CN100485983C - 具有可调能带带隙的半导体装置 - Google Patents

具有可调能带带隙的半导体装置 Download PDF

Info

Publication number
CN100485983C
CN100485983C CNB2005800370027A CN200580037002A CN100485983C CN 100485983 C CN100485983 C CN 100485983C CN B2005800370027 A CNB2005800370027 A CN B2005800370027A CN 200580037002 A CN200580037002 A CN 200580037002A CN 100485983 C CN100485983 C CN 100485983C
Authority
CN
China
Prior art keywords
semiconductor
band gap
piezoelectric
semiconductor device
nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005800370027A
Other languages
English (en)
Other versions
CN101048881A (zh
Inventor
A·R·巴尔克南德
E·P·A·M·巴克斯
L·F·费纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101048881A publication Critical patent/CN101048881A/zh
Application granted granted Critical
Publication of CN100485983C publication Critical patent/CN100485983C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/0622Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/81Array wherein the array conductors, e.g. word lines, bit lines, are made of nanowires
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C23/00Digital stores characterised by movement of mechanical parts to effect storage, e.g. using balls; Storage elements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Semiconductor Lasers (AREA)
  • Thin Film Transistor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Led Devices (AREA)
  • Lasers (AREA)

Abstract

本发明涉及一种能带带隙能够被电性改变的半导体装置。本发明的思想是提供一种装置,该装置基于嵌入在材料(307)中的纳米线(306),当适当地处理例如锆钛酸铅PZT、氮化铝AlN或者氧化锌ZnO的这种压电材料时,材料(307)显示出变形。借助将电压应用于该材料,可以通过施加对压电材料(307、312)的部分变形而可逆地应变纳米线(306)。利用所得到的带隙变化调整从例如LED或者激光器发射的光的颜色。这是带隙与发出光的频率成比例的事实的结果。在其它领域的应用中,能够控制半导体结中的接触电阻,并且该特征在存储器和开关中有非常有利的。

Description

具有可调能带带隙的半导体装置
技术领域
本发明涉及一种能带带隙能够被电改变的半导体装置。
背景技术
在半导体材料中,带隙是一个重要的参数,其在很大程度上决定了半导体材料的特性。带隙被定义为价带顶部和导带底部之间的能量差。这是激发电子从价带进入导带所需的能量。导带中的电子具有移动通过材料的能力,由此能传导电流。对于发光二极管(LED),带隙调节会导致发射光的颜色改变。当导带中的电子返回价带时,电子以光子形式释放能量。带隙越大,光子能量就越多。以可逆方式改变带隙的方式是使半导体晶格应变。已显示,可实现100meV级的带隙变化。这种变化足以显著改变例如肖特基二极管的特性。在光发射方面,这将导致颜色例如由黄到绿的变化。
美国专利no.4,935,935公开了一种电性可调的半导体装置。将至少一个压电物质薄膜布置在与半导体装置有关的应力发送中,并且来自电路的信号引起压电薄膜向半导体发送应力,从而改变半导体装置的反应。当调节电压施加于压电薄膜时,薄膜与调节电压成比例变形,并且对半导体施加应力,该应力改变了半导体能隙。
美国专利no.4,935,935中留下的问题是如何增大电性可调半导体装置中所施加的应变的效应。
发明内容
本发明的目的在于解决上述给出的问题和提供一种可以改变能带带隙的半导体装置。通过能带带隙能够被电改变的半导体装置来实现这个目的。
根据本发明的一个方面,该装置包含至少一个半导体纳米线、压电材料和布置在压电材料上的电极,经由压电材料施加电压至电极以引起压电材料变形,其中布置至少一个半导体纳米线与压电材料机械接触,并且变形施加应力于至少一个半导体线,这会引起半导体纳米线能带带隙的变化。
本发明的一个思想是提供一种装置,该装置基于嵌入在材料中的纳米线,在适当处理例如锆钛酸铅(PZT)、氮化铝(AIN)或者氧化锌(ZnO)的这种压电材料时,材料显示出变形。例如,该装置能够在发射光、开关和存储应用中实施。借助对压电材料施加电压,通过对压电材料施加局部变形,纳米线能可逆地应变。因此,借助电感应机械激励,纳米线可逆地应变。可以利用所得的带隙变化来调整从例如LED或者激光器发射的光的颜色。这是带隙与发射光的频率成比例这一事实的结果。在其它领域的应用中,能够控制半导体结中的接触电阻,并且该特征在存储器和开关中是非常有利的。
本发明是有益的,因为对于可比较的应力条件,也就是,对于施加于压电材料的可比较的电压,半导体线(和为此线的能带带隙的宽度)感受的应力将随线直径减小而增加。这暗示在这些类型的应用中使用纳米线是非常有利的。此外,如果对于量子限制效应来说线直径足够小至能观察到,其一般意味着直径小于10-20nm,带隙将由于量子限制而增大。这两种带隙变化效应(也就是通过所施加的应力或通过量子限制引起的带隙变化)互相增强。例如,当应用压应力时,带隙由于所施加的应力而增大,另外由于线直径的减小,带隙由于量子限制效应的增加而增大。
根据本发明的实施例,将半导体纳米线嵌入压电材料中,这种嵌入进一步增大了施加电压时由压电材料引起的应力。理想地,纳米线完全嵌入该材料中。
本发明的其它实施例由从属权利要求的主题来定义。当研究附加的权利要求和下面的描述时,本发明的其它特征和优点将变得明显。本领域技术人员认识到,可以组合本发明的不同特征来建立除下面描述的那些实施例之外的实施例。
附图说明
参考附图,将更加详细地描述本发明的优选实施例,其中:
图1示出了纳米线如何生长的实例,其中将阳极化的氧化铝模板布置在衬底的导电层上;
图2示出了本发明的一个实施例,其中压电材料作为薄层沉积在纳米线周围;和
图3示出了本发明的另一实施例,其中纳米线和压电材料布置在衬底的导电层上。
具体实施方式
通过应用众所周知的汽态-液态-固态(VLS)过程,半导体线和碳纳米管能够生长。一般在从400到800℃的温度范围进行这个过程。为了进一步生长,VLS过程使用像原子核一样的小金属微粒。当使用足够小的金属微粒时,线直径能制得小于10nm。作为可选的方法,通过在室温下应用电化学处理,能够将半导体线和金属沉积于适当的模板中。在任一过程中,或者通过结合这两个过程,能够使包括例如n和p型半导体材料或者显示异质结的分段线生长。当需要高密度的半导体线时,可以使用适当的模板。当适当的条件占优势时,公知铝的电化学氧化、也就是阳极氧化会导致非常规则的多孔氧化铝。一般,孔与上面布置了孔的衬底表面垂直。孔的直径是非常均匀的,并且通常可以从大约5nm改变到300nm。通过预处理局部表面,例如通过应用电子束或者压印,孔可以是横向有序的。能代替阳极化的氧化铝使用可选的模板,例如蚀刻轨迹的薄膜。本发明提供一种基于从适当的汽相的催化生长或者在模板中的电化学生长、以及在压电材料中嵌入纳米线的制备方法。对于纳米线,可以使用半导体类型IV、III-V或者II-VI材料的任一种。
图1示出了如何能使纳米线生长的实施例。将阳极化的氧化铝模板101布置在衬底102的导电层120上。模板的孔103用金属沉积物104局部地填充,例如Au、Fe、Co、Ni等,作为VLS半导体线生长的催化剂。可以应用标准的VLS生长或者电化学沉积来沉积半导体材料105,例如CdSe、Si或者InP。在线生长期间通过改变生长的条件,能使带有例如pn结或者异质结的分段线106生长。用适当的接触金属150进一步填充(如电气化学地)被部分填充的孔。其后,通过在1M KOH中蚀刻模板或者在4%H3PO4或者1.5%CrO3中部分蚀刻模板来去掉氧化铝(也称为铝氧土),以便线的至少顶部部件不再嵌入氧化铝中。因此,依靠蚀刻处理来创建独立的纳米线。随后,例如经由溶胶凝胶合成,将顶部部件嵌入压电材料107中,例如BaTiO2或者PZT。可图案化由压电材料创建的层,以便能够局部地处理单独的线或者小组的线。在该嵌入过程之前或之后,对层的顶部部分抛光,其由点线108表示,并且将电触点(未显示)沉积于其上。应当至少图案化顶部金属,以便能够分别地处理线和压电材料。在本发明的实施例中可以用电介质薄层部分地或者全部地覆盖纳米线。如果没有图案化压电材料(或者至少到压电材料的触点),就会同时影响所有的线。这在LED型光发射器的情况下是可接受的,但对于一些电子应用,应当能够局部地改变半导体线的特性,而不是影响其它的部分。
当将Au图案直接沉积于Si上时(例如通过利用光刻法图案化薄Au膜或者通过采用自装配法沉积胶质Au粒子),VLS方法能用于局部地生长在Au粒子位置处的线。先前已经描述了GaP、GaAs和InP在Si(100)和Si(111)上的外延生长,而GaN已经在各种蓝宝石表面(例如Al2O3(001)、Al2O3(2-10)、Al2O3(100)、Al2O3(101))上外延生长。线与衬底之间的外延关系对于线定向和线的(底)接触是有利的。这种方法会产生在衬底表面处的独立线,并且可以如同在其它实施例中所描述的一样进行进一步的处理。
图2示出了本发明的实施例,其中将压电材料207作为薄层沉积在纳米线206的周围。如关于图1所描述的那样生长纳米线。在该特定的实施例中,金属209盖在纳米线顶上。例如,借助化学气相沉淀或者与溅射蚀刻结合的溅射沉淀,通过用良好台阶覆盖率的一层压电材料覆盖金属线。随后用电介质材料210填充线之间的区域。对层的顶部部分抛光,其由点线208表示,并且将电接触点(未显示)沉积在其上。
图3示出了本发明的另一实施例,其中压电材料307布置在衬底302的导电层320上。其后,将纳米线306沉积于其上,并且将金属源极和漏极311形式的电接触点施加于纳米线306。随后,将另一层压电材料312沉积于纳米线306上,以便使纳米线嵌入压电材料307、312中。然后局部应用顶部电极313以处理压电材料。在没有使用顶层压电材料312的情况下,顶部电极应用于压电材料307。由于第二层312,能全面地激励纳米线,这会增加所施加应力的影响。当经由电极313将电压V施加于压电材料312时,压电材料发生局部膨胀,并使纳米线306可逆地遭受应力。获得的纳米线306的带隙变化引起纳米线的电特性改变。
尽管已参考本发明的具体示范性实施例描述了本发明,但许多不同的变形、修改等对于本领域技术人员中将变得更加明显。因此,描述的实施例不意指限制本发明的范围,而由所附加的权利要求书限定。

Claims (7)

1、一种能带带隙能够被电性改变的半导体装置,该装置包括:
至少一个半导体纳米线(306);
压电材料(307);和
布置在压电材料处的电极(313),经由该电极施加电压以引起压电材料变形;
其中所述至少一个半导体纳米线被布置成与所述压电材料机械接触,并且所述变形对所述至少一个半导体纳米线施加应力,这引起半导体纳米线的能带带隙改变,并且
其中所述至少一个半导体纳米线被嵌入到压电材料(307,312)中。
2.根据权利要求1的半导体装置,其中该装置包括多个分段的半导体纳米线(306)。
3.根据权利要求1或2的半导体装置,其中将一电介质层应用于所述至少一个半导体纳米线(306)。
4.根据权利要求1或2的半导体装置,其中电接触点(311)被布置在所述至少一个半导体纳米线(306)处。
5.根据权利要求1或2的半导体装置,其中所述装置包括多个并置布置的半导体纳米线,并且在半导体纳米线之间的区域填充有电介质材料(210)。
6.根据权利要求1或2的半导体装置,进一步包括具有导电层(320)的衬底(302),在该导电层上面布置了所述压电材料(307)。
7.根据权利要求1或2的半导体装置,其中所述至少一个半导体纳米线(306)包含在发光二极管中,使得半导体纳米线的能带带隙的变化改变从所述发光二极管发出光的颜色。
CNB2005800370027A 2004-10-27 2005-10-20 具有可调能带带隙的半导体装置 Expired - Fee Related CN100485983C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04105314.1 2004-10-27
EP04105314 2004-10-27

Publications (2)

Publication Number Publication Date
CN101048881A CN101048881A (zh) 2007-10-03
CN100485983C true CN100485983C (zh) 2009-05-06

Family

ID=36177831

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800370027A Expired - Fee Related CN100485983C (zh) 2004-10-27 2005-10-20 具有可调能带带隙的半导体装置

Country Status (7)

Country Link
US (1) US7768081B2 (zh)
EP (1) EP1807878A2 (zh)
JP (1) JP2008518455A (zh)
KR (1) KR20070084553A (zh)
CN (1) CN100485983C (zh)
TW (1) TW200620724A (zh)
WO (1) WO2006046177A2 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US20090179523A1 (en) * 2007-06-08 2009-07-16 Georgia Tech Research Corporation Self-activated nanoscale piezoelectric motion sensor
CN103022282B (zh) * 2008-07-07 2016-02-03 格罗有限公司 纳米结构led
KR101482702B1 (ko) * 2008-07-16 2015-01-15 삼성전자주식회사 나노와이어를 이용한 비접촉식 터치패널
KR101454686B1 (ko) 2008-09-17 2014-10-28 삼성전자주식회사 에너지 변환 장치 및 방법
US7902541B2 (en) * 2009-04-03 2011-03-08 International Business Machines Corporation Semiconductor nanowire with built-in stress
WO2010117330A1 (en) * 2009-04-09 2010-10-14 Fredrik Boxberg Photovoltaic device, and a manufacturing method thereof
US9065253B2 (en) * 2009-05-13 2015-06-23 University Of Washington Through Its Center For Commercialization Strain modulated nanostructures for optoelectronic devices and associated systems and methods
KR101539670B1 (ko) * 2009-10-13 2015-07-27 삼성전자주식회사 전기에너지 발생장치
CN102280523B (zh) * 2011-07-01 2013-04-10 中国科学院理化技术研究所 调制氧化锌纳米线持续光电导效应的光学方法
CN102730624B (zh) * 2012-06-25 2014-11-12 浙江大学 一种实时颜色动态调控微器件及其制备和调控方法
CN103681979B (zh) * 2012-09-21 2016-12-28 北京纳米能源与系统研究所 发光二极管、发光二极管发光效率和强度的调制方法
KR101409326B1 (ko) * 2013-01-30 2014-06-20 인하대학교 산학협력단 Pzt가 코팅된 나노와이어를 압전소자로써 포함하는 나노발전기 및 이의 제조방법
US9209174B2 (en) * 2013-02-15 2015-12-08 Globalfoundries Inc. Circuit element including a layer of a stress-creating material providing a variable stress and method for the formation thereof
US8969109B1 (en) 2013-09-05 2015-03-03 International Business Machines Corporation Tunable light-emitting diode
CN106684248B (zh) * 2017-03-24 2019-02-01 中国石油大学(北京) 一种调节太阳能电池吸收波长的方法及制备的太阳能电池
CN114582094B (zh) * 2022-02-28 2024-04-12 京东方科技集团股份有限公司 一种预警照明装置及预警照明装置组
CN115746785A (zh) * 2022-11-01 2023-03-07 安徽熙泰智能科技有限公司 一种连续调节目标材料性质的应力工程方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935935A (en) 1988-08-31 1990-06-19 Carnegie Mellon University Wavelength tunable electronic and electrooptical semiconductor devices
JP3681423B2 (ja) * 1993-11-02 2005-08-10 松下電器産業株式会社 半導体微細柱の集合体,半導体装置及びそれらの製造方法
JP2004500481A (ja) * 1999-06-03 2004-01-08 ザ ペン ステイト リサーチ ファンデーション 堆積薄膜ボイド・柱状体網目構造物
US7008563B2 (en) * 2000-08-24 2006-03-07 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
JP2002098916A (ja) * 2000-09-26 2002-04-05 Hamamatsu Photonics Kk 光学装置
US6674932B1 (en) * 2000-12-14 2004-01-06 Hewlett-Packard Development Company, L.P. Bistable molecular mechanical devices with a middle rotating segment activated by an electric field for electronic switching, gating, and memory applications
TWI220319B (en) * 2002-03-11 2004-08-11 Solidlite Corp Nano-wire light emitting device
US7192533B2 (en) * 2002-03-28 2007-03-20 Koninklijke Philips Electronics N.V. Method of manufacturing nanowires and electronic device
US6859304B2 (en) * 2002-08-09 2005-02-22 Energy Conversion Devices, Inc. Photonic crystals and devices having tunability and switchability
JP2004193325A (ja) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd 電子デバイスおよびその製造方法
US7183568B2 (en) * 2002-12-23 2007-02-27 International Business Machines Corporation Piezoelectric array with strain dependant conducting elements and method therefor
EP1439546A1 (en) 2003-01-16 2004-07-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A nanotube based cantilever arm, a method of operating and manufacturing a nanotube based cantilever arm, and a storage device and a photonic crystal based on an array of nanotube based cantilever arms

Also Published As

Publication number Publication date
WO2006046177A2 (en) 2006-05-04
TW200620724A (en) 2006-06-16
CN101048881A (zh) 2007-10-03
JP2008518455A (ja) 2008-05-29
US7768081B2 (en) 2010-08-03
WO2006046177A3 (en) 2006-06-22
KR20070084553A (ko) 2007-08-24
US20090121213A1 (en) 2009-05-14
EP1807878A2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
CN100485983C (zh) 具有可调能带带隙的半导体装置
CN100511885C (zh) 具有可调谐能量带隙的半导体器件
CN101443887B (zh) Gan纳米线的脉冲式生长及在族ⅲ氮化物半导体衬底材料中的应用和器件
US20210328057A1 (en) Three dimensional vertically structured electronic devices
CN104011883B (zh) 制造半导体微或纳米线的方法、包括所述微或纳米线的半导体结构和制造半导体结构的方法
US8030664B2 (en) Light emitting device
JP2005109133A (ja) 半導体装置及びその製造方法
US7846753B2 (en) Vertical light emitting diode and method of making a vertical light emitting diode
KR20100073757A (ko) 마이크로 로드를 이용한 발광소자 및 그 제조방법
KR20110054318A (ko) 발광소자 및 그 제조방법
Hsieh et al. InGaN–GaN nanorod light emitting arrays fabricated by silica nanomasks
KR101354491B1 (ko) 고효율 발광다이오드 제조방법
JP2023536360A (ja) Ledデバイス及びledデバイスの製造方法
KR20130117233A (ko) 고효율 발광다이오드 제조방법
JPH0927612A (ja) 量子効果半導体装置とその製造方法
JP4923003B2 (ja) ナノワイヤ作製方法、ナノワイヤ素子及びナノワイヤ構造物
KR101431820B1 (ko) 나노와이어 소자 제조 방법
TWI387134B (zh) 發光元件及其製造方法
KR101639978B1 (ko) 폴리머 나노와이어 복합체 제조 방법
JP2009016562A (ja) 半導体量子ドット素子、半導体量子ドット素子の形成方法および半導体量子ドット素子を利用した半導体レーザ
CN105185878B (zh) 一种场发射的氮化物发光二极管
TW471184B (en) Wide band gap LED structure
KR20130117735A (ko) 고효율 발광다이오드 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090506

Termination date: 20111020