壁碳纳米管。该SWNT已在50℃下在真空中干燥了8-10小时。
·在90℃的温度下使该溶液(液态硫酸和SWNT)(混合速度=18rpm)混合60分钟。
·将494g PPTA(相对粘度5.1)添加到混合物中,并在90℃的壁温下混合3小时。
在柱塞式纺丝机(一种小规模纺丝机)上将纺丝溶液进行纺丝。将该纺丝机调节为适应PPTA工艺,以经受得住与硫酸的接触。该纺丝机由以下部件构成:
i)纺丝溶液(温度=87℃)的加热储器(160ml)
ii)将纺丝溶液输送通过喷丝嘴的注射柱塞
iii)喷丝嘴(不锈钢滤嘴:120;325;325;120目,10个纺丝孔,直径=85μm,温度=87℃)。
使用含碳纳米管的纺丝溶液进行下面的纺丝实验:挤出速率=33.6,50.4和67.2m/min。
没有一个实验可以由该含碳纳米管的纺丝溶液纺成丝,并观察到喷丝嘴表面出现堵塞。
对比实施例5
根据EP 1336673中公开的现有方法,使用RandCastle纺丝机(一种小规模纺丝机,MicrotruderTM RCP-0250)。
在0.6升IKA捏合机中制备液态纺丝溶液(纺丝原液)。在纺丝原液的所有制备步骤过程中,用氮气清洗IKA捏合机。该IKA捏合机的混合室是双壁室。利用下面步骤来制备纺丝溶液。
·将200g硫酸(99.8wt%)添加到已预热的混合室(壁温=80℃)中,同时用氮气清洗该体系。
·将混合物加热到80℃。
·添加0.494g单壁碳纳米管。该SWNT已在80℃下在真空中干燥了8-10小时。
·在80℃的温度下使该溶液(液态硫酸和SWNT)(混合速度=30rpm)混合60分钟。
·将48.88g PPTA(相对粘度5.1)添加到混合物中,并在80℃的壁温下混合2.5小时。
在RandCastle纺丝机(如实施例3中提到的一种小规模纺丝机)上将纺丝溶液进行纺丝。将该纺丝机调节为适应PPTA工艺,以经受得住与硫酸的接触。
将该液态纺丝溶液从捏合机中转移到纺丝机的预热进料斗中(87℃)。在RandCastle纺丝机的进料斗中将该纺丝溶液加热2.5小时。使用含碳纳米管的纺丝溶液进行下面的纺丝实验:螺杆转速=27,40,50和60rpm。
不能由该含碳纳米管的纺丝溶液纺成丝。不能通过挤出机螺杆输送。

Claims (12)

1.一种包含聚对苯二甲酰对苯二胺PPTA和长径比至少为100、截面直径为5nm或更小的纳米管的复合材料,所述复合材料含有至多12wt%的纳米管,且其根据ASTM D885-98测定的拉伸强度至少为1.5GPa,模量至少为50GPa,其可通过将所述纳米管添加到硫酸中,降低温度以使混合物凝固,将PPTA添加到该固态混合物中,加热至凝固点以上,并使混合物混合,纺丝,将混合物铸塑或模塑成复合材料而得到。
2.如权利要求1的复合材料,其中纳米管是单壁纳米管。
3.如权利要求1的复合材料,其中纳米管的含量为5wt%或更低。
4.如权利要求1的复合材料,其中复合材料是纤维。
5.一种制备纺丝原液的方法,包括下列步骤:
a)在硫酸凝固点以上的温度下,将长径比至少为100、截面直径为5nm或更小的纳米管添加到硫酸中;
b)降低温度至硫酸凝固点以下,并充分混合一段时间,使混合物凝固;
c)将PPTA添加到固态混合物中;以及
d)加热至凝固点以上,并使混合物混合。
6.如权利要求5的方法,其中在步骤a)中在10-90℃下将混合物混合10分钟-6小时。
7.如权利要求5的方法,其中在步骤b)中将温度降至7--20℃。
8.如权利要求7的方法,其中在步骤b)中将温度降至2--12℃。
9.如权利要求5的方法,其中在步骤c)中将PPTA添加到混合物中之前,将温度保持在-5-0℃。
10.如权利要求5的方法,其中在步骤d)中将温度升高到室温,并使混合物混合至少1小时。
11.一种通过将根据权利要求5获得的纺丝原液进行纺丝得到的复丝纤维,其特征在于所述纤维包含至少5根丝且其根据ASTM D885-98测定的拉伸强度至少为1.5GPa,模量至少为50GPa。
12.一种具有包含权利要求1的复合材料的丝的纤维,其特征在于所述纤维是包含至少5根丝的复丝纤维。
CNB200580008971XA 2004-03-20 2005-03-18 包含ppta和纳米管的复合材料 Expired - Fee Related CN100543074C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04006765 2004-03-20
EP04006765.4 2004-03-20

Publications (2)

Publication Number Publication Date
CN1934180A CN1934180A (zh) 2007-03-21
CN100543074C true CN100543074C (zh) 2009-09-23

Family

ID=34854566

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200580008971XA Expired - Fee Related CN100543074C (zh) 2004-03-20 2005-03-18 包含ppta和纳米管的复合材料

Country Status (11)

Country Link
US (2) US7534486B2 (zh)
EP (1) EP1737905B1 (zh)
JP (1) JP4737778B2 (zh)
KR (1) KR101153839B1 (zh)
CN (1) CN100543074C (zh)
AT (1) ATE376571T1 (zh)
DE (1) DE602005003019T2 (zh)
ES (1) ES2296169T3 (zh)
RU (1) RU2376403C2 (zh)
TW (1) TWI367913B (zh)
WO (1) WO2005090460A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153839B1 (ko) * 2004-03-20 2012-07-06 데이진 아라미드 비.브이. Ppta와 나노튜브를 포함하는 복합 물질
JP2007100022A (ja) * 2005-10-07 2007-04-19 Teijin Ltd ポリマードープの調整方法
WO2008140533A2 (en) * 2006-08-29 2008-11-20 William Marsh Rice University Processes for making composites and blends of loose single-walled carbon nanotube ropes (swnt-rs) and other carbon nanotube ropes with acid soluble polymers and other materials, and products made therefrom
US20080287598A1 (en) * 2006-11-29 2008-11-20 Kiu-Seung Lee Method of preparing aramid polymers incorporating carbon nanotubes
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8158217B2 (en) * 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
JP4971836B2 (ja) * 2007-03-05 2012-07-11 帝人株式会社 窒化ホウ素ナノチューブ分散液、及びそれより得られる不織布
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US20090081441A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
EP2225091B1 (en) * 2007-11-30 2013-02-20 Teijin Aramid B.V. Optical fiber cable with flexible continuous tape from multifilament yarn
WO2010144161A2 (en) 2009-02-17 2010-12-16 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
WO2010141130A1 (en) 2009-02-27 2010-12-09 Lockheed Martin Corporation Low temperature cnt growth using gas-preheat method
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
EP2421702A4 (en) 2009-04-24 2013-01-02 Applied Nanostructured Sols NED SIGNATURE CONTROL MATERIAL
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
WO2010129234A2 (en) 2009-04-27 2010-11-11 Lockheed Martin Corporation Cnt-based resistive heating for deicing composite structures
BR112012002216A2 (pt) 2009-08-03 2016-05-31 Applied Nanostructured Sols método de incorporação de nanopartículas em fibras compósitas, fibra de vidro e tapete de fibra picada ou compósito
US8168291B2 (en) 2009-11-23 2012-05-01 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
BR112012012264A2 (pt) 2009-11-23 2016-04-26 Applied Nanostructured Sols estruturas compósitas terrestres adaptadas para cnt
EP2333003A1 (en) * 2009-12-10 2011-06-15 Stichting Dutch Polymer Institute Process for the preparation of a conductive polymer composition
CN103079805B (zh) 2009-12-14 2015-02-11 应用纳米结构方案公司 含有碳纳米管并入的纤维材料的防火复合材料和制品
US9163354B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
CA2785803A1 (en) 2010-02-02 2011-11-24 Applied Nanostructured Solutions, Llc Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
WO2011109480A2 (en) 2010-03-02 2011-09-09 Applied Nanostructed Solution, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US8787001B2 (en) 2010-03-02 2014-07-22 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
EP2392700B1 (en) * 2010-04-28 2012-06-20 Teijin Aramid B.V. Process for spinning graphene ribbon fibers
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
WO2012040004A1 (en) 2010-09-22 2012-03-29 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
RU2474534C2 (ru) * 2011-05-06 2013-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" Способ обработки углеродных нанонаполнителей
KR101295699B1 (ko) * 2011-06-24 2013-08-14 금오공과대학교 산학협력단 메타 아라미드/탄소나노튜브 복합체와 그 제조방법
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
CN102839444B (zh) * 2012-08-27 2016-01-20 烟台泰和新材料股份有限公司 黑色对位芳纶纤维的制备方法
US9551079B2 (en) 2013-09-13 2017-01-24 Purdue Research Foundation Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions
RU2557625C1 (ru) * 2014-02-25 2015-07-27 Открытое акционерное общество "Каменскволокно" Способ получения арамидных нитей, модифицированных углеродными нанотрубками
ITUA20161499A1 (it) * 2016-03-09 2017-09-09 Montefibre Mae Tech S R L Processo di produzione di fibre acriliche o modacriliche
JP6380687B2 (ja) * 2016-08-31 2018-08-29 東レ株式会社 カーボンナノチューブ分散液の製造方法
EP3763854A1 (en) * 2017-01-24 2021-01-13 Conyar B.V. Shaped articles comprising carbon nanotubes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965033A (en) 1990-03-26 1990-10-23 E. I. Du Pont De Nemours And Company Process for spinning high-strength, high-modulus aromatic polyamides
US5512368A (en) * 1995-03-16 1996-04-30 E. I. Du Pont De Nemours And Company Fibers reinforced with inorganic whiskers
NL1001692C2 (nl) * 1995-11-20 1997-05-21 Akzo Nobel Nv Werkwijze voor de bereiding van geregenereerde cellulose filamenten.
PT880609E (pt) * 1996-02-14 2000-09-29 Akzo Nobel Nv Fibras e filamentos de celulose possuindo um elevado alongamento a ruptura
KR20040090976A (ko) * 2002-01-15 2004-10-27 나노다이나믹스 인코퍼레이티드 현탁된 탄소 나노튜브 조성물, 이를 제조하는 방법 및이의 용도
US6706793B2 (en) * 2002-01-23 2004-03-16 Delphi Technologies, Inc. Intumescent fire retardant composition and method of manufacture thereof
US7423084B2 (en) * 2002-02-15 2008-09-09 Dsm Ip Assets B.V. Method of producing high strength elongated products containing nanotubes
EP1336672A1 (en) * 2002-02-15 2003-08-20 Dsm N.V. Method of producing high strength elongated products containing carbon nanotubes
US20060155043A1 (en) * 2002-03-20 2006-07-13 The Trustees Of The University Of Pennsylvania Nanostructure composites
US20040022981A1 (en) * 2002-04-01 2004-02-05 Carbon Nanotechnologies, Inc. Composite of single-wall carbon nanotubes and aromatic polyamide and process for making the same
US6905667B1 (en) * 2002-05-02 2005-06-14 Zyvex Corporation Polymer and method for using the polymer for noncovalently functionalizing nanotubes
US7285591B2 (en) * 2003-03-20 2007-10-23 The Trustees Of The University Of Pennsylvania Polymer-nanotube composites, fibers, and processes
US7361430B1 (en) * 2003-04-08 2008-04-22 The United States Of America As Represented By The United States Department Of Energy Carbon nanotube-polymer composite actuators
US7309727B2 (en) * 2003-09-29 2007-12-18 General Electric Company Conductive thermoplastic compositions, methods of manufacture and articles derived from such compositions
KR101153839B1 (ko) * 2004-03-20 2012-07-06 데이진 아라미드 비.브이. Ppta와 나노튜브를 포함하는 복합 물질

Also Published As

Publication number Publication date
TWI367913B (en) 2012-07-11
CN1934180A (zh) 2007-03-21
DE602005003019T2 (de) 2008-08-21
WO2005090460A1 (en) 2005-09-29
TW200602407A (en) 2006-01-16
US20070160821A1 (en) 2007-07-12
RU2376403C2 (ru) 2009-12-20
DE602005003019D1 (de) 2007-12-06
ATE376571T1 (de) 2007-11-15
EP1737905A1 (en) 2007-01-03
JP2007529640A (ja) 2007-10-25
JP4737778B2 (ja) 2011-08-03
KR101153839B1 (ko) 2012-07-06
US20090252960A1 (en) 2009-10-08
US7534486B2 (en) 2009-05-19
RU2006137078A (ru) 2008-04-27
WO2005090460A8 (en) 2005-12-01
EP1737905B1 (en) 2007-10-24
ES2296169T3 (es) 2008-04-16
KR20060127211A (ko) 2006-12-11
US7758960B2 (en) 2010-07-20

Similar Documents

Publication Publication Date Title
CN100543074C (zh) 包含ppta和纳米管的复合材料
Haggenmueller et al. Interfacial in situ polymerization of single wall carbon nanotube/nylon 6, 6 nanocomposites
Sahoo et al. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods
Xu et al. Fabrication of high strength PVA/SWCNT composite fibers by gel spinning
Rangari et al. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers
De Bortoli et al. Functionalized carbon nanotubes for 3D-printed PLA-nanocomposites: Effects on thermal and mechanical properties
Irzhak Epoxide composite materials with carbon nanotubes
Choi et al. Noncovalent functionalization of multi-walled carbon nanotubes with pyrene-linked nylon66 for high performance nylon66/multi-walled carbon nanotube composites
Alam et al. Microstructure and fractography of multiwalled carbon nanotube reinforced unsaturated polyester nanocomposites
JP4540346B2 (ja) ナノチューブを含む高い強度の長尺製品を製造する方法
Meng et al. Fabrication and properties of polyamide-6, 6-functionalized carboxylic multi-walled carbon nanotube composite fibers
KR20190140281A (ko) 탄소나노튜브 나노복합 전도성 다섬유 및 그 제조방법
Wang et al. Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: fabrication and properties
Chen et al. Preparation, properties and application of polyamide/carbon nanotube nanocomposites
Roy et al. Triggering compatibility and dispersion by selective plasma functionalized carbon nanotubes to fabricate tough and enhanced Nylon 12 composites
Zhang et al. Dispersion and crystallization studies of hyper-branched poly (urea-urethane) s-grafted carbon nanotubes filled polyamide-6 nanocomposites
US20090318043A1 (en) Method for making polymeric extruded composite products and carbon nanotubes
Xu et al. In situ polymerization and characterization of graphite nanoplatelet/poly (ethylene terephthalate) nanocomposites for construction of melt-spun fibers
JP4240948B2 (ja) ポリアミド樹脂組成物の製造方法
Lafuente et al. Preparation and characterization of nematic polyazomethine/single‐walled carbon nanotube composites prepared by in situ polymerization
Ucar et al. Nanocomposite Fibers with Carbon Nanotubes, Silver, and Polyaniline
JPH09500684A (ja) 脂肪族ポリアミド組成物および繊維
Uzunoğlu Investigation of mechanical properties of MWCNT integrated pa 66/glass fiber composites
Rangari et al. Influence of SiC/Si3N4 hybrid nanoparticles on polymer tensile properties
Booker et al. High-shear treatment of single-walled carbon nanotube—superacid solutions as a pre-processing technique for the assembly of fibres and films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090923

Termination date: 20160318