CN100521747C - 运动检测成像设备 - Google Patents

运动检测成像设备 Download PDF

Info

Publication number
CN100521747C
CN100521747C CN200710136974.2A CN200710136974A CN100521747C CN 100521747 C CN100521747 C CN 100521747C CN 200710136974 A CN200710136974 A CN 200710136974A CN 100521747 C CN100521747 C CN 100521747C
Authority
CN
China
Prior art keywords
scope
lens
image
simple eye
eye image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710136974.2A
Other languages
English (en)
Other versions
CN101115154A (zh
Inventor
中尾良纯
豊田孝
政木康生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Publication of CN101115154A publication Critical patent/CN101115154A/zh
Application granted granted Critical
Publication of CN100521747C publication Critical patent/CN100521747C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/41Extracting pixel data from a plurality of image sensors simultaneously picking up an image, e.g. for increasing the field of view by combining the outputs of a plurality of sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

一种运动检测成像设备,包括成像部件和光学透镜系统,该光学透镜系统用于收集进入获取范围的光线从而在成像部件上形成图像。光学透镜系统包括:光学透镜阵列,具有用于收集前方获取范围中的光线的中间透镜和用于收集侧面获取范围内的光线的左侧透镜和右侧透镜;和棱镜,用于将侧面获取范围中的光线引导至侧透镜。成像设备进一步包括:定时发生器,用于允许透镜所形成的图像以行内图像之间具有时间差的方式成像;和微处理器,用于通过快门的一个操作而根据行内图像再现广角图像,以基于广角图像间的差异检测目标的运动。该具有简单结构的成像设备监视在宽范围内快速运动的目标的可靠性很高。

Description

运动检测成像设备
技术领域
本发明涉及一种运动检测成像设备。
背景技术
一种计算在固态成像部件上获取的具有时间差的图像之间差异,并且基于计算得到的差异来检测(将被获取或成像的)目标物体的移动或运动的运动检测成像设备是公知的(参考例如日本特开专利公开2003-32552)。同样公知的是,基于数字化图像之间的差异检测正在运动的物体(参考例如日本特开专利公开2001-177836、2004-171431和Hei8-106534)。另一方面,已知一种电子静像照相机(still camera):其使用带有光接收表面的图像传感器(该光接收表面具有分割的光接收区域),并且顺序将目标物体的图像曝光在光接收区域上,以将光接收区域中的图像一体读出,从而缩短连续拍摄(shoot)模式下的拍摄间隔(参考例如日本特开专利公开Hei 11-352550)。此外,已知一种照相机:其具有四个拍照透镜,所述四个拍照透镜设置在胶片的前面以使它们适合于胶片帧中,其中提供狭缝部件以使光线在拍照透镜前面顺序通过,从而将帧片段连续记录在胶片帧中(参考例如日本专利2524818)。
对诸如在上面引证的日本特开专利公开2003-32552中所述的运动检测成像设备的实际使用的例子是监视照相机,例如用于汽车的后监视照相机。在监视照相机中,理想的是运动检测范围尽可能地宽。例如,在安置在房间墙壁上的室内监视照相机的情形中,理想的是:监视照相机能够监视覆盖房间整个区域的宽范围(获取范围或图像拍摄范围),以使监视系统简化且降低安装成本。然而,为了仅使用一个室内监视照相机就能够基本上对房间的整个区域进行成像,通常需要使用具有至少120°(度)的视角的光学透镜。一般地,具有远大于60°视角的光学透镜(以鱼眼透镜为代表)会使光学透镜获取的合成图像产生桶形失真。因此需要使用复杂的程序来数字化校正桶形失真。
另一方面,为了使用带有光学透镜(具有至多60°的视角)的监视照相机监视至少120°的范围,因此必需使用两个或多个这种监视照相机,形成两个或多个获取范围,并且进行调整以防止形成不能获取图像的区域。换言之,还没有开发出一种用于运动检测的成像设备:该设备能够以简单的结构在宽范围获取图像或成像。另外,为了检测运动,必需准备多个利用时间差获取或成像的图像。常规监视照相机或类似设备使用具有时间差的成像快门,并且以预定间隔打开和关闭快门。然而,在快门的预定间隔(低帧速)较长的情形中,出现了这样的问题,即非常可能检测不到高速运动的目标物体(例如运动的汽车)的运动。
发明内容
本发明的目的是提供一种运动检测成像设备,其能够使用尽可能简单的光学系统在宽获取范围内成像,而不使用具有视角远大于60°的光学透镜,该设备可以容易地且以短时间间隔获取用于运动检测的多个图像,从而即使在目标以高速移动时,也能够阻止对目标物体检测的几率下降。
依据本发明的第一方案,上述目的可以通过一种运动检测成像设备来实现,该运动检测成像设备包括:带有单位像素的固态成像部件,所述单位像素以行及列的矩阵形式排列;和光学透镜系统,其用于收集进入获取范围内的光线,以在固态成像部件上形成以时间差成像的图像,从而基于成像的图像之间的差异检测图像中目标物体的运动。所述光学透镜系统包括:光学透镜阵列,其具有沿单位像素的列方向排列的多个光学透镜(此后被称为“中间透镜”),并且在获取范围中预定前方范围内的光线进入该中间透镜,光学透镜阵列还具有处于中间透镜的左侧和右侧且沿单位像素的列方向中排列的两组光学透镜(此后被称为“左侧透镜和右侧透镜”),每组光学透镜具有多个光学透镜,并且在获取范围中预定左侧范围和右侧范围内的光线进入该左侧透镜和右侧透镜;和光线弯曲机构,其设置在左侧透镜和右侧透镜的进入侧,用于将进入获取范围中预定左侧范围和右侧范围内的光线分别弯曲和引导至左侧透镜和右侧透镜,且沿左侧透镜和右侧透镜的光轴指引光线。所述固态成像部件具有用于分别对中间透镜、左侧透镜和右侧透镜所形成的多个图像(此后称为“单眼图像”)成像的成像区域(这种图像区域此后被称为“单眼图像区域”)。
该运动检测成像设备还包括:滚动式快门机构,用于允许固态成像部件以单眼图像区域的相邻的行(此后称为“行内单眼图像区域”)的单眼图像之间具有时间差的方式成像,所述行在与单位像素的行方向相同的方向上延伸;图像组合机构,其用于在各个所述行内单眼图像区域内,将所述中间透镜依据进入该获取范围的预定前方范围内的光线所形成的单眼图像与所述左侧透镜和右侧透镜依据进入该获取范围的预定的左侧范围和右侧范围内的光线所形成的单眼图像相组合,以再现广角图像,从而再现具有所述行内单眼图像区域之间时间差的多个广角图像;和运动检测机构,其用于基于所述图像组合机构依据所述行内单眼图像区域中的单眼图像所分别再现的广角图像之间的差异,检测所述广角图像中的目标物体。
优选地,光线弯曲机构包括棱镜。
进一步优选地,光线弯曲机构包括45—45—90度直角棱镜。
更进一步优选地,光线弯曲机构包括30—60—90度直角棱镜。
又进一步优选地,光线弯曲机构包括反射镜(mirror)。
依据本发明的第二方面,上述目的可以通过一种运动检测成像设备实现,该运动检测成像设备包括:带有单位像素的固态成像部件,所述单位像素以行及列的矩阵形式排列;和光学透镜系统,其用于收集进入获取范围内的光线,以在固态成像部件上形成以时间差成像的图像,从而基于被成像的图像之间的差异检测图像中目标物体的运动。所述光学透镜系统包括光学透镜阵列,其具有沿单位像素的列方向排列的3个光学透镜(此后被称为“中间透镜”),并且在获取范围中前方约40°的范围中的光线进入该中间透镜;光学透镜阵列还具有位于中间透镜左侧和右侧且沿单位像素的列方向排列的两组3个光学透镜(此后被称为“左侧透镜和右侧透镜”),每组光学透镜具有3个光学透镜,并且在获取范围中的左侧和右侧各约40°范围中的光线进入该左侧透镜和右侧透镜;和左45—45—90度直角棱镜和右45—45—90度直角棱镜,其分别设置在左侧透镜和右侧透镜的进入侧,以防止进入前方约40°的范围内的光线中断,以及将进入获取范围中左侧和右侧各约40°的范围内的光线弯曲和引导至左侧透镜和右侧透镜,且沿左侧透镜和右侧透镜的光轴指引光线。所述固态成像部件具有3行及3列的矩阵形式的9个图像区域(这种图像区域此后被称为“单眼图像区域”),所述图像区域分别用于对通过中间透镜和左侧透镜和右侧透镜形成的9个图像(此后称为“单眼图像”)成像。
运动检测成像设备进一步包括:滚动式快门机构,用于允许固态成像部件以单眼图像区域的相邻的行(此后被称为“行内单眼图像区域”)中的单眼图像之间具有时间差的方式成像,所述行在与单位像素的行方向相同的方向上延伸;图像组合机构,用于组合各行内单眼图像区域内中间透镜使用进入获取范围中前方约40°的范围内的光线所形成的三个单眼图像与左侧透镜和右侧透镜各自使用进入获取范围中左侧和右侧各约40°的范围内的光线所形成的三个单眼图像,以再现广角图像,从而以行内单眼图像区域之间具有时间差的方式再现广角图像,其中各个广角图像具有至少约120°的像角;和运动检测机构,用于基于图像组合机构使用行内单眼图像区域中的单眼图像所分别再现的广角图像之间的差异,检测所述广角图像中的目标物体。
依据本发明的第一和第二方面中各个的运动检测成像设备使用光学透镜系统,所述光学透镜系统包括:光学透镜阵列,其具有用于收集在获取范围的前方范围中进入的光线的中间透镜以及用于收集在获取范围的左侧范围和右侧范围中进入的光线的左侧透镜和右侧透镜;和光弯曲机构(棱镜或反射镜),其用于将在获取范围的左侧范围和右侧范围中进入的光线引导至左侧透镜和右侧透镜。因此,运动检测成像设备可以使用简单的光学系统获取宽获取范围内的图像,而不使用具有远大于约60°的视角的光学透镜。
此外,运动检测成像设备进一步包括:滚动式快门机构,其用于允许固态成像部件以相邻行的单眼图像中的单眼图像之间具有时间差方式对单眼图像成像;图像组合机构,其用于组合各行单眼图像中的单眼图像,以再现广角图像,从而以相邻行内的广角图像之间具有时间差的方式再现多个广角图像;以及运动检测机构,其用于基于广角图像之间的差异,检测广角图像中的目标物体。因此,运动检测成像设备可以容易地且以短时间间隔地通过一个快门的操作获取用于运动检测的多个图像,从而能够以高检测几率(防止几率的降低)的检测高速运动的目标物体。
尽管所附的权利要求书中列出了本发明的新颖性特征,但是结合附图,通过下面详细的说明将会更好地理解本发明。
附图说明
以下将参考附图说明本发明。应该注意的是:所有附图被显示以实现说明本发明或其实施例中的技术理念的目的,其中:
图1是依据本发明第一实施例的运动检测成像设备的透视图,该运动检测成像设备包括固态成像部件和光学透镜系统;
图2是图1中运动检测成像设备的底部横截面的示意图;
图3是运动检测成像设备中的光学透镜系统的前视图;
图4是从上述运动检测成像设备中的光学透镜系统的底部看去的光路示意图,显示穿过各个光学透镜的光通量;
图5是部分运动检测成像设备连同将要成像的目标物体的透视图,显示目标物体和形成在固态成像部件上的图像之间的关系;
图6是示意图,显示从目标物体看去形成在固态成像部件上的目标物体的三个图像,以显示形成的单眼图像的状态和读取运动检测成像设备中单位像素的顺序;
图7是示意图,显示依据单眼图像再现三个广角图像,所述单眼图像从运动检测成像设备中的固态图像部件中读取;
图8是显示根据运动检测成像设备中的三个再现广角图像生成不同图像的过程的示意图;
图9是依据本发明第二实施例的运动检测成像设备中的光学透镜系统从其底部看去的光路示意图,其显示穿过各个光学透镜的光通量;
图10是依据本发明第三实施例的运动检测成像设备中的光学透镜系统从其底部看去的光路示意图,其显示穿过各个光学透镜的光通量;和
图11是依据本发明第四实施例的运动检测成像设备中的光学透镜系统从其底部看去的光路示意图,其显示穿过各个光学透镜的光通量。
具体实施方式
在此后,将参考附图说明作为实现本发明的最佳实施方式的本发明的实施例。本发明涉及一种运动检测成像设备。应当理解的是,这里所述的实施例不是用作对本发明的整体范围的限制或包含。需要注意的是,相同部件在整个附图中由相似的参考数字、字符或符号来标记。
(第一实施例)
参考图1至图8,说明依据本发明中第一实施例的运动检测成像设备(用于运动检测的成像设备)1。图1是运动检测成像设备1的透视图,该运动检测成像设备1包括固态成像部件2和光学透镜系统3;而图2是图1中运动检测成像设备1的底部横截面示意图。如图1中所示,运动检测成像设备1包括:固态成像部件(光检测阵列)2,具有以行和列(X和Y方向)的矩阵形式排列的单位像素“u”;以及光学透镜系统3,用于收集进入120°的前方获取范围(图像拍摄范围)内的光线,以在固态成像部件2上形成图像。运动检测成像设备1进一步包括:运动检测电路4,其用于将固态成像部件2上形成的图像读取为图像信息以再现多个广角图像,各个广角图像对应于120°的原始获取范围,但是这些广角图像是通过时间差获取的,从而基于多个广角图像之间的差异检测(将被成像的)目标或目标物体的运动;和诸如液晶面板之类的显示单元5,用于显示例如由运动检测电路4所再现的广角图像。
固态成像部件2例如是CMOS(互补金属氧化物半导体)图像传感器,并且安装在电路板6上(参考图2)。固态成像部件2连接至运动检测电路4,并将图像信息输出至运动检测电路4,该运动检测电路4包括将图像信息转换为数字信号的A/D(模拟至数字)转换器8。运动检测电路4进一步包括:微处理器11,用于控制运动检测电路4的整体操作;和TG(定时发生器)7(对应于权利要求中的“滚动式快门机构”),用于向固态成像部件2和A/D转换器8输出定时信号,以在微处理器11的控制下控制从固态成像部件2中以预定时间读取图像信息的时间,从而使A/D转换器8输出对应于图像信息的数字信号。因而,显而易见的是,从固态成像部件2中读取图像信息等于固态成像部件2中对捕捉到的图像信息成像。
运动检测电路4另外还包括DSP(数字信号处理器)9,DSP9被连接至A/D转换器8且由微处理器11控制,用于从A/D转换器8接收数字信号。DSP9和微处理器11的组合(对应于权利要求中的“图像组合机构”和“运动检测机构”)对DSP9接收到的数字信号进行图像处理,以再现多个广角图像,其中每个广角图像对应于原始的宽获取范围,进而在广角图像之间产生不同图像以实现对目标物体的运动的检测。
注意的是,从固态成像部件2读取图像信息的读取定时等于或对应于通过固态成像部件2获取图像的成像定时,这是因为固态成像部件2是CMOS图像传感器,并且是基于TG7所生成的定时信号而从固态成像部件2中读取图像信息的。另外,注意的是,电路板6安装在构成运动检测电路4的TG7、A/D转换器8、DSP9和微处理器11上。在后面,将详细说明DSP9和微处理器11的具体操作。
除了图1和图2之外,现在参考图3和图4说明光学透镜系统3。图3是依据第一实施例的运动检测成像设备1中的光学透镜系统3的前视图,其中为了简明起见,省略了与图1和图2中的部件相对应的其余部件,例如运动检测电路4。如图1、图2和图3中所示,依据本发明的光学透镜系统3包括:光学透镜阵列14,其具有9(九)个光学透镜(3个光学透镜12a、3个光学透镜12b和3个光学透镜12c),所述光学透镜具有相互平行的光轴La且以3(三)行和3(三)列的矩阵形式排列及整体形成在透明基板13上;和两个45—45—90度直角棱镜15(在权利要求中称为“光线弯曲机构”),其设置在光学透镜阵列14的光线进入侧,以分别面向位于矩阵左列的3个光学透镜12b和右列的3个光学透镜12c。
光学透镜系统3进一步包括:透镜固定器16,其用于在带有固态成像部件2的电路板6上控制和固定光学透镜阵列14;棱镜固定器17,其用于将45—45—90度直角棱镜15控制和固定在透镜固定器16上;隔断壁部件(partition wall member)18,其用于将光学透镜12(12a、12b、12c)和固态成像部件2之间的空间分别隔断为9个光学透镜(12a、12b、12c)的矩阵空间;以及红外截止滤光器19。光学透镜(12a、12b、12c)中的矩阵排列平行于固态成像部件2中单元像素“u”中的矩阵排列。更具体地,光学透镜(12a、12b、12c)中的行方向和列方向分别沿图1中所示的X方向(行方向)和Y方向(列方向)延伸。这里,所有的9个光学透镜(12a、12b、12c)都具有约40°的视角。
如图2中所示,45—45—90度直角棱镜15具有等腰直角三角形的横截面,并且向光学透镜阵列14倾斜。下面将详细说明直角棱镜15的具体结构,例如倾斜角。注意的是,透镜固定器16具有前壁部分,其面向45—45—90度直角棱镜15且具有用于9个光学透镜(12a、12b、12c)的9(九)个开口16a,其中各个开口16a具有小于各个光学透镜(12a、12b、12c)的直径,以作为阻挡板。另外注意的是,光学透镜(12a、12b、12c)不需要被整体形成在透明基板13上,而且可以通过透镜固定器控制光学透镜12以将它们排列在二维平面上(图1中的X-Y平面)。
现在参考图4,图4是运动检测成像设备1中的光学透镜系统3从其底部看去的光路示意图,显示了穿过各个光学透镜12a、12b、12c的光通量。如图4中所示,处于光学透镜阵列14的中间列的三个光学透镜12a(这种光学透镜12a此后被称作为“中间透镜”)直接接收进入120°的获取范围中约40°范围(重要的是不大于约60°)内的光线,而光学透镜阵列14的左列中的三个光学透镜12b和右列中的三个光学透镜12c(这种光学透镜12b和12c此后被称为“侧透镜”)分别通过两个45—45—90度直角棱镜15接收在120°的获取范围中各个约40°(同样重要的是不大于约60°)的左侧范围和右侧范围内进入的光线,所述45—45—90度直角棱镜15引导光线。
设置各个45—45—90度直角棱镜15,以使各个45—45—90度直角棱镜15允许光线经由包含直角的直角棱镜15的两个侧面中向外的侧面15a进入,进而通过直角棱镜15的斜边面15c反射光线,进一步经由直角棱镜15的另一侧面15b发射光线,从而弯曲和引导光线进入各个侧透镜(12b、12c),并且沿各个侧透镜(12b、12c)的光轴La引导光线,所述侧透镜(12b、12c)收集光线以在固态成像部件上形成图像。为了参考图4中光路图(以及在后面说明的图9和10中的光路图)说明这些表面,在本说明书中,分别将用于引导和允许光线进入以及用于反射和发射光线的各个45—45—90度直角棱镜15的表面称为“侧面”和“斜面”。
更具体地,如图4中所述,以如下方式设置各个45—45—90度直角棱镜15:使面向每一组的三个侧透镜12b、12c的侧面15b以25°的角度向光学透镜阵列14的主平面倾斜,而直角棱镜的斜面15c以70°的角度向光学透镜阵列14的主平面倾斜。这能够防止进入中间透镜12a的光线中断,这是因为从中间透镜12a看去,45—45—90度直角棱镜15的任何部分都不存在于120°的获取范围中约40°的前面范围中。每一组的三个侧透镜12b、12c收集通过外侧面15a进入约40°范围中的光线,所述外侧面15a为包含45—45—90度直角棱镜15的直角的侧面15a、15b之一,以将光线的图像形成在固态成像部件2上。
接下来将参考图5在下面说明固态成像部件2以及形成在固态成像部件2上的图像。图5是一部分运动检测成像设备1连同处于目标物体一起的透视图,显示了目标物体和形成在固态成像部件2上的图像之间的关系,其中所述目标物体将要在120°的获取范围B中成像并具有图像片段“L”、“C”和“R”。如在图5中所示的,固态成像部件2具有3(三)行和3(三)列矩阵形式的9(九)个图像区域2a,用于对9(九)个光学透镜12a、12b、12c形成的九个图像21成像(此后,分别将这种图像21和图像区域2a称为“单眼图像”和“单眼图像区域”)。
从运动检测成像设备1中所看到的,在“C”的图像片段中,由中间透镜12a形成的处于中间列中的“C”的单眼图像21从原始图像“C”上/下及左/右翻转(围绕图像平面的中心轴旋转180°)。另一方面,如从运动检测成像设备1中所看到的,在“L”和“R”的图像片段中,由左侧透镜12b形成的处于左列中的“L”的单眼图像和由右侧透镜12c形成的处于右列中的“R”的单眼图像被侧透镜12b、12c和45—45—90度直角棱镜15从原始图像L”和“R”仅仅上/下翻转,这是因为45—45—90度直角棱镜15具有镜像效应。
在下文中,将参考图6和图7详细说明将处于获取范围B中的目标物体的原始图像最终再现的过程。图6是示意图,显示从目标物体看去,形成在固态成像部件2上的目标物体中的三个图像(其中所示的方向X和方向Y与图1中所示的相对应),以显示形成的单眼图像21的状态和读取单位像素“u”的顺序。这里,假定设置在运动检测成像设备1前面的目标物体在120°的获取范围(图像拍摄范围)B的连续的40°范围中具有等角(等长)的“L”、“C”和“R”图像片段。在这种情形中,如上所述的,目标物体的“C”图像片段(即,处于约40°的中心范围内的中心图像片段)被中心透镜12a上/下翻转及左/右翻转,以在固态成像部件2上的中间列的三个单眼图像区域2a中形成“C”的三个单眼图像21,而如图6中所示,在在从目标物体观察“C”的这种单眼图像21时,所述三个单眼图像仅仅从“C”的原始图像仅仅上/下翻转。
另一方面,目标物体中的“L”图像片段(处于约40°的左侧范围中的左侧图像片段)和“R”图像片段(处于约40°的右侧范围中的右侧图像片段)通过45—45—90度直角棱镜15分别被左/右翻转,然后通过左侧透镜和右侧透镜12b、12c被上/下及左/右翻转,以分别在固态成像部件2的左列和右列中形成“L”的三个单眼图像21和“R”的三个单眼图像21。如图6中所示,在从目标物体观察时,“L”和“R”的这些单眼图像21被上/下及左/右翻转。
依据本实施例,使用顺序定时信号,通过具有时间差的运动检测电路4顺序读出这9(九)个单眼图像21。更具体地,在这种情形中,如图6中所示,以基于TG7所生成的预定的连续定时信号读取彼此具有时间差的单眼图像21的方式,三组单眼图像区域2a分别获取和读取三组单眼图像21的图像信息(各个“L”、“C”和“R”),所述单眼图像区域2a处于沿与固态成像部件2上单位像素“u”的行相同方向延伸的三行内。处于这三行内的这三组单眼图像2a在此后被称为“行内单眼图像区域”,其由参考标记2A、2B、2C来标示。将在下面更详细地对此进行说明。
参考图6,固态成像部件2的最下面一排(行)(也就是,行内单眼图像区域2A中的最下面一排)中的单位像素“u”被首先顺序读取。更具体地,在最下面一排中,TG7首先提供定时信号以读取(开始读取)最左边的单位像素u11,然后提供顺序的且连续的定时信号以读取随后的单位像素u12、u13等等,直至最右边的单位像素u1x,此后结束对最下一排中的单位像素的读取。然后,TG7提供定时信号读取第二排(从最下面一排的上一排)中的单位像素,进而开始读取第二排中的最左边单位像素u21,然后提供顺序的定时信号以读取第二排中随后的单位像素u22、u23等等,直至第二排最右边单位像素u2x,此后结束对第二排中的单位像素的读取。
图6中右下侧的弯曲的箭头线表示出了这种读取单位像素“u”的顺序。这种读取顺序被重复,直至贯穿整个行内单眼图像区域2A、2B、2C,完成对固态成像部件2的最上面一排(行内单眼图像区域2C中)中的所有单位像素uy1、uy2、uy3至uyx的读取。因此,依据本实施例,TG7以上述方式提供给各个单位像素的各个定时信号允许在相邻单位像素之间的读取操作中存在时间差。接下来,也允许在相邻的排之间的读取操作中存在时间差。同时,还允许在相邻的行内单眼图像区域2A、2B、2C之间的读取操作中存在时间差。此外,应当注意的是,这里使用普通快门来获取固态成像部件2上的图像信息。在本实施例中,通过单个或一个快门操作,即可获得图6中所示的作为一幅图像或一帧的所有排(行)中的所有单元图像“u”的图像信息。
图7是显示目标物体图像的示意图,左侧的目标物体图像为形成在固态图像部件2上、与图6中从固态成像部件2的后部看去的目标物体相对应的9(九)个单眼图像21;右侧的目标物体的图像为通过用于目标物体的原始图像再现的DSP9和微处理器11的组合所处理的再现相对应的9(九)个单眼图像21,以显示依据从固态成像部件2所读取的单眼图像21而再现三个广角图像PA、PB、PC。如图7中的左侧所示,在其中示出的9个单眼图像21中的三组“R”、“C”和“L”的单眼图像21中的每组图像信息中,“L”和“R”的单眼图像21的位置可以与图像片段“L”和“R”在目标物体上的原始位置互换或者依据图像片段“L”和“R”在目标物体上的原始位置而被翻转。
另外,“L”和“R”的单眼图像21实质上是依据“L”和“R”在目标物体上的原始图像片段而被左/右翻转。三组“R”、“C”和“L”的单眼图像21中的每组图像信息由DSP9和微处理器11的组合所处理,以颠倒(交换)“R”和“L”的单眼图像21的位置,进而实质上翻转其中的“R”和“L”单眼图像21,从而再现广角图像PA、PB、PC(各个“L”、“C”和“R”),所述广角图像PA、PB、PC分别对应于行内单眼图像区域2A、2B、2C并且如图7的右侧所示准确地再现目标物体的原始图像片段。
更具体地,DSP9和微处理器11的组合颠倒或交换在各个行内单眼图像区域2A、2B、2C中“R”的左/右翻转后的单眼图像21的位置(在右侧约40°范围内)和“L”的左/右翻转后的单眼图像21的位置(在左侧约40°范围内),然后将“L”的单眼图像21和“R”的单眼图像21分别镜像翻转回到“L”的标准单眼图像和“R”的标准单眼图像。然后DSP9和微处理器11的组合进一步将“L”和“R”的标准单眼图像与“C”的中心单眼图像21(在中心约40°范围内)相组合,以再现或形成各个具有120°的图像角度的广角图像PA、PB、PC。
在这里,依据本实施例的运动检测成像设备1的优点在于:各组单眼图像21在其周边实质上没有失真,因为光学透镜12a、12b、12c具有如约40°一样的小视角(所述视角不大于60°),以使在组合单眼图像21时不需要对各组单眼图像21进行复杂的失真校正处理。此外,由于三个单眼图像21(“L”、“C”和“R”)中的每一个都是处于约40°范围中的图像,因此可以以三个单眼图像21中的相邻两个实质上没有重叠的形式组合这三个单眼图像21。
如上所述,三个组广角图像PA、PB、PC分别被行内单眼图像区域2A、2B、2C再现,利用时间差顺序从固态成像部件2读取这三组广角图像(在从固态成像部件2读取单位像素的时刻)。因此,广角图像PA、PB、PC显示了目标物体沿这种次序(PA—>PB—>PC)的时间流的三种状态。在图5、图6和图7所示的上述例子中,带有“L”、“C”和“R”的图像的目标物体保持静止,以使三个再现的广角图像PA、PB、PC相互一致。然而,如果目标物体是正在运动的物体,则三个再现的广角图像变得互相不同,反映了目标物体的运动。下面将参考图8说明用于正在运动物体的运动检测成像设备1的操作。
图8是示意图,在左边示出了包括作为正在运动目标物体的汽车的图像M的3(三)个再现广角图像PA、PB、PC;在右边示出了的广角图像PC和PA之间的差异图像PD,以达到显示根据再现广角图像PA、PB、PC而产生差异图像PD的过程的目的。这里,假定从获取范围B中的左侧向右侧(对应于图5、图6及图7中从“L”至“R”的方向)运动的汽车通过运动检测成像设备1成像为图像M。在这种假定下,显示在图8中左侧的三个广角图像PA、PB、PC被再现。三个广角图像PA、PB、PC为沿时间流次序或随着时间消逝获取的图像。
然后,微处理器11以数字方式从广角图像PC中减去广角图像PA,以产生图8的右侧所示出的差异图像PD。使用这种减法,广角图像PA中的图像M在极性上被翻转为差异图像PD中的负图像Ma。微处理器11基于差异图像PD中这种负图像的存在与否来确定目标物体(汽车)的移动或运动。注意的是,由于本实施例中有三个广角图像PA、PB、PC,因此为了检测运动,微处理器11还可以在广角图像PA和PB之间或者广角图像PB和PC之间进行减法。
如在前面所述的,本实施例中的运动检测成像设备1可以具有简单的结构,并且可以容易地缩小其整体尺寸,这是因为光学透镜系统是由光学透镜阵列14和45—45—90度直角棱镜15构成的,所述光学透镜阵列14具有3行及3列矩阵形式的9个光学透镜12a、12b、12c,所述45—45—90度直角棱镜15朝向光学透镜12b和12c而放置,所述光学透镜12b和12c为左列和右列中的侧透镜。此外,运动检测成像设备1可以轻易地且以短时间间隔获取用于运动检测的多个图像,因此即使在诸如汽车M之类的目标物体以高速运行时,检测到目标物体的几率很高。这是因为带有时间差的三个广角图像PA、PB、PC可以通过快门的单个或一个操作被读出(读取通过固态成像部件2上的9个光学透镜获取的所有单位像素u1至ux),并且还因为约120°的获取范围B中的目标物体的运动是基于广角图像PA、PB、PC之间的差异被检测。因此,当例如将本实施例中的运动检测成像设备1用于并安装在汽车后部作为后部监测照相机系统时,尽管运动检测成像设备1的尺寸较小,但是可以监视汽车后部的宽获取范围,从而可能以检测到高速运动的例如汽车的几率很高。
(第二实施例)
参考图9,将说明依据本发明第二实施例的运动检测设备1。除了在这里将30—60—90度直角棱镜215(称为“光线弯曲机构”)放置在光学透镜阵列14的入口侧上以取代在第一实施例中所使用的45—45—90度直角棱镜15,第二实施例中的运动检测设备1与第一实施例中的运动检测设备1相似。图9是依据第二实施例的运动检测设备1的光学透镜系统203从其底部看去的光路图示意图,显示通过各个光学透镜12a、12b、12c的光通量。与第一实施例中的类似,光学透镜系统203具有光学透镜12a、12b、12c的光学透镜阵列14和固态成像部件2。因此,在适当之处将类似于第一实施例中的部件的说明省略。
如图9中所示,第二实施例中的30—60—90度直角棱镜215被放置在面向左侧透镜12b和右侧透镜12c的位置处。30—60—90度直角棱镜215具有直角三角形的横截面,该直角三角形除了直角之外还具有30及60度角。每个30—60—90度直角棱镜215具有两个侧边:长边215a和短边215b,除了直角三角形的斜边215c之外还包含直角,其中短边215b平行于光学透镜阵列14的主平面,而长边215a设置在外侧且从短边215b的外端垂直地延伸。因此,直角三角形的斜边215c以60°角度向光学透镜阵列14的主平面倾斜。
放置用于引导光线的各个30—60—90度直角棱镜215,以使各个30—60—90度直角棱镜215允许光线在约120°获取范围中的各个约40°(重要的是不大于约60°)的左侧范围和右侧范围内进入直角棱镜215的长边215a,然后通过直角三角形的斜边215c反射这些光线,并且进一步使光线发射穿过直角棱镜215短边215b,以弯曲和引导光线至一组左侧透镜12b(包括三个透镜)和一组右侧透镜12c(包括三个透镜)中的每一组,沿各个侧透镜12b、12c的光轴La引导光线,以使包括三个透镜的该组左侧透镜12b和包括三个透镜的该组右侧透镜12c收集光线,从而在固态成像部件2上形成各个约40°的左侧范围和右侧范围的左图像和右图像。
与第一实施例中的类似,通过DSP9和微处理器11,将通过侧透镜12b、12c在约40°的左侧范围和右侧范围内形成的左图像和右图像21(单眼图像)与通过中间透镜12a在约40°(同样重要的是不大于约60°)的中心范围内形成的中心图像21(单眼图像)相组合,以再现带有约120°像角(picture angle)的广角图像PA、PB、PC。基于广角图像PA、PB、PC之间的差异,可以检测到在广角图像PA、PB、PC中成像的目标物体的移动或运动。
在本实施例中,设置每个用于引导光线30—60—90度直角棱镜215,以使每个30—60—90度直角棱镜215中的直角三角形的斜边215c以60°角度向光学透镜阵列14的主平面倾斜。这能够防止进入中间透镜12a的光线中断,这是因为从中间透镜12a看去,30—60—90度直角棱镜215的任何一部分都不位于120°获取范围中约40°的前方范围内。此外,与第一实施例中的类似,光学透镜12a、12b、12c形成的单眼图像21在其周边基本上没有失真,这是因为所有单眼图像21都是在与约40°一样小的获取范围内获取的图像,这样使在组合单眼图像21时不需要对单眼图像21进行失真校正的复杂处理。此外,由于每个单眼图像21都是位于约40°范围内的图像,因此中心单眼图像21可以在两个相邻的单眼图像21之间基本上没有重叠的情况下与左单眼图像21和右单眼图像21相组合。
(第三实施例)
接下来将参考图10说明依据本发明第三实施例的运动检测设备1。第三实施例中的运动检测设备1类似于第一实施例中的,除了九个光学透镜12a、12b、12c具有60°或约60°的获取范围(重要的时不大于约60°)以将第一实施例中的光学透镜系统3的获取范围扩展至约180°,以及用于引导光线的等边三角形棱镜315(称为“光线弯曲机构”)被放置在光学透镜阵列14的光线入口侧上,以取代第一实施例中的45—45—90度直角棱镜15。图10是依据第三实施例的运动检测设备1的光学透镜系统203从其底部看去的光路图,显示了穿过各个光学透镜12a、12b、12c的光通量。与第一实施例中的类似,光学透镜系统203具有由光学透镜12a、12b、12c构成的光学透镜阵列14和固态成像部件2。因此,在适当之处将类似于第一实施例中的部件的说明省略。
如图10中所示,第三实施例中的等边三角形棱镜315被放置在面向左侧透镜12b和右侧透镜12c的位置处。等边三角形棱镜315具有等边三角形的横截面。各个等边三角形棱镜315具有三个侧边315a、315b、315c,其中侧边315b平行于光学透镜阵列14的主平面。因此,向内的侧边315c以60°角向光学透镜阵列14的主平面倾斜。放置每个用于引导光线的等边三角形棱镜315,以使每个等边三角形棱镜315允许光线在约180°获取范围内的各个约60°(重要的是不远大于约60°)的左侧范围和右侧范围内进入等边三角形棱镜31的向外的侧边315a,进而由其向内侧边315c反射光线,以及进一步使光线穿过其侧边315b而发出,从而将光线弯曲和引导至各个侧透镜12b、12c。沿各个侧透镜12b、12c的光轴La引导光线,以使侧透镜12b、12c收集光线,从而在固态成像部件2上形成各个约60°的左侧范围和右侧范围的左图像和右图像。
与第一实施例中的类似,通过DSP9和微处理器11,将各个约60°的左侧范围和右侧范围内的左图像21(单眼图像)和右图像21(单眼图像)与由中间透镜12a在约60°的中心范围内形成的中心图像21(单眼图像)相组合,以再现带有约180°像角的广角图像PA、PB、PC。基于广角图像PA、PB、PC之间的差异,检测到在广角图像PA、PB、PC中成像的目标物体的移动或运动。本实施例中的各个等边三角形棱镜315被设置,以使等边三角形棱镜315的向内侧边315c以60°角向光学透镜阵列14的主平面倾斜。这能够防止进入中间透镜12a的光线中断,因为从中间透镜12a看去,在180°获取范围中约60°的前方范围内不存在等边三角形棱镜315的任何一部分。
根据在这里的说明书显而易见的是,第三实施例显示出了运动检测成像设备1可被有利地用于再现具有约180°像角的一个或多个广角图像;而第一和第二实施例及后面所述的第四实施例显示出运动检测成像设备1可被有利地用于再现具有约120°像角的一个或多个广角图像。这表示运动检测成像设备1可被有利地用于再现具有至少约120°的像角的一个或多个广角图像。
注意的是,在第三实施例的情形中,用于使光线进入左等边三角形棱镜和右等边三角形棱镜315的左获取范围和右获取范围可以变得比上述60°范围宽,以使两组侧透镜12b、12c形成的各个单眼图像21的视角可相应地变得宽于60°。例如,如图10中左等边三角形棱镜315所指示的,获取范围可变为65°(66°—1°)。这可以通过增加单眼图像21中的相邻两个之间的重叠部分来调整。还应注意到的是,在第三实施例的情形中,在固态成像部件2上的各自单眼图像21在其周边可能存在一些失真,这是因为光学透镜12a、12b、12c具有与60°角一样大的获取(视)角。这可以通过使用由两个或三个用于各个光学透镜12a、12b、12c的透镜构成的组合透镜来解决,从而将这种失真降低至不会产生实际问题的程度。
(第四实施例)
最后参考图11说明依据本发明第四实施例的运动检测设备1。第四实施例中的运动检测设备1类似于第一实施例中的,除了一对第一反射镜415a分别放置在面向左侧透镜12b和右12c的位置处,以取代45—45—90度直角棱镜15,而一对第二反射镜415b分别放置在面向该对第一反射镜415a的位置处。这两对第一及第二反射镜415a、415b的组合对应于权利要求的“光线弯曲机构”。图11是依据第四实施例的运动检测设备1的光学透镜系统403从其底部看去的光路示意图,显示穿过各个光学透镜12a、12b、12c的光通量。与第一实施例中的类似,光学透镜系统403具有由光学透镜12a、12b、12c构成的光学透镜阵列14和固态成像部件2。因此,在适当之处将对类似于第一实施例中的部件的说明省略。
如图11中所示,各个第一反射镜415a以约30°角向光学透镜阵列14的主平面倾斜。该对第二反射镜415b被分别放置在左侧透镜和右侧透镜12b、12c外侧的位置处,以防止从该对第一反射镜415a反射且分别指引向侧透镜12b、12c的光线中断。从中间透镜12a看去,第一反射镜415a和第二反射镜415b的任何一部分都不位于120°获取范围中约40°的前面范围内。这可以防止在获取范围内进入中间透镜12a的光线中断。
用于引导光线的各组第一反射镜415a和第二反射镜415b被放置,以使每组反射镜允许光线进入约120°获取范围中的各个约40°(重要的是不大于约60°)的左侧范围和右侧范围中,进而由第二反射镜415b、然后由第一反射镜415a反射这些光线,从而弯曲和引导光线至各个左侧透镜12b和右侧透镜12c。沿各个侧透镜12b、12c中的光轴La引导光线,以使侧透镜12b、12c收集光线,从而在固态成像部件2上形成用于各个约40°的左侧范围和右侧范围的左图像21(单眼图像)和右图像21(单眼图像)。另一方面,约120°获取范围中约40°的中心范围内的光线直接进入中间透镜12a且被中间透镜12a收集,以在固态成像部件2上形成约40°的中心范围的中心图像21(单眼图像)。
类似于第一实施例中的,通过DSP9和微处理器11,将各个约40°的左侧范围中的左图像21(单眼图像)和右侧范围中的右图像21(单眼图像)与约40°的中心范围内的中心图像21(单眼图像)(总共约120°的获取范围)组合,以再现具有约120°像角的广角图像PA、PB、PC。基于广角图像PA、PB、PC之间的差异,检测到在广角图像PA、PB、PC中成像的目标物体的移动或运动。注意的是,依据本实施例的运动检测成像设备1的优点在于:左单眼图像21和右单眼图像21并没有依据相应原始图像而被左/右翻转,因此可以简化DSP9和微处理器11组合所进行的图像再现处理。
应当注意的是,本发明不限于上述实施例,并且可以在本发明的精神和范围内的做出各种变形。例如,第一至第四实施例均被说明为使用光学透镜阵列14,所述光阵列系统14具有以3行及3列矩阵形式排列的光学透镜12。然而,光学透镜12可以以n行及m列的矩阵形式排列,该矩阵的行与列以平行于形成固态成像部件2的单位像素“u”的行及列的方式设置,这里n是2或大于2的整数,以及m是3或大于3的整数。此外,滚动式快门机构不限于TG(定时发生器)7,而可以是构建在微处理器11中的定时信号发生机构。
在上面已经使用当前的优选实施例说明了本发明,但是这些说明不应当解释为对本发明的限制。对于阅读本说明书的本领域普通技术人员而言,各种改变将变得明显、清楚或显而易见。因此,所附的权利要求应当被解释为覆盖落入本发明精神和范围内的所有改变和替代。
本申请基于于2006年7月26日提出的日本专利申请2006—203433,因此将其内容通过参考援引于此。

Claims (6)

1、一种运动检测成像设备,其包括;
固态成像部件,具有以行及列的矩阵形式排列的单位像素;和
光学透镜系统,用于收集进入获取范围内的光线,以在所述固态成像部件上形成以时间差成像的图像,从而基于被成像的图像之间的差异检测所述图像中目标物体的运动,
所述光学透镜系统包括:
光学透镜阵列,具有:
沿所述单位像素的列方向排列的多个光学透镜,即中间透镜,并且处于所述获取范围中预定前方范围内的光线进入所述中间透镜;和
位于所述中间透镜左侧和右侧且沿所述单位像素的列方向排列的两组光学透镜,即左侧透镜和右侧透镜,其中每组光学透镜具有多个光学透镜,并且处于所述获取范围中预定左侧范围和预定右侧范围内的光线进入所述左侧透镜和右侧透镜;和
光线弯曲机构,设置在所述左侧透镜和右侧透镜的进入侧,用于将进入所述获取范围中预定左侧范围和预定右侧范围内的光线分别弯曲和引导至所述左侧透镜和右侧透镜,且沿所述左侧透镜和右侧透镜的光轴引导光线,
所述固态成像部件具有用于分别对所述中间透镜、左侧透镜和右侧透镜形成的多个图像,即单眼图像,进行成像的图像区域,即单眼图像区域,
其中所述运动检测成像设备进一步包括:
滚动式快门机构,用于允许所述固态成像部件以相邻行的单眼图像区域,即相邻的行内单眼图像区域,中的单眼图像之间具有时间差的方式成像,所述行在与所述单位像素的行方向相同的方向上延伸;
图像组合机构,用于组合各行内单眼图像区域内所述中间透镜使用进入所述获取范围中预定前方范围内的光线所形成的单眼图像与所述左侧透镜和右侧透镜使用进入所述获取范围中预定左侧范围和预定右侧范围内的光线所形成的单眼图像,以再现广角图像,从而以在所述行内单眼图像区域之间具有时间差的方式再现多个广角图像;和
运动检测机构,用于基于所述图像组合机构使用所述行内单眼图像区域中的单眼图像所分别再现的广角图像之间的差异,检测所述广角图像中的目标物体。
2、依据权利要求1所述的运动检测成像设备,其中所述光线弯曲机构包括棱镜。
3、依据权利要求2所述的运动检测成像设备,其中所述光线弯曲机构包括45—45—90度直角棱镜。
4、依据权利要求2所述的运动检测成像设备,其中所述光线弯曲机构包括30—60—90度直角棱镜。
5、依据权利要求1所述的运动检测成像设备,其中所述光线弯曲机构包括反射镜。
6、依据权利要求1所述的运动检测成像设备,其中
所述中间透镜具有三个光学透镜,并且所述预定前方范围为前方40°的范围;
所述左侧透镜和右侧透镜分别具有三个光学透镜,并且所述预定左侧范围和所述预定右侧范围分别为左侧和右侧各40°的范围;
所述光线弯曲机构为分别设置在所述左侧透镜和右侧透镜的进入侧的左45—45—90度直角棱镜和右45—45—90度直角棱镜,用于防止进入所述前方40°的范围内的光线中断,
所述固态成像部件具有三行及三列的矩阵形式的九个图像区域,即九个单眼图像区域,用于对通过所述中间透镜、左侧透镜和右侧透镜形成的九个单眼图像分别成像。
CN200710136974.2A 2006-07-26 2007-07-26 运动检测成像设备 Expired - Fee Related CN100521747C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006203443A JP4650367B2 (ja) 2006-07-26 2006-07-26 動き検出用撮像装置
JP2006203443 2006-07-26

Publications (2)

Publication Number Publication Date
CN101115154A CN101115154A (zh) 2008-01-30
CN100521747C true CN100521747C (zh) 2009-07-29

Family

ID=38531739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710136974.2A Expired - Fee Related CN100521747C (zh) 2006-07-26 2007-07-26 运动检测成像设备

Country Status (4)

Country Link
US (1) US7619653B2 (zh)
EP (1) EP1883223B9 (zh)
JP (1) JP4650367B2 (zh)
CN (1) CN100521747C (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286234A (ja) * 2008-05-28 2009-12-10 Funai Electric Co Ltd 車載用サイドビューカメラ
JP2010087598A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 撮影装置及び撮影制御方法ならびにそのプログラム、画像表示装置及び画像表示方法ならびにそのプログラム、撮影システム及びその制御方法ならびにそのプログラム
WO2010038175A2 (en) * 2008-10-02 2010-04-08 Koninklijke Philips Electronics N.V. Spectral detector
JP4618370B2 (ja) * 2008-12-08 2011-01-26 ソニー株式会社 撮像装置、撮像方法、およびプログラム
JP5353393B2 (ja) * 2009-04-07 2013-11-27 大日本印刷株式会社 画像処理装置及び画像処理方法等
GB2473636A (en) * 2009-09-18 2011-03-23 Sharp Kk Multiple view display comprising lenticular lens having regions corresponding to two different centres of curvature
US20140168415A1 (en) * 2012-12-07 2014-06-19 Magna Electronics Inc. Vehicle vision system with micro lens array
US10018510B2 (en) * 2013-04-22 2018-07-10 Excelitas Technologies Singapore Pte. Ltd. Motion and presence detector
JP6184271B2 (ja) * 2013-09-19 2017-08-23 キヤノン株式会社 撮像管理装置、撮像管理システムの制御方法およびプログラム
BR112019002027A2 (pt) * 2016-08-22 2019-05-14 Novelis Inc. ferramenta, sistema e método de soldagem por fricção linear
WO2019027369A1 (en) * 2017-08-01 2019-02-07 National University Of Singapore LIGHT DEVIATION PRISM TO BE MOUNTED ON A SURFACE OF A DEVICE, DEVICE, AND METHOD FOR MODIFYING A FIELD OF VISION OF A CAMERA
CN109688291B (zh) * 2017-10-19 2021-01-26 宏碁股份有限公司 物体追踪方法及系统
SG11202009823YA (en) * 2018-04-03 2020-11-27 Nat Univ Singapore Method and system for recording an image using one or more prisms
JP2020042228A (ja) * 2018-09-13 2020-03-19 キヤノン株式会社 撮像装置
CN112468684A (zh) * 2019-09-09 2021-03-09 北京小米移动软件有限公司 摄像头模组和具有该摄像头模组的移动终端
WO2021050005A1 (en) * 2019-09-13 2021-03-18 National University Of Singapore A wide-angle composite multi-camera system and method for in-automotive vehicle recording and/or viewing
WO2021212486A1 (zh) * 2020-04-24 2021-10-28 达闼机器人有限公司 镜头模块和物体探测装置
CN114051088B (zh) * 2022-01-12 2022-03-25 四川大学 一种基于视场分解的高速摄像模组拍摄方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524818B2 (ja) 1988-10-14 1996-08-14 コニカ株式会社 1フレ―ム連続撮影カメラ
JPH08106534A (ja) 1994-10-06 1996-04-23 Hitachi Ltd 移動物体検出装置
JPH11352550A (ja) 1998-06-11 1999-12-24 Casio Comput Co Ltd 電子スチルカメラ
JP4157661B2 (ja) 1999-12-15 2008-10-01 松下電器産業株式会社 動画像内の移動物体検出方法および装置
JP3899860B2 (ja) 2001-07-11 2007-03-28 ソニー株式会社 固体撮像素子およびその駆動方法、並びに動き検出装置
JP2003143459A (ja) * 2001-11-02 2003-05-16 Canon Inc 複眼撮像系およびこれを備えた装置
JP2003153251A (ja) * 2001-11-16 2003-05-23 Auto Network Gijutsu Kenkyusho:Kk 車両用周辺視認システム
JP2003299121A (ja) * 2002-04-05 2003-10-17 Canon Inc 立体画像表示装置および立体画像表示システム
JP4005456B2 (ja) * 2002-09-10 2007-11-07 株式会社オートネットワーク技術研究所 カメラ装置及び車両周辺視認装置
JP2004171431A (ja) 2002-11-22 2004-06-17 Chuo Electronics Co Ltd 移動体画像の検出方法
US7643055B2 (en) * 2003-04-25 2010-01-05 Aptina Imaging Corporation Motion detecting camera system
JP3955002B2 (ja) * 2003-09-09 2007-08-08 三洋電機株式会社 映像表示装置
JP4223420B2 (ja) * 2004-03-05 2009-02-12 メガビジョン株式会社 撮影装置
US7038863B2 (en) * 2004-06-02 2006-05-02 Raytheon Company Compact, wide-field-of-view imaging optical system
ES2323637T3 (es) * 2004-07-22 2009-07-22 Bea S.A. Dispositivo termosensible de deteccion de presencia alrededor de puertas automaticas.
US20060044451A1 (en) * 2004-08-30 2006-03-02 Eastman Kodak Company Wide angle lenslet camera
US7671321B2 (en) * 2005-01-18 2010-03-02 Rearden, Llc Apparatus and method for capturing still images and video using coded lens imaging techniques
WO2007013250A1 (ja) * 2005-07-26 2007-02-01 Matsushita Electric Industrial Co., Ltd. 複眼方式の撮像装置
US7315014B2 (en) * 2005-08-30 2008-01-01 Micron Technology, Inc. Image sensors with optical trench

Also Published As

Publication number Publication date
EP1883223B9 (en) 2017-05-17
EP1883223B1 (en) 2017-02-08
CN101115154A (zh) 2008-01-30
JP2008034948A (ja) 2008-02-14
JP4650367B2 (ja) 2011-03-16
EP1883223A3 (en) 2015-04-29
US20080025571A1 (en) 2008-01-31
EP1883223A2 (en) 2008-01-30
US7619653B2 (en) 2009-11-17

Similar Documents

Publication Publication Date Title
CN100521747C (zh) 运动检测成像设备
EP1887790B1 (en) Panoramic imaging device
EP1847873B1 (en) Panoramic imaging device
US8305425B2 (en) Solid-state panoramic image capture apparatus
EP1895345B1 (en) Panoramic imaging device
US8451252B2 (en) Image sensor for touch screen and image sensing apparatus
CN104681569A (zh) 固体摄像装置以及摄像系统
JP3478686B2 (ja) 複眼撮像装置
JP2010249965A (ja) 光学素子を用いた異焦点画像の撮影方法、及びその装置
JP2016048824A (ja) 追尾装置、追尾システム、及び表示装置
JP2009086144A (ja) 撮像装置及びそれを有する撮像機器
JP2016046774A (ja) 撮像装置
JP2003207813A (ja) 撮像装置
CN213126152U (zh) 光路改变组件、感光组件、镜头组件、摄像模组及终端
JPS61120589A (ja) 監視装置
KR100923233B1 (ko) 가시범위가 향상된 전방위 수퍼파노라마 감시장치
KR100360694B1 (ko) 파노라마 촬영용 섹터렌즈 및 그 배치 방법
JP2005308961A (ja) 撮像光学系
JP2005167443A (ja) 複眼光学系
JPH0678337A (ja) 立体撮像装置
JPH09214990A (ja) 撮像装置
KR20010000735A (ko) 파노라마 촬영용 섹터렌즈 및 그 배치 방법
JPH0255306A (ja) カメラの焦点検出装置
JP2002290805A (ja) 高解像度化固体撮像デバイスカメラ装置
JPH0255307A (ja) カメラの焦点検出装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090729

Termination date: 20180726

CF01 Termination of patent right due to non-payment of annual fee