JP2004193325A - 電子デバイスおよびその製造方法 - Google Patents

電子デバイスおよびその製造方法 Download PDF

Info

Publication number
JP2004193325A
JP2004193325A JP2002359271A JP2002359271A JP2004193325A JP 2004193325 A JP2004193325 A JP 2004193325A JP 2002359271 A JP2002359271 A JP 2002359271A JP 2002359271 A JP2002359271 A JP 2002359271A JP 2004193325 A JP2004193325 A JP 2004193325A
Authority
JP
Japan
Prior art keywords
electronic device
wire
piezoelectric element
element film
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002359271A
Other languages
English (en)
Inventor
Takahiro Matsuo
隆弘 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002359271A priority Critical patent/JP2004193325A/ja
Publication of JP2004193325A publication Critical patent/JP2004193325A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】高速のスイッチング動作が可能な電子デバイスとその製造方法とを提供する。
【解決手段】本発明の電子デバイスは、基板10と、チタン酸バリウムからなる圧電素子膜11と、圧電素子膜11の上に設けられたソース電極12およびドレイン電極13と、ソース電極12とドレイン電極13との間に接続され、フタロシアニン誘導体の分子14が1次元的に連なった構造を有し、応力が加わると電気特性が導電性から絶縁性に変化する性質を有するナノワイヤー15とから構成されている。圧電素子膜11に電圧を印加すると、圧電素子膜11は横方向に伸張し、ソース電極12とドレイン電極13との間の距離が長くなり、ナノワイヤー15に応力が加わる。これにより、電子デバイスのスイッチングが可能となる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、分子からなるナノワイヤーを用いた電子デバイスに関し、特に、ソース電極からドレイン電極に電流が流れることによってスイッチング動作が可能となる電子デバイスに関する。
【0002】
【従来の技術】
近年、半導体を用いた電子集積回路の高集積化が進行するのにともなって、トランジスタのサイズも微細化されてきている。最近では、10nmのゲート長のゲート電極を有するトランジスタの動作が確認されている。しかしながら、ゲート長を10nm以下にするためには、誤差範囲が1nm以下となる精度でゲート電極を形成する必要があることから、トランジスタのさらなる微細加工は困難になってきている。
【0003】
以上のような課題を克服してトランジスタのさらなる微細化を図るために、有機分子を用いたトランジスタが提案されている。図13は、従来における有機分子を用いたトランジスタの構造を示す断面図である。図13に示す構造は、非特許文献1に開示された構造である。
【0004】
図13に示すように、従来における有機分子を用いたトランジスタでは、シリコン基板101の上にシリコン酸化膜102が設けられている。シリコン基板101およびシリコン酸化膜102の上面は、段差面110によって上段面111と下段面112とに分けられる。
【0005】
シリコン酸化膜102の下段面112の上にはソース電極103が形成されている。ソース電極103の上には、シリコン酸化膜102の段差面110に接するように有機分子膜104が設けられている。有機分子膜104の上には、シリコン酸化膜102の段差面110と上段面111との上に延びるドレイン電極105が設けられている。
【0006】
シリコン基板101にゲート電極(図示せず)から電圧を印加しない状態では、有機分子膜104には電流が流れず、トランジスタはオフの状態になる。一方、シリコン基板101にゲート電圧を印加すれば、ソース電極103から有機分子膜104を介してドレイン電極105に電流が流れ、トランジスタがオン状態となる。この構造では、ゲート長は有機分子膜104における分子の長さに相当する。一般的に、有機分子の長さを10nm以下にすることは容易であり、また、有機分子の長さは制御しやすい。
【0007】
【非特許文献1】
Jan Hendrik Schon et al.Self−assembled monolayer organic field−effect transistors.Nature Vol.413,713−716(2001).
【0008】
【発明が解決しようとする課題】
しかしながら、従来における有機分子を用いたトランジスタでは、素子の大きさを小さくしても動作速度が高くならないという課題がある。
【0009】
これは以下の理由による。図13に示す構造では、有機分子膜104は半導体の性質を有している。そのため、ソース電極103とドレイン電極105との間に電流を流したときのコンダクタンスの値は小さく、高い電子移動度を得ることが困難なためである。
【0010】
本発明は、電子デバイスにおいて、ソース・ドレイン間の電子の移動度を向上させる手段を講ずることにより、高速なスイッチング動作を実現することを目的とする。目的を達成するために、導電性の分子または分子の集合体の構造に歪みを生じさせると、電気特性が導電性から絶縁性に変化することに着目した。
【0011】
【課題を解決するための手段】
本発明の電子デバイスは、ソース部およびドレイン部と、上記ソース部と上記ドレイン部とに接続され、応力に応じて電気特性が導電性と絶縁性との間で変化する性質を有するワイヤーと、上記ワイヤーに応力を与えるための応力追加部材とを備える。
【0012】
これにより、応力を加えない状態ではワイヤーは導電性になるので電子デバイスをオンにすることができ、応力追加部材によって応力を加えた状態のワイヤーは絶縁性になるので電子デバイスをオフにすることができる。これにより、電子デバイスにおいて高速動作が可能となる。
【0013】
上記ワイヤーは、π電子による共役の構造を有することにより、バリスティックな電子伝導を実現することができる。
【0014】
上記ワイヤーは分子の集合体から構成されており、上記ワイヤーは、上記ワイヤーの軸方向に、上記軸方向に垂直な方向よりも強い導電性を示すことにより、軸方向の電子の移動度を1次元的に高くすることができる。
【0015】
上記ワイヤーは、重合体からなっていてもよい。
【0016】
上記ワイヤーは、カーボンナノチューブからなっていてもよい。
【0017】
上記応力追加部材は圧電素子膜であって、上記ソース部および上記ドレイン部は上記圧電素子膜の上に設けられていることにより、圧電素子膜に電圧を印加することにより、ソース部とドレイン部との間の距離が変化するので、ワイヤーに軸方向の応力を与えることができる。
【0018】
上記圧力追加部材は圧電素子膜であって、上記ワイヤーは上記圧電素子膜の上に設けられていることにより、圧電素子膜に電圧を印加することにより圧電素子膜が軸方向と垂直な方向に伸張した場合には、ワイヤーに圧電素子膜が接触し、軸方向と垂直な方向の応力を直接与えることができる。
【0019】
上記応力追加部材は絶縁体チップであって、上記絶縁体チップを移動させるチップ移動部材をさらに備えることにより、絶縁体チップを移動させてワイヤーに接触させることにより、ワイヤーに応力を与えることができる。
【0020】
本発明の第1の電子デバイスの製造方法は、基板の上に圧電素子膜を形成する工程(a)と、上記圧電素子膜の上に、互いに離間するソース部とドレイン部とを形成する工程(b)と、上記ソース部と上記ドレイン部とに接続され、応力が加わることによって電気特性が導電性から絶縁性に変化する性質を有するワイヤーを形成する工程(c)とを含む。
【0021】
これにより、ワイヤーに応力を加えることによりスイッチングが可能な電子デバイスを製造することができる。この電子デバイスでは、圧電素子膜に電圧を印加することによりソース部とドレイン部との間の距離を変化させることにより、ワイヤーに応力を加えることができる。
【0022】
上記工程(c)では、上記ソース部および上記ドレイン部を試料溶液に浸し、上記ソース部と上記ドレイン部との間に電界を形成することにより上記ワイヤーが形成されることにより、自己整合的にワイヤーを形成することができる。
【0023】
上記工程(c)では、上記ソース部と上記ドレイン部との間に交流の電界を形成することが好ましい。
【0024】
本発明の第2の電子デバイスの製造方法は、基板の上に圧電素子膜を形成する工程(a)と、上記基板の上に、ソース部とドレイン部とを形成する工程(b)と、上記圧電素子膜の上に、上記ソース部と上記ドレイン部とに接続され、応力が加わることによって電気特性が導電性から絶縁性に変化する性質を有するワイヤーを形成する工程(c)とを含む。
【0025】
これにより、ワイヤーに応力を加えることによりスイッチングが可能な電子デバイスを製造することができる。この電子デバイスでは、圧電素子膜に電圧を印加することにより圧電素子膜をワイヤーに押しあてることにより、ワイヤーに応力を加えることができる。
【0026】
上記工程(c)では、上記ソース部および上記ドレイン部を試料溶液に浸し、上記ソース部と上記ドレイン部との間に電界を形成することにより形成されることにより、自己整合的にワイヤーを形成することができる。
【0027】
上記工程(c)では、上記ソース部と上記ドレイン部との間に交流の電界を形成することが好ましい。
【0028】
【発明の実施の形態】
(第1の実施形態)
第1の実施形態では、フタロシアニン誘導体のナノワイヤーに応力を加えることによりスイッチングを行なう電子デバイスについて説明する。
【0029】
図1は、第1の実施形態における電子デバイスの構造を示す断面図である。図1に示すように、本実施形態の電子デバイスは、基板10と、基板10の上に設けられ、厚さ100nmのチタン酸バリウムからなり、応力追加部材として機能する圧電素子膜11と、圧電素子膜11の上に距離30nmだけ離間して設けられた、厚さ10nmの金からなるソース電極(ソース部)12およびドレイン電極(ドレイン部)13と、ソース電極12とドレイン電極13とに接続するように設けられたナノワイヤー15とを備えている。ナノワイヤー15は、フタロシアニン誘導体の分子14が、ナノワイヤー15の軸方向に1次元的に連なって形成されている。
【0030】
次に、本実施形態の電子デバイスの製造方法について、図2(a)〜(c)を参照しながら説明する。図2(a)〜(c)は、第1の実施形態における電子デバイスの製造方法を示す断面図である。
【0031】
まず、図2(a)に示す工程で、Siからなる基板10の上に、スパッタリング法により、厚さ100nmのチタン酸バリウムからなる圧電素子膜11を形成する。
【0032】
次に、図2(b)に示す工程で、圧電素子膜11の上に、スパッタ蒸着法により厚さ10nmの金膜(図示せず)を形成する。そして、金膜をリソグラフィー法によりパターニングすることにより、互いに離間するソース電極12とドレイン電極13とを形成する。ここで、ソース電極12およびドレイン電極13は、白金であってもよい。
【0033】
次に、図2(c)に示すようなナノワイヤー15を得るために、以下の工程を行なう。まず、ソース電極12とドレイン電極13とを試料溶液(図示せず)に浸し、交流電流下において電気分解を行なう。ここで、試料溶液としては、0.3〜0.4mmol/dm−3 の濃度のフタロシアニン系化合物TPP[Co(Pc)CN]が溶解しているアセトニトリルを用い、1μAの交流電流を流した状態を、20℃の温度で1〜2週間保つ。ここで、電流の値を0.5〜2μAの範囲で変化させても、同様のナノワイヤーを得ることができる。
【0034】
このような電気化学的な方法によると、フタロシアニン誘導体の1次元的なナノワイヤー15を、自己整合的に形成することができる。
【0035】
図3は、第1の実施形態において、ナノワイヤー15を構成するフタロシアニン誘導体の分子の化学式を示す図である。図3に示すM(Pc)(CN) において、Mは3価の金属イオンである。ナノワイヤー15では、図3に示すようなフタロシアニン誘導体からなる単一分子14が、Pc鎖(Pc Chain)と垂直な方向に1次元的に配列されている。そして、互いに隣接する単一分子14のπ電子同士は重なっている。単一分子14同士の電気的な結合は強いため、単一分子14の集合体であるナノワイヤー15は金属的な導電性を示す。
【0036】
また、導電性を示すときのナノワイヤー15と、ソース電極12もしくはドレイン電極13とは、オーミックコンタクトを形成する。そのため、電気的なロスは生じにくい。
【0037】
次に、本実施形態の電子デバイスの動作について、図4(a),(b)を参照しながら説明する。図4(a),(b)は、第1の実施形態の電子デバイスにおいて、圧電素子膜11に電圧を印加しない状態と、印加した状態とを示す断面図である。なお、図4(a),(b)では、圧電素子膜11が電源16と接続されており、電源16によって圧電素子膜11へ電圧を印加することができる。
【0038】
図4(a)に示すように、電源16によって圧電素子膜11に電圧を印加しない状態では、ソース電極12からナノワイヤー15を介してドレイン電極13に電子が流れる。上述したように、フタロシアニン誘導体の単一分子14同士のπ電子の重なりはナノワイヤー15の軸方向に1次元的に連なっている。このため、1次元的に電子の移動度が高くなり、バリスティックな電子伝導を実現することができる。
【0039】
次に、図4(b)に示すように、圧電素子膜11に電圧を印加して圧電素子膜11を横方向に伸張させる。ここで、印加する電圧の値を調整することにより、圧電素子膜11の伸張と圧縮とを制御することができる。圧電素子膜11が伸張すると、圧電素子膜11の上に設けられているソース電極12とドレイン電極13との間の距離が大きくなり、ナノワイヤー15に横方向の伸張応力が加わる。これにより、単一分子間の電気的な結合が弱まり分子間空壁が生じるので、ナノワイヤー15の電気特性が金属的な導電性から絶縁性に変化する。なお、本明細書中における「ワイヤー」とは、電気特性が導電性であるものと絶縁性であるものとを含む。また、分子間空壁とは、π電子同士の重なりが少なくなることにより電子密度が疎になった領域のことをいう。
【0040】
以上に述べたように、本実施形態では、圧電素子膜11に印可する電圧を制御することによって、スイッチング動作が可能となる。そして、分子の集合体からなるナノワイヤー15に機械的な応力を加えて、ナノワイヤー15の電気特性を金属的な導電性から絶縁性に変化させることにより、高速な電子デバイスを実現することができる。
【0041】
また、π電子共役の構造を有する分子で構成される1次元的な結晶をナノワイヤー15として使用する。これにより、ナノワイヤー15に応力を加えない状態では、バリスティックな伝導性を得ることができる。
【0042】
また、ナノワイヤー15のサイズは小さく、また、ナノワイヤー15のサイズは正確に制御することができる。このため、素子の微細化を図ることができるので、動作速度の高速化と消費電力の低減とが可能となる。
【0043】
なお、本実施形態では、ナノワイヤー15を電気化学的な方法によって形成した。しかし、本発明においては、結晶性の高い分子結晶からなるナノワイヤーを形成すればよいので、化学気相(CVD)法や真空蒸着法などの他の方法によってナノワイヤーを形成してもよい。
【0044】
なお、本実施形態では、ナノワイヤー15を構成する分子としてフタロシアニン誘導体を用いた。しかしながら、本発明においては、ポルフィリンなどのπ電子共役系の分子を用いた場合であっても、応力を加えることにより電気特性を変化させることができる。
【0045】
また、本実施形態では、圧電素子膜11としてチタン酸バリウムを用いた。しかしながら、本発明では、圧電素子膜11としてチタン酸鉛やジルコン酸鉛などの他の材料を用いた場合であっても、電圧の印加により圧縮と伸張とを変化することができる。
【0046】
(第2の実施形態)
第2の実施形態では、ポルフィリンの重合体ワイヤーに応力を加えることによりスイッチングを行なう電子デバイスについて説明する。
【0047】
図5は、第2の実施形態における電子デバイスの構造を示す断面図である。図5に示すように、本実施形態の電子デバイスは、基板20と、基板20の上に設けられ、厚さ100nmのチタン酸バリウムからなり、応力追加部材として機能する圧電素子膜21と、圧電素子膜21の上に、距離10nmだけ離間して設けられた、厚さ5nmの金からなるソース電極(ソース部)22およびドレイン電極(ドレイン部)23と、ソース電極22とドレイン電極23とに接続するように設けられたポルフィリンの重合体からなる重合体ワイヤー24とを備えている。
【0048】
次に、本実施形態の電子デバイスの製造方法について説明する。まず、第1の実施形態と同様の方法により、基板20、圧電素子膜21、ソース電極22およびドレイン電極23を形成する。
【0049】
そして、重合体ワイヤー24を形成するために行なう処理について、図6(a)〜図7(b)を参照しながら説明する。図6(a),(b)は、ポルフィリン重合体が形成される過程の化学式を示す図である。
【0050】
図6(a)に示すように、ベンゾニトリル中において、5,15ジアリール置換ポルフィリンのZn錯体またはMg錯体の定電位電気分解酸化を行なうと、自己整合的に、メゾ−メゾ結合ポルフィリン重合体が生成される。
【0051】
一方、図6(b)に示すように、5,15ジアリール置換ポルフィリンのNi錯体、Pd錯体またはCu錯体の定電位電気分解酸化を行なうと、メゾ−ベータ結合ポルフィリン重合体が生成される。
【0052】
ポルフィリン重合体を生成する方法としては、上述のように電気分解酸化を行なう方法の他に、酸化剤を用いて酸化を行なう方法があり、それについて、図7(a),(b)を参照しながら説明する。図7(a),(b)は、ポルフィリンの重合体が形成される過程の化学式を示す図である。
【0053】
第1の方法は、酸化剤として銀(I)塩を用いる方法である。図7(a)に示すように、5,15−ジアリール置換ポルフィリン亜鉛錯体を銀(I)塩で処理すると、互いにメゾ位で結合したポルフィリン2量体や3量体を得ることができる。この2量体を単離して再び銀(I)塩で処理すると、ポルフィリン4量体を得ることができる。この2量化反応を繰り返すことにより、重合体を得ることができる。
【0054】
第2の方法は、酸化剤として(BrCNSbClを用いる方法である。図7(b)に示すように、5,15−ジアリール置換ポルフィリンニッケル錯体を(BrC NSbCl で処理すると、メゾ−ベータ縮合ポルフィリンの2量体や3量体などの重合体を得ることができる。
【0055】
重合体ワイヤー24は、π電子の共役状態になっているので金属的な導電性を示す。また、ソース電極22もしくはドレイン電極23と重合体ワイヤー24とはオーミックコンタクトを形成するため、電気的なロスは生じない。
【0056】
次に、本実施形態の電子デバイスの動作について、図8(a),(b)を参照しながら説明する。図8(a),(b)は、本実施形態の電子デバイスにおいて、圧電素子膜21に電圧を印加しない状態と、印加した状態とを示す断面図である。
【0057】
図8(a)に示すように、圧電素子膜21に電圧を印加しない状態では、ソース電極22から重合体ワイヤー24を介してドレイン電極23に電子が流れる。上述したように、重合体ワイヤー24ではπ電子が共役しているので、バリスティックな電子伝導を実現することができ、電子の移動度を高くすることができる。
【0058】
次に、図8(b)に示すように、圧電素子膜21に印加する電圧を調整することにより、圧電素子膜21が横方向に圧縮する。それに伴なって、ソース電極22とドレイン電極23との間の距離が小さくなり、重合体ワイヤー24に横方向の圧縮応力が加わる。圧縮応力が加わると、重合体ワイヤー24には構造的な歪みが生じる。これにより、重合体ワイヤー24では、電子状態が変化して導電性から絶縁性への変化が起こる。
【0059】
以上に述べたように、本実施形態では、圧電素子膜21に印可する電圧を制御することによってスイッチング動作が可能となる。そして、金属的な導電性を示す単一の分子からなる重合体ワイヤー24に機械的な応力を加えて、重合体ワイヤーの電気特性を金属的な導電性から絶縁性に変化させるので、電子デバイスの高速な動作を実現することができる。
【0060】
特に、ポルフィリンなどのπ電子共役の分子を重合して重合体ワイヤー24として使用する場合には、バリスティックな伝導性を得ることができる。
【0061】
また、重合体ワイヤー24のサイズは小さく、また、重合体ワイヤー24のサイズは正確に制御することができる。このため、素子の微細化を図ることができるので、動作速度の高速化と消費電力の低減とが可能となる。
【0062】
なお、本実施形態では、重合体ワイヤー24を電気化学的な方法あるいは酸化によって形成した。しかしながら、本発明では、化学吸着によって重合体ワイヤー24を形成してもよい。
【0063】
また、本実施形態では、単一の分子からなる重合体ワイヤーとしてポルフィリンの重合体を形成した。しかしながら、本発明では、フタロシアニン系分子、フェニレンの重合体またはチオフェンの重合体などのπ電子共役系分子を用いた場合にも、歪みを加えることによって電気特性を変化させることができる。
【0064】
また、本実施形態では、圧電素子膜21としてチタン酸バリウムを用いた。しかしながら、本発明では、圧電素子膜21としてチタン酸鉛やジルコン酸鉛などの他の材料を用いた場合であっても、電圧の印加により圧縮と伸張とを制御することができる。
【0065】
(第3の実施形態)
第3の実施形態では、カーボンナノチューブのナノワイヤーに応力を加えることによりスイッチングを行なう電子デバイスについて説明する。
【0066】
図9は、第3の実施形態における電子デバイスの構造を示す断面図である。図9に示すように、本実施形態の電子デバイスは、基板30と、基板30の上に設けられ、厚さ50nmのチタン酸バリウムからなり、応力追加部材として機能する圧電素子膜31と、圧電素子膜31の上に距離500nmだけ離間して設けられた、厚さ100nmの金からなるソース電極(ソース部)32およびドレイン電極33(ドレイン部)と、ソース電極32およびドレイン電極33とに接続するように設けられた導電性のカーボンナノチューブからなるワイヤー34とを備えている。
【0067】
本実施形態ではワイヤー34に縦方向の応力を加えるのに対し、第1および第2の実施形態では横方向の応力を加える。つまり、本実施形態では、縦に伸張する圧電素子膜によってワイヤーに直接応力を加えるのに対し、第1および第2の実施形態では、圧電素子膜を横方向に伸張あるいは圧縮することによってソース電極とドレイン電極との間の距離を変化させる。
【0068】
次に、本実施形態の電子デバイスの動作について、図10(a),(b)を参照しながら説明する。図10(a),(b)は、本実施形態の電子デバイスにおいて、圧電素子膜31に電圧を印加しない状態と、印加した状態とを示す断面図である。
【0069】
図10(a)に示すように、圧電素子膜31に電圧を印加しない状態では、ソース電極32からワイヤー34を通してドレイン電極33に電子が流れる。ワイヤー34として金属的な導電性を示すものが使用されているので、バリスティックな電子伝導を実現することができ、電子の移動度が高くなる。
【0070】
次に、図10(b)に示すように、圧電素子膜31に電圧を印加して、圧電素子膜31を縦方向に伸張させる。これにより、ワイヤー34のうち圧電素子膜31の上に位置する部分に応力がかかり、ワイヤー34は変形する。変形によって歪みが生じると、ワイヤー34の電気特性は導電性から絶縁性に変化する。
【0071】
このように、本実施形態では、圧電素子膜31に電圧を印加することによってスイッチング動作が可能となる。そして、金属的な導電性を示すワイヤー34に機械的な応力を加えて、ワイヤー34の電気特性を金属的な導電性から絶縁性に変化させることにより、高速な電子デバイスを実現することができる。
【0072】
また、ワイヤー34のサイズは小さく、また、ナノワイヤー34のサイズは正確に制御することができる。このため、素子の微細化を図ることができるので、動作速度の高速化と消費電力の低減とが可能となる。
【0073】
なお、本実施形態で用いるワイヤー34としては、単層カーボンナノチューブを用いてもよいし、多層カーボンナノチューブを用いてもよい。
【0074】
本実施形態では、機械的な応力を加える方法として、ワイヤー34の直下のうちの一部に圧電素子膜31を配置して、ワイヤー34に縦方向の応力を加えた。しかしながら、本発明では、ワイヤー34に接するように圧電素子膜31を形成して、圧縮あるいは伸張といった横方向の応力を加えてもよい。
【0075】
また、本実施形態では、圧電素子膜31としてチタン酸バリウムを用いた。しかしながら、本発明では、圧電素子膜31としてチタン酸鉛やジルコン酸鉛などの他の材料を用いた場合であっても、電圧の印加により圧縮と伸張とを制御することができる。
【0076】
また、本実施形態で用いたワイヤー34のかわりとして、第1の実施形態で述べたフタロシアニン誘導体のナノワイヤー15(図1に示す)を用いてもよい。この場合にも、ナノワイヤー15の電気特性を変化させることができるので、第1の実施形態と同様の効果を得ることができる。また、ワイヤー34のかわりとして、第2の実施形態で述べたポルフィリンの重合体ワイヤー24(図5に示す)を用いてもよい。この場合にも、重合体ワイヤー24の電気特性を変化させることができるので、第2の実施形態と同様の効果を得ることができる。
【0077】
(第4の実施形態)
第4の実施形態では、第1〜第3の実施形態において述べた方法とは異なる方法によりナノワイヤーに応力を加える場合について説明する。
【0078】
図11は、第4の実施形態における電子デバイスの構造を示す断面図である。図11に示すように、本実施形態の電子デバイスは、Siからなる基板40と、基板40の上に距離500nmだけ離間して設けられた、厚さ100nmの金からなるソース電極41およびドレイン電極42と、ソース電極41とドレイン電極42とに接続するように設けられた導電性のカーボンナノチューブからなるワイヤー43と、ワイヤー43への応力追加部材として機能する絶縁体チップ44と、絶縁体チップに取り付けられた探針(チップ移動部材)45とを備えている。
【0079】
本実施形態では、探針45を動作させて絶縁体チップ44をワイヤー43に押しあてることにより、ワイヤー43に歪みを発生させる。
【0080】
次に、本実施形態の電子デバイスの動作について、図12(a),(b)を参照しながら説明する。図12(a),(b)は、本実施形態の電子デバイスの動作を示す断面図である。
【0081】
図12(a)に示すように、絶縁体チップ44によってワイヤー43の応力が加わっていない状態では、ワイヤー43は導電性を示す。ソース電極41からワイヤー43を介してドレイン電極42に電子が流れる。
【0082】
次に、図12(b)に示すように、絶縁体チップ44をワイヤー43に押しあてると、応力がかかることによりワイヤー43が変形する。変形によって歪みが生じると、ワイヤー43の電気特性は導電性から絶縁性に変化する。
【0083】
このように、本実施形態では、探針45を動作させることによってスイッチング動作が可能となる。そして、金属的な導電性を示すカーボンナノチューブに機械的な応力を加えて、ワイヤー43の電気特性を金属的な導電性から絶縁性に変化させることにより、高速な電子デバイスを実現することができる。
【0084】
また、ナノワイヤー43のサイズは小さく、また、ナノワイヤー43のサイズは正確に制御することができる。このため、素子の微細化を図ることができるので、動作速度の高速化と消費電力の低減とが可能となる。
【0085】
なお、本実施形態で用いるワイヤー43としては、単層カーボンナノチューブを用いてもよいし、多層カーボンナノチューブを用いてもよい。
【0086】
また、本実施形態で用いたワイヤー43のかわりとして、第1の実施形態で述べたフタロシアニン誘導体のナノワイヤー15(図1に示す)を用いてもよい。この場合にも、ナノワイヤー15の電気特性を変化させることができるので、第1の実施形態と同様の効果を得ることができる。また、ワイヤー43のかわりとして、第2の実施形態で述べたポルフィリンの重合体ワイヤー24(図5に示す)を用いてもよい。この場合にも、重合体ワイヤー24の電気特性を変化させることができるので、第2の実施形態と同様の効果を得ることができる。
【0087】
【発明の効果】
本発明の電子デバイスでは、ワイヤーに応力を加えることによりスイッチングが可能となるため、高速動作を実現することができる。また、素子をナノメートルオーダーまで微細化することができることによって、素子の動作速度の高速化と消費電力の低減とが可能となる。
【図面の簡単な説明】
【図1】第1の実施形態における電子デバイスの構造を示す断面図である。
【図2】(a)〜(c)は、第1の実施形態における電子デバイスの製造方法を示す断面図である。
【図3】第1の実施形態において、ナノワイヤー15を構成するフタロシアニン誘導体の分子の化学式を示す図である。
【図4】(a),(b)は、第1の実施形態における電子デバイスの動作を示す断面図である。
【図5】第2の実施形態における電子デバイスの構造を示す断面図である。
【図6】(a),(b)は、第2の実施形態において、ポルフィリン重合体が形成される過程の化学式を示す図である。
【図7】(a),(b)は、ポルフィリンの重合体が形成される過程の化学式を示す図である。
【図8】(a),(b)は、第2の実施形態における電子デバイスの動作を示す断面図である。
【図9】第3の実施形態における電子デバイスの構造を示す断面図である。
【図10】(a),(b)は、第3の実施形態における電子デバイスの動作を示す断面図である。
【図11】第4の実施形態における電子デバイスの構造を示す断面図である。
【図12】(a),(b)は、第4の実施形態の電子デバイスの動作を示す断面図である。
【図13】従来における有機分子を用いたトランジスタの構造を示す断面図である。
【符号の説明】
10 基板
11 圧電素子膜
12 ソース電極
13 ドレイン電極
14 分子
15 ナノワイヤー
16 電源
20 基板
21 圧電素子膜
22 ソース電極
23 ドレイン電極
24 重合体ワイヤー
30 基板
31 圧電素子膜
32 ソース電極
33 ドレイン電極
34 ワイヤー
40 基板
41 ソース電極
42 ドレイン電極
43 ワイヤー
44 絶縁体チップ
45 探針

Claims (14)

  1. ソース部およびドレイン部と、
    上記ソース部と上記ドレイン部とに接続され、応力に応じて電気特性が導電性と絶縁性との間で変化する性質を有するワイヤーと、
    上記ワイヤーに応力を与えるための応力追加部材と
    を備える電子デバイス。
  2. 請求項1に記載の電子デバイスにおいて、
    上記ワイヤーは、π電子による共役の構造を有することを特徴とする電子デバイス。
  3. 請求項1または2に記載の電子デバイスにおいて、
    上記ワイヤーは分子の集合体から構成されており、上記ワイヤーは、上記ワイヤーの軸方向に、上記軸方向に垂直な方向よりも強い導電性を示すことを特徴とする電子デバイス。
  4. 請求項1または2に記載の電子デバイスにおいて、
    上記ワイヤーは、重合体からなることを特徴とする電子デバイス。
  5. 請求項1または2に記載の電子デバイスにおいて、
    上記ワイヤーは、カーボンナノチューブからなることを特徴とする電子デバイス。
  6. 請求項1〜5のうちいずれか1つに記載の電子デバイスにおいて、
    上記応力追加部材は圧電素子膜であって、
    上記ソース部および上記ドレイン部は上記圧電素子膜の上に設けられていることを特徴とする電子デバイス。
  7. 請求項1〜5のうちいずれか1つに記載の電子デバイスにおいて、
    上記圧力追加部材は圧電素子膜であって、
    上記ワイヤーは上記圧電素子膜の上に設けられていることを特徴とする電子デバイス。
  8. 請求項1〜5のうちいずれか1つに記載の電子デバイスにおいて、
    上記応力追加部材は絶縁体チップであって、
    上記絶縁体チップを移動させるチップ移動部材をさらに備えることを特徴とする電子デバイス。
  9. 基板の上に圧電素子膜を形成する工程(a)と、
    上記圧電素子膜の上に、互いに離間するソース部とドレイン部とを形成する工程(b)と、
    上記ソース部と上記ドレイン部とに接続され、応力が加わることによって電気特性が導電性から絶縁性に変化する性質を有するワイヤーを形成する工程(c)と
    を含む電子デバイスの製造方法。
  10. 請求項9に記載の電子デバイスの製造方法において、
    上記工程(c)では、上記ソース部および上記ドレイン部を試料溶液に浸し、上記ソース部と上記ドレイン部との間に電界を形成することにより上記ワイヤーが形成されることを特徴とする電子デバイスの製造方法。
  11. 請求項10に記載の電子デバイスの製造方法において、
    上記工程(c)では、上記ソース部と上記ドレイン部との間に交流の電界を形成することを特徴とする電子デバイスの製造方法。
  12. 基板の上に圧電素子膜を形成する工程(a)と、
    上記基板の上に、ソース部とドレイン部とを形成する工程(b)と、
    上記圧電素子膜の上に、上記ソース部と上記ドレイン部とに接続され、応力が加わることによって電気特性が導電性から絶縁性に変化する性質を有するワイヤーを形成する工程(c)と
    を含む電子デバイスの製造方法。
  13. 請求項12に記載の電子デバイスの製造方法において、
    上記工程(c)では、上記ソース部および上記ドレイン部を試料溶液に浸し、上記ソース部と上記ドレイン部との間に電界を形成することにより形成されることを特徴とする電子デバイスの製造方法。
  14. 請求項13に記載の電子デバイスの製造方法において、
    上記工程(c)では、上記ソース部と上記ドレイン部との間に交流の電界を形成することを特徴とする電子デバイスの製造方法。
JP2002359271A 2002-12-11 2002-12-11 電子デバイスおよびその製造方法 Pending JP2004193325A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359271A JP2004193325A (ja) 2002-12-11 2002-12-11 電子デバイスおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359271A JP2004193325A (ja) 2002-12-11 2002-12-11 電子デバイスおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2004193325A true JP2004193325A (ja) 2004-07-08

Family

ID=32758717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359271A Pending JP2004193325A (ja) 2002-12-11 2002-12-11 電子デバイスおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2004193325A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046177A2 (en) 2004-10-27 2006-05-04 Koninklijke Philips Electronics N.V. Semiconductor device with tunable energy band gap
KR100745769B1 (ko) 2006-09-11 2007-08-02 삼성전자주식회사 나노와이어 전기기계 스위칭 소자 및 그 제조방법, 상기나노와이어 전기기계 소자를 이용한 전기기계 메모리 소자
WO2008059797A1 (fr) * 2006-11-15 2008-05-22 Sony Corporation Élément moléculaire fonctionnel, procédé de production de celui-ci et dispositif moléculaire fonctionnel
JP2009107113A (ja) * 2007-10-31 2009-05-21 Postech Academy-Industry Foundation 微細ワイヤの製造方法、並びに微細ワイヤを含むセンサ及びその製造方法
JP2010021553A (ja) * 2008-07-11 2010-01-28 Qinghua Univ 有機複合材料ダイオード
US8468663B2 (en) * 2009-04-06 2013-06-25 Samsung Electronics Co., Ltd. Method for manufacturing an apparatus for generating electric energy
KR101539670B1 (ko) * 2009-10-13 2015-07-27 삼성전자주식회사 전기에너지 발생장치
CN110316693A (zh) * 2019-07-02 2019-10-11 南京航空航天大学 一种通过局部外加应力调控微纳米级机电开关的方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768081B2 (en) 2004-10-27 2010-08-03 Koninklijke Philips Electronics N V Semiconductor device with tunable energy band gap
WO2006046177A3 (en) * 2004-10-27 2006-06-22 Koninkl Philips Electronics Nv Semiconductor device with tunable energy band gap
JP2008518455A (ja) * 2004-10-27 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 調整可能なエネルギバンドギャップを有する半導体装置
WO2006046177A2 (en) 2004-10-27 2006-05-04 Koninklijke Philips Electronics N.V. Semiconductor device with tunable energy band gap
KR100745769B1 (ko) 2006-09-11 2007-08-02 삼성전자주식회사 나노와이어 전기기계 스위칭 소자 및 그 제조방법, 상기나노와이어 전기기계 소자를 이용한 전기기계 메모리 소자
WO2008059797A1 (fr) * 2006-11-15 2008-05-22 Sony Corporation Élément moléculaire fonctionnel, procédé de production de celui-ci et dispositif moléculaire fonctionnel
JP2008124360A (ja) * 2006-11-15 2008-05-29 Sony Corp 機能性分子素子及びその製造方法、並びに機能性分子装置
JP2009107113A (ja) * 2007-10-31 2009-05-21 Postech Academy-Industry Foundation 微細ワイヤの製造方法、並びに微細ワイヤを含むセンサ及びその製造方法
US8647490B2 (en) 2007-10-31 2014-02-11 Postech Academy-Industry Foundation Method for manufacturing carbon nanotube containing conductive micro wire and sensor including the micro wire
JP2010021553A (ja) * 2008-07-11 2010-01-28 Qinghua Univ 有機複合材料ダイオード
US8468663B2 (en) * 2009-04-06 2013-06-25 Samsung Electronics Co., Ltd. Method for manufacturing an apparatus for generating electric energy
KR101539670B1 (ko) * 2009-10-13 2015-07-27 삼성전자주식회사 전기에너지 발생장치
CN110316693A (zh) * 2019-07-02 2019-10-11 南京航空航天大学 一种通过局部外加应力调控微纳米级机电开关的方法
CN110316693B (zh) * 2019-07-02 2022-01-28 南京航空航天大学 一种通过局部外加应力调控微纳米级机电开关的方法

Similar Documents

Publication Publication Date Title
US8471249B2 (en) Carbon field effect transistors having charged monolayers to reduce parasitic resistance
US9865699B2 (en) Semiconductor device and method of manufacturing the same
JP5029600B2 (ja) カーボンナノチューブを用いた電界効果トランジスタとその製造方法及びセンサ
Chai et al. Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer
KR101156620B1 (ko) 그라핀 채널층을 가지는 전계 효과 트랜지스터
TWI292633B (ja)
JP5245385B2 (ja) グラフェンシートの製造方法、半導体装置の製造方法および半導体装置
JP5256850B2 (ja) 電界効果トランジスタ及びその製造方法
Chandra et al. Carbon nanotube thin film transistors on flexible substrates
JP2004335688A (ja) 電界効果型トランジスタ及びその製造方法
US20070155064A1 (en) Method for manufacturing carbon nano-tube FET
WO2009132165A2 (en) Microfabrication of carbon-based devices such as gate-controlled graphene devices
KR20040086474A (ko) 자기-정렬 나노튜브 전계 효과 트랜지스터 및 그 제조 방법
WO2006070670A1 (ja) 半導体ナノワイヤ、および当該ナノワイヤを備えた半導体装置
JP4984498B2 (ja) 機能素子及びその製造方法
JP4225716B2 (ja) 円筒状多層構造体による半導体装置
JP4864358B2 (ja) カーボンナノ細線トランジスタの製造方法
Zou et al. Few-layered MoS2 field-effect transistors with a vertical channel of sub-10 nm
JP2004193325A (ja) 電子デバイスおよびその製造方法
JP4461673B2 (ja) 能動的電子素子および電子装置
Li et al. Printed flexible thin-film transistors based on different types of modified liquid metal with good mobility
US20070187729A1 (en) Unipolar nanotube and field effect transistor having the same
Liu et al. Electrical contacts to individual SWCNTs: A review
Das et al. An Ultra-steep Slope Two-dimensional Strain Effect Transistor
JP4834992B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027