CN100464430C - 制造垂直场效应晶体管的方法和场效应晶体管 - Google Patents

制造垂直场效应晶体管的方法和场效应晶体管 Download PDF

Info

Publication number
CN100464430C
CN100464430C CNB2004800325811A CN200480032581A CN100464430C CN 100464430 C CN100464430 C CN 100464430C CN B2004800325811 A CNB2004800325811 A CN B2004800325811A CN 200480032581 A CN200480032581 A CN 200480032581A CN 100464430 C CN100464430 C CN 100464430C
Authority
CN
China
Prior art keywords
control electrode
substrate
wall
charge storage
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800325811A
Other languages
English (en)
Other versions
CN1875489A (zh
Inventor
H·图斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN1875489A publication Critical patent/CN1875489A/zh
Application granted granted Critical
Publication of CN100464430C publication Critical patent/CN100464430C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7885Hot carrier injection from the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Abstract

其中,解释一种用于制造场效应晶体管的方法,其中多个层、特别是栅极电极层(60)在每种情况下被沉积、被平面化和被深腐蚀。这个过程产生具有出色的电特性和具有出色的可复制性的晶体管。

Description

制造垂直场效应晶体管的方法和场效应晶体管
技术领域
本发明涉及一种用于制造垂直场效应晶体管的方法,所述方法具有以下步骤,这些步骤不受步骤以其被提及的顺序的限制来执行:
在衬底上形成用于形成场效应晶体管的沟道区城的至少一个结构,
在形成所述结构之后涂敷电绝缘的、靠近所述衬底的间隔层,
在涂敷靠近所述衬底的间隔层之后,涂敷导电的或者半导电的控制电极层,所述控制电极层用于形成场效应晶体管的控制电极。
背景技术
场效应原理在于,通过控制电极处的电势影响沟道中的电流.所述控制电极也被称为栅极.用于逻辑电路的场效应晶体管应具有短的栅极长度、薄的栅极绝缘层和同时具有大的接通电流。此外,工作电压应尽可能小,以便避免通过薄的栅极绝缘层的极大的漏电流。传统的平面场效应晶体管不能满足这些要求。
举例来说,德国专利说明书DE 199 24 571 C2公开了一种双栅极结构,所述双栅极结构实现高接通电流,因为两个栅极有助于电流控制。出于这个原因也可以减小工作电压。双栅极或者甚至三栅极结构是用于提高场效应晶体管的电特性的有希望的方法,特别是在极短的栅极长度(也就是说小于100纳米的栅极长度)的情况下是有希望的方法。
多栅极结构是三维结构,以致这些多栅极结构的制造是困难的并且必须小心地优化。尽管尺寸小,每个晶体管的芯片面积的面积要求也应尽可能小。此外,晶体管应具有像SOI晶片(硅绝缘体)那样的电特性。
发明内容
本发明的目标是说明一种用于制造具有良好的电特性的场效应晶体管的简单方法.此外,本发明说明了一种能简单制造的、具有良好的电特性的场效应晶体管、特别是快速存储器(FLASH memory)晶体管。
这个目标在方法方面通过根据本发明的方法步骤来实现。
在根据本发明的方法的情况下,除了前面的说明中所提及的方法步骤之外,执行下面的方法步骤:平面化所述控制电极层,和整个面积地深腐蚀已平面化的控制电极层。
这两个步骤简单地被执行并且具有这样的结果,即所述控制电极特别是以矩形或正方形横截面来制造.特别地,所述控制电极的宽度与距衬底的增加的距离保持相同。在控制电极处避免尖端细的部分。控制电极因此可以用在尺寸上非常准确的方式并且以相对突出部(projection)具有高的定位准确度来制造。因此,场效应晶体管以相互相同的并且特别良好的电特性来制造。
整个面积的深腐蚀优选地各向异性地来执行。然而,给出材料的适当选择,也可能执行各向同性的深腐蚀步骤。
根据本发明的制造方法特别被用于所谓垂直晶体管的制造中,所述垂直晶体管仅仅具有很小的面积需要。
在改进方案中,所述栅极电极在结束整个面积的深腐蚀之后沿着整个循环(circulation)保持围绕突出部。因此,FinFET的布局被旋转了90度,以致鳍(fin)相对晶片表面垂直。如果鳍具有平行于芯片或晶片表面的正方形或矩形横截面,则四个控制电极出现在栅极的四个侧壁上。包围突出部的控制电极导致特别高的接通电流。如果突出部的尺寸最小、例如具有小于50纳米的边长,则在场效应晶体管工作期间,耗尽电荷载体的衬底区域如在SOI衬底的情况下那样出现,但是不需要昂贵的SOI衬底.
突出部的高度可以这样来确定大小,以致可能最薄的栅极电极和用于使栅极电极对源极和漏极(一个堆在另一个上)绝缘的邻近的间隔层比突出部的高度低.用于连接电极、特别是用于源极接触的空间也可以确定所述高度。
在一个扩展方案中,结构的一部分或者覆盖所述结构的绝缘层的一部分在深腐蚀已平面化的控制电极层期间是未覆盖的,以致这部分可进行进一步的处理步骤和布置其他元件。
在其他的扩展方案中,在涂敷控制电极层之前,靠近衬底的间隔层被平面化并且在整个区城上被深腐蚀,优选地,结构的一部分是未覆盖的。然而,作为替换方案,也可以仅仅很薄地涂敷靠近衬底的间隔层,使得不必要深腐蚀。然而,深腐蚀导致尺寸上准确的间隔层。
在下一个扩展方案中,在深腐蚀控制电极层之后,电绝缘的、远离衬底的间隔层被涂敷、被平面化并且在整个面积上深腐蚀。特别地,在连续涂敷的层的情况下的重复的平面化和深腐蚀使得能够实现尺寸上准确的三维集成.
在一个改进方案中,下部间隔层的厚度不等于上部间隔层的厚度。这在优化晶体管时是有利的。不同的厚度在通常的CMOS流中不容易实现。
在另外的扩展方案中,在涂敷远离衬底的间隔层之后,涂敷连接电极层,优选地涂敷源极层(source layer)。源极层优选地覆盖突出部的侧壁,使得增大接触面积。在一个改进方案中,连接电极层另外被平面化,使得该连接电极层因此可没有任何问题地被构图(pattern)。
在根据本发明的方法的一个扩展方案中,靠近衬底的间隔层、控制电极层和远离衬底的间隔层还有连接电极层被共同构图、例如借助照相平板印刷方法或借助间隔技术来构图.制造步骤的数量由于这是很小的。
在其他的扩展方案中,在深腐蚀靠近衬底的间隔层之后和在涂敷控制电极层之前,电绝缘的层在部分结构上被涂敷为栅极绝缘层、特别是通过整个面积的层沉积(例如具有大于4或大于8的相对介电常数的材料)或者通过热生长(例如热氧化)来涂敷。
在下一个扩展方案中,所述结构借助硬质掩膜来形成,所述硬质掩膜在所提及的所有平面化步骤中被用作停止层(stop layer)。因此,可能非常准确地停止在预定的大小处。从这个大小出发,那么可能执行受时间控制的深腐蚀过程,在此过程期间可能制造具有在很小的公差范围中的层厚度的深腐蚀层。
在一个扩展方案中,在涂敷靠近衬底的间隔层之后和在涂敷控制电极层之前,涂敷电荷存储层。在涂敷控制电极层之前,电荷存储层被构图。电荷存储层是导电的、例如金属的、半导电的或电绝缘的。在电绝缘的电荷存储层的情况下,电荷特别是借助隧道电流来引入。该扩展方案例如产生EEPROM(电可擦写可编程只读存储器)单元或者快速EPROM单元,EEPROM单元可以独立于相邻单元被擦除,快速EPROM单元仅仅与相邻单元一起被擦除。
在一个改进方案中,由衬底掺杂所产生的“埋设的”位线被用于存储单元中。
存储单元被组织为例如NOR类型或SNOR类型.隧道电流、特别FowlerNordheim隧道电流(FN)被用于擦除。隧道电流或热电荷载体(CHE-通道热电子)被用于编程.由于单个或多个平面化或深腐蚀的尺寸上准确的制造导致存储单元的出色的电特性,特别是在编程可靠性、编程循环的数量方面和在阀值电压的漂移方面出色的电特性。
在本方法的一个扩展方案中,电荷存储层被平面化并且因此在整个面积上、优选地部分结构或部分未被覆盖的绝缘层上深腐蚀。通过这些步骤,可能制造具有顶部区域的电荷存储层,该顶部区域与衬底层平行或者与底部区域(base area)平行.这样的电荷存储层导致确定的编程操作和擦除操作。在一个扩展方案中,至少一个间隔元件在所述结构上和在电荷存储层上形成。于是,所述间隔元件用于构图电荷存储层,使得简单的自对准的间隔技术被用于构图。
另外,本发明涉及一种垂直场效应晶体管,所述垂直场效应晶体管的控制电极具有远离衬底的平面接口,所述接口与靠近所述衬底的突出部的底部区域平行.在一个扩展方案中,所述控制电极由平面接口在底部区域的法线方向上的任何位置处被划界,该法线方向指向远离衬底。换句话说,“向上”没有倾斜的接口或没有向上逐渐变细的突出部,该突出部使晶体管的电特性可能不可控.
在其他的扩展方案中,场效应晶体管具有被布置在绝缘区域与控制电极区域之间的至少一个电荷存储区域,该电荷存储区域具有远离衬底的平面接口,所述接口与突出部的底部区域平行。这导致存储器晶体管具有确定的并且可良好控制的电特性。在一个改进方案中,所述场效应晶体管被形成为侧壁晶体管或所谓的环绕的栅极晶体管。
特别是,场效应晶体管已通过根据本发明的方法或其扩展方案之一来制造,使得上面所提及的技术效果可以实现。
附图说明
本发明的示例性实施例下面参考附图来解释,其中:
图1示出侧壁场效应晶体管的简化图,
图2示出场效应晶体管的平面视图,
图3A和图3B示出场效应晶体管的制造中的制造阶段,
图4示出场效应晶体管的制造中的可替换的制造阶段,
图5A和图5B示出侧壁快速场效应晶体管的制造中的制造阶段。
具体实施方式
图1示出在鳍12上形成的垂直鳍状场效应晶体管10.鳍12已从半导体衬底13腐蚀出,该半导体衬底13在腐蚀之后具有平面的衬底表面14。举例来说,使用开始预先掺杂或者没掺杂的硅衬底。鳍12在衬底表面14的法线N的方向上例如具有100纳米的高度H。
鳍12的宽度B例如是20纳米。鳍12的长度L例如是60纳米。
在鳍12的底部F或在鳍12的底座上,鳍12的底部区域位于衬底表面14的平面中.栅极电极16包围鳍12并与衬底表面14平行且距衬底表面14一距离。这个距离例如是30纳米。栅极电极16例如包括掺杂的多晶硅。
栅极绝缘层18(在图1中没示出)位于栅极电极16与鳍12之间。适当的栅极绝缘层例如是二氧化硅或具有大于3.9或者大于7的相对介电常数的绝缘材料、也就是说所谓的高K材料。
漏极区域20被布置在鳍12的上端部分,所述漏极区域在n沟道晶体管的情况下是n掺杂而在p沟道晶体管的情况下是p掺杂。在鳍12的底部F的底部区域的周围,源极区域22直接在衬底表面14的下面或邻接衬底表面14被布置在衬底13中,所述源极区域例如具有与漏极区域20相同的掺杂。在其他的示例性实施例中,源极的掺杂和漏极的掺杂是不同的,以便允许晶体管的良好的优化。鳍12的高度H通过用于使栅极电极16与衬底表面14和与漏极连接绝缘的两个间隔元件的高度来确定,也就是通过栅极电极的高度H2和通过漏极连接的高度来确定。
图2示出场效应晶体管10的平面视图,所述场效应晶体管具有用于源极区域22或用于源极连接区域的面积S,具有用于栅极电极或用于栅极电极连接的面积G以及具有用于漏极区域或用于漏极连接区域的面积D.连接区域是方形或者矩形并且位于鳍12的不同的两侧上。漏极连接区域D也包围鳍12.因此,场效应晶体管10是垂直场效应晶体管,该垂直场效应晶体管具有四个控制电极或栅极区域并且具有小的结构高度。
图3A示出场效应晶体管10的制造中的制造阶段.从衬底13出发,制造浅的隔离槽(未示出),浅的隔离槽用于隔离相互之间的晶体管。所述隔离槽以公知的方式用绝缘材料、例如用二氧化硅来填充.在填充之后,例如借助化学机械抛光方法CMP实现平面化.
在平面化之后,硬质掩膜层50被沉积,例如沉积氮化硅层。硬质掩膜层50例如借助照相平板印刷方法或借助间隔技术来构图,硬质掩膜52保持在其中应晶体管10的区域中。此外,硬质掩膜部分为了制造其他晶体管的多样性而保持在衬底13的其他位置处。晶体管通过相同的方法步骤制造并且因此相同地被构造。硬质掩膜52例如具有20纳米到60纳米的上面提及的范围。
在构图硬质掩膜层50之后,衬底13根据硬质掩膜、例如通过相同的腐蚀方法来构图.鳍12在该过程中被制造。腐蚀以在时间上可控制的方式通过公知的腐蚀方法来实现。如果适当,在腐蚀期间,硬质掩膜层也稍微被薄.
在制造鳍之后,硬质掩膜层50例如具有40纳米的厚度。
其中,为了在接下来的源极植入步骤期间保护衬底,接下来制造薄筛氧化层(screen oxide layer)54。例如通过具有例如小于10纳米厚度的热氧化物来制造该氧化层54。
然后,源极区域22或S借助使用低至中等加速电压的植入较高地来掺杂。
植入被继之以沉积具有一厚度的电绝缘间隔层56,所述厚度比鳍12的高度H加上硬质掩膜52的厚度更高.举例来说,间隔层56是二氧化硅层,该二氧化硅层具有140纳米的原始厚度。所述间隔层56例如借助化学机械抛光方法来平面化,在硬质掩膜52上或在CMP辅助结构(未示出)处的硬质掩膜层52的残留物上停止。
在平面化之后,间隔层56在整个面积上被深腐蚀至其目标厚度,例如被深腐蚀至30纳米或30纳米到50纳米的范围中的厚度。腐蚀例如以在时间上可控的方式来执行。
在深腐蚀区域中,例如借助示例性实施例中的附加的各向同性的氧化物腐蚀,薄筛氧化层54也从腐蚀结构的垂直侧壁中去除。鳍12的侧面积因此没有被再次覆盖。
栅极绝缘层58接着被沉积,例如通过喷射或汽相沉积CVD(化学汽相沉积)来沉积。所述栅极绝缘层58例如包括氧氮化物或其他的高K材料。栅极绝缘层58的氧化物等效厚度在示例性实施例中是1纳米。作为替换方案,栅极绝缘层58的厚度例如在1纳米到2纳米的范围中。
如此外在图3A中所示出的那样,接下来涂敷、特别是沉积栅极电极层60。所述栅极电极层60例如包括金属或高掺杂的多晶硅。在涂敷结束时,栅极电极层60具有比从栅极绝缘层58的那些区域的(远离衬底的)表面直至从衬底上被去除的硬质掩膜2的表面的法线方向上的距离大的厚度,该栅极绝缘层58的那些区域并不在硬质掩膜52上。包括硬质掩膜52的相邻鳍12之间的剪切因此完全利用栅极电极层58的材料来填充.在示例性实施例中,栅极电极层60以110纳米的厚度来涂敷。
在涂敷栅极电极层60之后,再次实现平面化,例如借助于CMP方法来实现平面化,停止在硬质掩膜52或部分在硬质掩膜52上支承的电极层上。
如在图3A中所示,已平面化的栅极电极层60于是在整个面积上被深腐蚀,特别是使用各向异性的腐蚀方法来深腐蚀。在整个面积上意味着,在这种情况下,在深腐蚀步骤期间没有掩膜被用于构图栅极电极层60。用于深腐蚀的持续时间确定的剩余的厚度。在示例性实施例中,在深腐蚀之后,该栅极电极层60具有例如20纳米的剩余厚度。由于深腐蚀之前的平面化,深腐蚀栅极电极层60具有统一的层厚度。所述栅极电极层60因而深腐蚀至硬质掩膜52的表面之下,所述硬质掩膜52远离衬底并且也在鳍12的表面之下,所述鳍12远离衬底。
在深腐蚀栅极电极层60之后,要不就在深腐蚀栅极电极层60之前,所述栅极电极层60和优选地间隔层56也可能已经通过平板印刷方法或通过间隔技术、换句话说使用硬质掩膜来构图。然而,作为替换方案,栅极电极层56的构图和(如果合适)间隔层56的构图在后面的时刻与在涂敷栅极电极层60之后所涂敷的至少一层一起被执行。栅极电极连接层16在构图栅极电极层60期间出现。
如此外在图3A中所示,在深腐蚀栅极电极层58之后,第二电绝缘的间隔层62例如通过沉积来涂敷。在示例性的实施例中,第二间隔层62包括与间隔层56相同的材料,所述间隔层56更靠近衬底13.然而,作为替换方案,间隔层56和62相互包括不同的材料。
所述间隔层62同样以一厚度来涂敷,所述厚度比在硬质掩膜52的远离衬底的表面或栅极绝缘层58的远离衬底的表面与深腐蚀的栅极电极层60的远离衬底的表面之间的高度差更大,所述栅极绝缘层58的远离衬底的表面保留在硬质掩膜上。在示例性的实施例中,直接在涂敷之后,间隔层的厚度是90纳米。
间隔层62随后在整个区域上被深腐蚀至例如30纳米的目标厚度,使得远离衬底的、间隔层62的表面近似在鳍12的自由端之下近似10纳米。
在其他的方法步骤中,如同样在图3B中所示,未覆盖的栅极绝缘层58从鳍12的区域和从硬质掩膜52中(例如以干化学方式或以湿化学方式)被去除,所述鳍12的区域还没有被覆盖。用于接触漏极区域的连接区域因此在鳍12的自由端处未被覆盖。可选地,剩余的硬质掩膜52也以湿化学方式被去除。
漏极接触材料64随后被沉积,优选地以一厚度来沉积,所述厚度比由鳍12或由硬质掩膜52突出在间隔层62的剩余高度差更大。所述漏极接触材料64例如是高掺杂的多晶硅。可选地,漏极接触材料64然后被平面化并且在整个面积上被深腐蚀。
漏极接触材料随后通过平板印刷方法来构图。用于制造金属接触的步骤可选地随后进行。在沉积漏极接触材料64期间或在随后的热步骤期间,掺杂物从漏极层64扩散到鳍12中,以便形成漏极带。同时,掺杂物从源极区域扩散到鳍的较低的区域中,以便形成到沟道的源极连接。所述漏极区域20在构图期间由漏极接触材料64而产生。
图4示出场效应晶体管10的制造中的可替换的制造阶段。代替栅极绝缘层58的沉积,在间隔层56已被深腐蚀之后,栅极绝缘层70仅仅被涂敷在鳍12的未覆盖的侧壁上,特别是通过热氧化来涂敷。作为替换方案,氧氮化物层仅仅在鳍12的侧壁上被制造。接着执行如参考图3A和3B解释的相同的制造步骤。
图5A和5B示出垂直侧壁快速场效应晶体管100的制造的制造阶段.晶体管100的制造如所提及的晶体管10或替换方案的制造中那样进行,除了用于制造电荷存储层或所谓浮动栅极的附加方法步骤之外,所述附加方法步骤在下面被说明。
特别地,在这个情况下,下面的方法步骤再次以所提及的顺序来执行:
-从衬底113出发,具有与鳍12相同的尺寸的鳍112通过硬质掩膜152或通过其他技术来制造,
-涂敷薄筛氧化层154,
-植入源极区域122,
-电绝缘的平面间隔层156优选地通过沉积、平面化和整个面积的深腐蚀来制造,
-第一栅极绝缘层158通过整个面积的沉积类似于栅极绝缘层58来制造。作为替换方案,与栅极绝缘层70相对应的栅极绝缘层仅仅在鳍112上被制造。
如在图5A中所示,用于制造电荷存储区域159的步骤在制造第一栅极绝缘层之后被执行。为了这个目的,例如高掺杂的多晶硅层被沉积。作为替换方案,电介质材料或金属也可以用作电荷存储区域的材料。用于制造电荷存储区域159的层以一厚度来沉积,所述厚度允许稍后完全平面化。举例来说,层厚度在涂敷之后是110纳米。
用于制造电荷存储区域159的材料随后例如通过CMP被平面化,CMP停止结构优选地用作停止。这通过整个面积的深腐蚀来进行,用于形成电荷存储区域159的剩余层厚度例如保持30纳米。
如此外在图5A中示出,间隔元件161或间隔随后通过层沉积或各向异性的腐蚀来制造,(在利用栅极绝缘层来覆盖的侧壁上的)间隔元件或间隔包围鳍112和(如何合适)用栅极绝缘层覆盖的硬质掩膜152的侧壁。间隔元件161支承在用于形成电荷存储区域的层上。
用于形成电荷存储区域159的层随后借助如各向异性的腐蚀过程中的硬模那样的间隔元件161来构图.间隔元件161然后被去除。硬质掩膜152在示例性的实施例中仍然保持在鳍112上。
如在图5B中所示,其他的电介质层163接着被制造。如用于制造晶体管10的相同的方法步骤随后被执行,特别是:
-通过沉积、平面化和整个面积的深腐蚀来制造导电的栅极电极层160(例如由高掺杂的多晶硅制成)。栅极电极层160的厚度和材料例如与栅极电极层60的厚度和材料相同。在示例性的实施例中,所述栅极电极层160比电荷存储区域159深腐蚀得更多。然而,作为替换方案,栅极电极层160被深腐蚀到更小的程度,使得该栅极电极层160重叠电荷存储区域159。
-随后制造其他的电绝缘的间隔层162,所述间隔层162按照其厚度和按照其材料是或可能与间隔层62相同。但是,也可能的是使用间隔层的其他材料或其他厚度。
-构图栅极电极层160和间隔层162,例如通过照相平板印刷方法来构图。
-消除间隔层162上的两个栅极绝缘层,
-可选地去除剩余的硬质掩膜152。
-由于漏极栅极电容减小,优选地通过沉积、平面化和整个面积深腐蚀来涂敷漏极接触材料164,该漏极接触材料164与漏极接触材料64相对应。
-构图漏极接触材料164。
闪存单元优选通过“热”电荷载体来编程,所述“热”电荷载体也称为CHE或通道热电子。Fowler-Nordheim隧道电流优选地被用于擦除。闪存单元例如根据公知的NOR结构来组织。这意味着,源极连接被构图为位线方向的位线.通过构图栅极电极来制造的字线与位线成直角。以矩阵形式来构造的存储单元阵列的多个存储晶体管分别位于每个位线和字线上。
在其他的示例性实施例中,不使用硬质掩膜52、152,或者硬质掩膜52、152早已被去除,使得鳍12或112的末端用作要被平面化的层的厚度的参考点。
由于所埋设的源极区域122,晶体管100需要仅仅很小的衬底面积。此外,四个栅极区域允许大的接通电流,使得例如小于3伏特的减小的工作电压可以被利用。所说明的制造方法是简单的并且使得晶体管在很小的公差内可复制地被制造。

Claims (18)

1.一种用于制造垂直场效应晶体管(10,100)的方法,
所述方法具有下面的步骤:
在衬底(13,113)上形成至少一个结构(12,112),所述结构(12,112)用于形成场效应晶体管(10,100)的沟道区域,
在形成所述结构(12,112)之后涂敷电绝缘的、靠近所述衬底的间隔层(56,156),
在涂敷靠近所述衬底的间隔层(56,156)之后,涂敷导电的或半导电的控制电极层(60,160),所述控制电极层(60,160)用于形成所述场效应晶体管(10,100)的控制电极,
平面化所述控制电极层(60,160),以及
整个面积地深腐蚀已平面化的控制电极层(60,160),
其特征在于在涂敷所述控制电极层(60,160)之前执行的以下步骤:
平面化靠近所述衬底的间隔层(56,156),
在平面化靠近所述衬底的间隔层(56,156)之后,整个面积地深腐蚀靠近所述衬底的间隔层(56,156),
或其特征在于以下步骤:
在深腐蚀所述控制电极层(60,160)之后涂敷电绝缘的、远离所述衬底的间隔层(62,162),
平面化远离所述衬底的间隔层(62,162),整个面积地深腐蚀远离所述衬底的间隔层(62,162)。
2.根据权利要求1所述的方法,其特征在于,所述结构(12,112)的一部分或者绝缘层(58,70,163)中覆盖所述结构(12,112)的一部分在深腐蚀已平面化的控制电极层(60,160)期间未被覆盖。
3.根据权利要求1或2所述的方法,其特征在于,在整个面积地深腐蚀靠近所述衬底的间隔层(56,156)期间,所述结构(12,112)的一部分未被覆盖.
4.根据权利要求1或2所述的方法,其特征在于,在整个面积地深腐蚀远离所述衬底的间隔层(62,162)期间,所述结构(12,112)的一部分或者绝缘层(58,70,163)中覆盖所述结构(12,112)的一部分未被覆盖。
5.根据权利要求1或2所述的方法,其特征在于以下步骤中的至少一个:
在涂敷远离所述衬底的间隔层(62,162)之后,涂敷用于形成所述场效应晶体管(10,100)的连接电极的连接电极层(64,164),
平面化所述连接电极层(64,164)。
6.根据权利要求5所述的方法,其特征在于以下步骤:
共同构图所述控制电极层(60,160)和构图远离所述衬底的间隔层(62,162)并且也构图靠近所述衬底的间隔层(56,156)。
7.根据权利要求1或2所述的方法,其特征在于以下步骤:
在深腐蚀靠近所述衬底的间隔层(56,156)之后和在涂敷所述控制电极层(60,160)之前,在所述结构(12,112)的一部分上形成电绝缘层(58,70,163)。
8.根据权利要求7所述的方法,其特征在于,所述电绝缘层(58,70,163)通过整个面积的层沉积或通过热生长来制造。
9.根据权利要求8所述的方法,其特征在于,所述电绝缘层(58,70,163)通过热氧化来制造.
10.根据权利要求1或2所述的方法,其特征在于,所述结构(12,112)借助硬质掩膜(52,152)来形成,所述硬质掩膜(52,152)在至少一个平面化步骤期间或在所提及的所有平面化步骤期间被用作停止层。
11.根据权利要求1或2所述的方法,其特征在于以下步骤中的至少一个:
在涂敷靠近所述衬底的间隔层(56,156)之后和在涂敷所述控制电极层(60,160)之前,涂敷电荷存储层(159),
在涂敷所述控制电极层(60,160)之前,构图所述电荷存储层(159)。
12.根据权利要求11所述的方法,其特征在于以下步骤中的至少一个:
平面化所述电荷存储层(159),
整个面积地深腐蚀所述电荷存储层(159),
所述结构(112)的一部分或者绝缘层(158)中覆盖所述结构(112)的一部分未被覆盖,
在所述结构(112)上形成至少一个间隔元件(161),
使用所述间隔元件(161)来构图所述电荷存储层(159)。
13.垂直场效应晶体管(10,100),
具有突出部(12,112),所述突出部(12,112)在衬底(13,113)上形成并且用于形成场效应晶体管(10,100)的沟道区域,
具有所述场效应晶体管(10,100)的控制电极的控制电极区域(60,160),所述控制电极区域(60,160)被形成在所述突出部(12,112)的相互相对的两侧上,
具有绝缘区域(58,70,158),所述绝缘区域(58,70,158)被布置在所述控制电极区域(60,160)与所述突出部(12,112)之间,所述绝缘区域(58,70,158)电绝缘并且邻接所述沟道区域,
在所述沟道区域的一端处具有靠近所述衬底的连接区域(22,122),
以及在所述沟道区域的另一端处具有远离所述衬底的连接区域(64,164),
所述控制电极(60,160)具有平面接口,所述平面接口与靠近所述衬底的突出部(12,112)的底部区域(F)平行,
在所述底部区域的法线(N)的方向上的其区域的至少百分之九十中,所述控制电极(60,160)由所述平面接口来划界,所述底部区域的法线(N)的方向指向远离所述衬底(13,113),
具有被布置在绝缘区域(163)与控制电极区域(60,160)之间的至少一个电荷存储区域(159),
以及具有至少一个另外的绝缘区域(163),所述另外的绝缘区域(163)电绝缘并且被布置在电荷存储区域(159)和控制电极区域(60,160)之间,
所述电荷存储区域(159)被包含在电荷存储材料中,所述电荷存储材料具有远离所述衬底的另外的平面接口,所述接口与所述突出部(12,112)的底部区域平行,
在所述底部区域的法线(N)的方向上的其区域的至少百分之九十中,所述电荷存储材料(159)由远离所述衬底的另外的平面接口来划界,所述底部区域的法线(N)的方向指向远离所述衬底,
其特征在于,所述控制电极(160)比所述电荷存储区域(159)向后移动得更多,或者其特征在于,如在所述法线(N)的方向上所看到的那样,所述控制电极(160)重叠所述电荷存储区域(159)。
14.根据权利要求13所述的场效应晶体管(10,100),其特征在于,在所述底部区域的法线(N)的方向上的任何地方,所述控制电极(60,160)由所述平面接口来划界,所述底部区域的法线(N)的方向指向远离所述衬底(13,113)。
15.根据权利要求13或14所述的场效应晶体管(10,100),其特征在于,在所述底部区域的法线(N)的方向上的任何地方,所述电荷存储材料(159)由远离所述衬底的另外的平面接口来划界,所述底部区域的法线(N)的方向指向远离所述衬底。
16.根据权利要求13或14所述的场效应晶体管(10,100),其特征在于,所述控制电极(60,160)沿着封闭的循环包围所述突出部(12,112),
和/或其特征在于,所述电荷存储材料(159)沿着封闭的循环包围所述突出部(12,112)。
17.根据权利要求13或14所述的场效应晶体管(10,100),其特征在于以下特征中的至少一个:
所述突出部(12,112)和所述衬底(13,113)以单晶形式形成,
所述绝缘区域(70)是在所述突出部上生长的区域,
靠近所述衬底的连接区域(22,122)以相对所述底部区域的横向偏移来布置,
所述突出部(12,112)具有小于一百纳米的最小的尺寸。
18.根据权利要求17所述的场效应晶体管(10,100),其特征在于,所述突出部(12,112)和所述衬底(13,113)的晶格常数保持相同。
CNB2004800325811A 2003-10-30 2004-10-08 制造垂直场效应晶体管的方法和场效应晶体管 Expired - Fee Related CN100464430C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10350751.5 2003-10-30
DE10350751A DE10350751B4 (de) 2003-10-30 2003-10-30 Verfahren zum Herstellen eines vertikalen Feldeffekttransistors und Feldeffekt-Speichertransistor, insbesondere FLASH-Speichertransistor

Publications (2)

Publication Number Publication Date
CN1875489A CN1875489A (zh) 2006-12-06
CN100464430C true CN100464430C (zh) 2009-02-25

Family

ID=34529936

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800325811A Expired - Fee Related CN100464430C (zh) 2003-10-30 2004-10-08 制造垂直场效应晶体管的方法和场效应晶体管

Country Status (5)

Country Link
US (2) US7405127B2 (zh)
EP (2) EP2270844A3 (zh)
CN (1) CN100464430C (zh)
DE (2) DE10350751B4 (zh)
WO (1) WO2005043629A1 (zh)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060197140A1 (en) * 2005-03-04 2006-09-07 Freescale Semiconductor, Inc. Vertical transistor NVM with body contact structure and method
US8501581B2 (en) 2006-03-29 2013-08-06 Micron Technology, Inc. Methods of forming semiconductor constructions
US7760548B2 (en) 2006-11-29 2010-07-20 Yuniarto Widjaja Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8514622B2 (en) 2007-11-29 2013-08-20 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US8159868B2 (en) 2008-08-22 2012-04-17 Zeno Semiconductor, Inc. Semiconductor memory having both volatile and non-volatile functionality including resistance change material and method of operating
US8547756B2 (en) 2010-10-04 2013-10-01 Zeno Semiconductor, Inc. Semiconductor memory device having an electrically floating body transistor
US8194451B2 (en) 2007-11-29 2012-06-05 Zeno Semiconductor, Inc. Memory cells, memory cell arrays, methods of using and methods of making
US8077536B2 (en) * 2008-08-05 2011-12-13 Zeno Semiconductor, Inc. Method of operating semiconductor memory device with floating body transistor using silicon controlled rectifier principle
US9601493B2 (en) 2006-11-29 2017-03-21 Zeno Semiconductor, Inc Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US9391079B2 (en) 2007-11-29 2016-07-12 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US20080277738A1 (en) * 2007-05-08 2008-11-13 Venkat Ananthan Memory cells, memory banks, memory arrays, and electronic systems
US7847338B2 (en) 2007-10-24 2010-12-07 Yuniarto Widjaja Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8130547B2 (en) 2007-11-29 2012-03-06 Zeno Semiconductor, Inc. Method of maintaining the state of semiconductor memory having electrically floating body transistor
US8264875B2 (en) 2010-10-04 2012-09-11 Zeno Semiconducor, Inc. Semiconductor memory device having an electrically floating body transistor
US10403361B2 (en) 2007-11-29 2019-09-03 Zeno Semiconductor, Inc. Memory cells, memory cell arrays, methods of using and methods of making
US8130548B2 (en) 2007-11-29 2012-03-06 Zeno Semiconductor, Inc. Semiconductor memory having electrically floating body transistor
US8174886B2 (en) 2007-11-29 2012-05-08 Zeno Semiconductor, Inc. Semiconductor memory having electrically floating body transistor
US8014200B2 (en) 2008-04-08 2011-09-06 Zeno Semiconductor, Inc. Semiconductor memory having volatile and multi-bit, non-volatile functionality and methods of operating
USRE47381E1 (en) 2008-09-03 2019-05-07 Zeno Semiconductor, Inc. Forming semiconductor cells with regions of varying conductivity
US11908899B2 (en) 2009-02-20 2024-02-20 Zeno Semiconductor, Inc. MOSFET and memory cell having improved drain current through back bias application
JP5823409B2 (ja) 2009-12-22 2015-11-25 ギブズ テクノロジーズ リミテッド 水陸両用車
SG10201700467UA (en) 2010-02-07 2017-02-27 Zeno Semiconductor Inc Semiconductor memory device having electrically floating body transistor, and having both volatile and non-volatile functionality and method
US10461084B2 (en) 2010-03-02 2019-10-29 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US9922981B2 (en) 2010-03-02 2018-03-20 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US10340276B2 (en) 2010-03-02 2019-07-02 Zeno Semiconductor, Inc. Method of maintaining the state of semiconductor memory having electrically floating body transistor
US8582359B2 (en) 2010-11-16 2013-11-12 Zeno Semiconductor, Inc. Dual-port semiconductor memory and first-in first-out (FIFO) memory having electrically floating body transistor
US8957458B2 (en) 2011-03-24 2015-02-17 Zeno Semiconductor, Inc. Asymmetric semiconductor memory device having electrically floating body transistor
US9025358B2 (en) 2011-10-13 2015-05-05 Zeno Semiconductor Inc Semiconductor memory having both volatile and non-volatile functionality comprising resistive change material and method of operating
CN103187439B (zh) * 2011-12-29 2015-08-05 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法、cmos及其形成方法
US9230651B2 (en) 2012-04-08 2016-01-05 Zeno Semiconductor, Inc. Memory device having electrically floating body transitor
SG11201404871TA (en) 2012-02-16 2014-09-26 Zeno Semiconductor Inc Memory cell comprising first and second transistors and methods of operating
US9208880B2 (en) 2013-01-14 2015-12-08 Zeno Semiconductor, Inc. Content addressable memory device having electrically floating body transistor
US9029922B2 (en) 2013-03-09 2015-05-12 Zeno Semiconductor, Inc. Memory device comprising electrically floating body transistor
US9275723B2 (en) 2013-04-10 2016-03-01 Zeno Semiconductor, Inc. Scalable floating body memory cell for memory compilers and method of using floating body memories with memory compilers
US9368625B2 (en) 2013-05-01 2016-06-14 Zeno Semiconductor, Inc. NAND string utilizing floating body memory cell
US9281022B2 (en) 2013-07-10 2016-03-08 Zeno Semiconductor, Inc. Systems and methods for reducing standby power in floating body memory devices
US9548119B2 (en) 2014-01-15 2017-01-17 Zeno Semiconductor, Inc Memory device comprising an electrically floating body transistor
US9496053B2 (en) 2014-08-15 2016-11-15 Zeno Semiconductor, Inc. Memory device comprising electrically floating body transistor
WO2016163045A1 (ja) * 2015-04-06 2016-10-13 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Sgtを有する柱状半導体装置と、その製造方法
TWI694525B (zh) 2015-04-29 2020-05-21 美商季諾半導體股份有限公司 通過施加回饋偏壓提高漏極電流的金屬氧化物半導體場效應電晶體(mosfet)和存儲單元
US10553683B2 (en) 2015-04-29 2020-02-04 Zeno Semiconductor, Inc. MOSFET and memory cell having improved drain current through back bias application
US10032906B2 (en) * 2016-04-29 2018-07-24 Samsung Electronics Co., Ltd. Vertical field effect transistor and method of fabricating the same
US10134642B2 (en) 2016-09-28 2018-11-20 International Business Machines Corporation Semiconductor device and method of forming the semiconductor device
US10079301B2 (en) 2016-11-01 2018-09-18 Zeno Semiconductor, Inc. Memory device comprising an electrically floating body transistor and methods of using
US10840354B2 (en) * 2017-02-06 2020-11-17 International Business Machines Corporation Approach to bottom dielectric isolation for vertical transport fin field effect transistors
US10103147B1 (en) 2017-05-01 2018-10-16 International Business Machines Corporation Vertical transport transistors with equal gate stack thicknesses
TWI787498B (zh) 2018-04-18 2022-12-21 美商季諾半導體股份有限公司 包括電性浮體電晶體的記憶裝置
US11600663B2 (en) 2019-01-11 2023-03-07 Zeno Semiconductor, Inc. Memory cell and memory array select transistor
DE102020202015A1 (de) 2020-02-18 2021-08-19 Robert Bosch Gesellschaft mit beschränkter Haftung Vertikaler Feldeffekttransistor und Verfahren zum Ausbilden desselben
CN113611667A (zh) * 2021-07-02 2021-11-05 芯盟科技有限公司 晶体管阵列及其制造方法、半导体器件及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197641B1 (en) * 1998-08-28 2001-03-06 Lucent Technologies Inc. Process for fabricating vertical transistors
US6303425B1 (en) * 1994-05-26 2001-10-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6433382B1 (en) * 1995-04-06 2002-08-13 Motorola, Inc. Split-gate vertically oriented EEPROM device and process
US20020140032A1 (en) * 2001-03-28 2002-10-03 Wonju Cho Ultra small size vertical MOSFET device and method for the manufacture thereof
US20020195649A1 (en) * 1998-02-27 2002-12-26 Micron Technology, Inc. Field programmable logic arrays with vertical transistors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19621244C2 (de) * 1996-05-25 2003-08-28 Infineon Technologies Ag Verfahren zur Herstellung eines MOS-Transistors mit einem mesaförmigen Schichtstapel und MOS-Transistor
US5990509A (en) * 1997-01-22 1999-11-23 International Business Machines Corporation 2F-square memory cell for gigabit memory applications
DE19846063A1 (de) * 1998-10-07 2000-04-20 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung eines Double-Gate MOSFETs
DE19924571C2 (de) * 1999-05-28 2001-03-15 Siemens Ag Verfahren zur Herstellung eines Doppel-Gate-MOSFET-Transistors
JP4044276B2 (ja) * 2000-09-28 2008-02-06 株式会社東芝 半導体装置及びその製造方法
US6586833B2 (en) * 2000-11-16 2003-07-01 Silicon Semiconductor Corporation Packaged power devices having vertical power mosfets therein that are flip-chip mounted to slotted gate electrode strip lines
FR2823009B1 (fr) * 2001-04-02 2004-07-09 St Microelectronics Sa Procede de fabrication d'un transistor vertical a grille isolee a faible recouvrement de la grille sur la source et sur le drain, et circuit integre comportant un tel transistor
DE10130766B4 (de) * 2001-06-26 2005-08-11 Infineon Technologies Ag Vertikal-Transistor, Speicheranordnung sowie Verfahren zum Herstellen eines Vertikal-Transistors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303425B1 (en) * 1994-05-26 2001-10-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6433382B1 (en) * 1995-04-06 2002-08-13 Motorola, Inc. Split-gate vertically oriented EEPROM device and process
US20020195649A1 (en) * 1998-02-27 2002-12-26 Micron Technology, Inc. Field programmable logic arrays with vertical transistors
US6197641B1 (en) * 1998-08-28 2001-03-06 Lucent Technologies Inc. Process for fabricating vertical transistors
US20020140032A1 (en) * 2001-03-28 2002-10-03 Wonju Cho Ultra small size vertical MOSFET device and method for the manufacture thereof

Also Published As

Publication number Publication date
WO2005043629A1 (de) 2005-05-12
DE10350751A1 (de) 2005-06-09
EP1678767B1 (de) 2011-04-06
DE502004012381D1 (de) 2011-05-19
DE10350751B4 (de) 2008-04-24
EP2270844A2 (de) 2011-01-05
US7405127B2 (en) 2008-07-29
US7745875B2 (en) 2010-06-29
EP1678767A1 (de) 2006-07-12
CN1875489A (zh) 2006-12-06
EP2270844A3 (de) 2014-04-09
US20070004149A1 (en) 2007-01-04
US20080290406A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
CN100464430C (zh) 制造垂直场效应晶体管的方法和场效应晶体管
US7307308B2 (en) Buried bit line non-volatile floating gate memory cell with independent controllable control gate in a trench, and array thereof, and method of formation
CN1186820C (zh) 半导体存储阵列及其制造方法
CN100547797C (zh) 半导体产品的制作方法
US20060186480A1 (en) Charge-trapping memory device and method for production
US5923063A (en) Double density V nonvolatile memory cell
CN101996950A (zh) 半导体器件及其制造方法
US20050237807A1 (en) Bi-directional read/program non-volatile floating gate memory cell and array thereof, and method of formation
US6838342B1 (en) Nonvolatile memory fabrication methods comprising lateral recessing of dielectric sidewalls at substrate isolation regions
US7351629B2 (en) Method of forming non-volatile memory device
KR100401280B1 (ko) Mos 트랜지스터 메모리 셀 및 mos 트랜지스터메모리 셀을 제조하기 위한 방법
CN1323439C (zh) 采用多个介电纳米团簇的永久性存储单元及其制造方法
US20220328519A1 (en) Memory Arrays Comprising Strings Of Memory Cells And Methods Used In Forming A Memory Array Comprising Strings Of Memory Cells
US8193059B2 (en) Bit line structure and method for the production thereof
US7206226B2 (en) Non-volatile memory element having memory gate and control gate adjacent to each other
TWI693699B (zh) 具有在專用之溝中的浮閘之非揮發性記憶體單元
US20070096222A1 (en) Low voltage nanovolatile memory cell with electrically transparent control gate
US7129540B2 (en) Semiconductor circuit arrangement with trench isolation and fabrication method
KR19980025188A (ko) 무접점 불휘발성 반도체 메모리 장치 및 그 제조 방법
US7358559B2 (en) Bi-directional read/program non-volatile floating gate memory array, and method of formation
CN101114653A (zh) 非易失性存储器件及其制造方法
US20070221979A1 (en) Method for production of memory devices and semiconductor memory device
KR100457227B1 (ko) 플레시 이이피롬셀 및 그 제조방법
US20230207469A1 (en) Memory Arrays Comprising Strings Of Memory Cells And Methods Used In Forming A Memory Array Comprising Strings Of Memory Cells
KR19980039618A (ko) 플래쉬 메모리 소자 및 그의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090225

Termination date: 20161008

CF01 Termination of patent right due to non-payment of annual fee