CN100445323C - 用于能量存储设备的大网状含碳材料 - Google Patents

用于能量存储设备的大网状含碳材料 Download PDF

Info

Publication number
CN100445323C
CN100445323C CNB2005101271656A CN200510127165A CN100445323C CN 100445323 C CN100445323 C CN 100445323C CN B2005101271656 A CNB2005101271656 A CN B2005101271656A CN 200510127165 A CN200510127165 A CN 200510127165A CN 100445323 C CN100445323 C CN 100445323C
Authority
CN
China
Prior art keywords
energy storage
carbonaceous material
storage device
dusts
pore size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101271656A
Other languages
English (en)
Other versions
CN1803896A (zh
Inventor
E·G·伦德奎斯特
G·R·帕克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Publication of CN1803896A publication Critical patent/CN1803896A/zh
Application granted granted Critical
Publication of CN100445323C publication Critical patent/CN100445323C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0064Multimodal pore size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及包括具有微孔、中孔和大孔的分布的大网状含碳材料的储能设备,其中大网状含碳材料具有大于500m2/g到2500m2/g的总表面积和其中总表面积的20%-80%归属于具有17埃到100,000埃的直径的孔隙。另外,本发明涉及包括大网状含碳材料的储能设备,其中大网状含碳材料具有当利用H-K dv/dlog(W)孔隙大小分布测量时代表小于或等于20埃的孔隙尺寸的至少一个第一清晰峰以及当利用BJH dv/dlog(D)孔隙大小分布测量时代表大于20埃的孔隙尺寸的至少一个第二清晰峰。

Description

用于能量存储设备的大网状含碳材料
本申请是申请号为2004100686900,申请日为2004年9月2日,发明名称为“用于能量存储设备的大网状含碳材料”的发明专利申请的分案申请。
技术领域
本发明涉及具有微孔、中孔和大孔和高表面积的大网状含碳材料。这些大网状含碳材料可被用子能量存储应用的领域中,如电池,燃料电池和作为电极,如在用于能量存储,电力应用和用于电容性水去离子的电双层电容器。
发明背景
高表面积、导电性合碳材料作为可用于能量应用中的材料已受到人们很大的关注。以极高表面积碳或碳布为基础的电双层电容器(EDLC,“电容器”)已经开发出来并从市场上可买到。虽然已经获得了具有超过2000m2/g的表面积的碳材,但是利用这些碳制造的电容器显示了比预期低得多的电容。获得预期电容的这一无能为力被认为是归因于这些高表面积材料的孔隙结构[主要为微孔(<20埃)孔隙结构]的性质。由于主要的微孔性的孔隙结构,用于电极中的电解质溶液不能够到达碳材料的所有可用表面积或在孔隙尺寸和双层具有相同的尺寸大小的区域中形成电双层。另外,具有微孔性结构的这些高表面积碳常常缓慢地释放它们的存储电荷,引起长的(>0.1秒)放电响应时间。这一长的响应时间对子需要高脉冲功率的应用如电子应用以及在高频率下进行的应用如电力稳定和调节中是不利的。
碳基电容器典型地在从0.1HZ到1000HZ中经历了高达100%的电容下降。因此,对于具有高电容和快速能量响应速率的电容器的需求被认为对于高脉冲功率特性是关键的。为此,已经由J.R.Miller,Pulse Power Performance ofElectrochemical Capacitors:Technical Status of Present CommercialDevices,Proceedings of the 8th International Seminar on Double LayerCapacitors and Similar Energy Storage Devices,Deerfield Beach,FL,1998进行了品质因数(FOM)测量以便定量分析使用不同碳的电容器的脉冲功率特性。该FOM基于阻抗测量并通过确定电容器的阻抗达到-45°相角的频率f0,然后取该频率的倒数以获得特征电容器响应时间To来测定。在fo下的阻抗Z”的虚数部分的值然后用于使用方程式Eo=1/2CV2来计算可利用的电容器能量,其中C=-1/2(2πfoZ”)和V是电容器的额定电压。最后,每单位质量的有效能量Eo/M和每单位体积的能量Eo/v对于响应时间To描绘曲线。
在水的电容性去离子作用中,在阳极和阴极周围形成了双层。水中的离子然后被吸引到该电极并以静电方式保留在那里(吸附/去离子化),直到电源被关闭或电路发生短路为止。该离子然后被释放和从多孔电极中扩散出来(再生)。因为所形成的电介质层与电解质的离子强度成正比和在这种情况下该电解质是水,常常在低于10meq/L的离子强度下,所形成的电介质层更扩散和因此需要更大的孔隙大小。另外,孔隙尺寸需要是足够的大,这样在再生步骤中离子能够快速地扩散出来。
已经通过开发由有机气凝胶泡沫前体的碳化所产生的碳泡沫材料来尝试解决上述问题。具体地说,US专利No.5,945,084公开了含有在5-50nm之间的孔隙(中孔)的碳泡沫体。这些材料具有200-800m2/g的表面积并通过按照大于1000的间苯二酚/催化剂比率所生产的间苯二酚-甲醛有机气凝胶泡沫体的碳化来制备。然而,在US专利No.5,945,084中的问题是碳泡沫体的极限表面积是低的,因为仅仅中孔隙的存在。减少的表面积会降低电容,使得它对于电容性的去离子作用和能量存储应用是不太有效的。
欧洲专利申请1 049 116(A1)试图通过采用含碳材料来解决这一问题,其中在微孔、中孔和大孔之间的体积关系被优化以获得电容性能的平衡。在10和200埃之间的孔隙的体积被最大化和同时大于200埃的孔隙的体积被最小化,因为这些孔隙降低了碳的堆积密度和因此降低了电容器的能量密度。
为了获得EP 1 049 116的含碳材料,使用液体热固性树脂,它是含有挥发性组分所需要的。该挥发性组分是溶剂,二聚物或三聚物,沸点为120℃到400℃。在产生具有上述孔隙体积的多孔碳材的碳化过程中挥发性组分会蒸发。这一所需挥发性组分的使用会在这一含碳材料的制造过程中产生问题。这些问题包括需要除去或回收从碳化过程蒸发的挥发性组分以及与没有回收的挥发性组分有关的成本。
与US专利No.5,945,084和EP 1 049 116有关的问题现在可由本发明克服。现在已发现,从大网络树脂或聚合物形成的含碳材料消除了与挥发性组分在形成含碳材料中的使用有关的问题。另外,大网络树脂或聚合物作为可用于本发明中的含碳材料的前体的使用会获得具有大于500m2/g的表面积的大网状含碳材料,其中表面积分布在大孔、中孔和微孔之间,可用作电容性的去离子作用和能量存储应用的电极。这一孔隙分布可以实现大网状含碳材料的表面积的高效利用,达到高电容、短的放电响应时间和高功率特性。本发明涉及包括具有微孔、中孔和大孔的分布的大网状含碳材料的储能设备,其中大网状含碳材料具有大于500m2/g到2500m2/g的总表面积和其中总表面积的20%-80%归属于具有17埃到100,000埃的直径的孔隙。
附图的简述
图1是实施例2的大网状含碳材料的H-K和BJH孔隙大小分布的曲线图。
可用于本发明中的大网状含碳材料的孔隙分布也能够分类为具有一个以上的峰,例如双峰型,具有在Horvath-Kawazoe(H-K)吸附dv/dlog(W)孔隙大小分布中在小于或等于20埃的孔隙尺寸下的第一个清晰峰以及在Barrett-Joyner-Halenda(BJH)解吸dv/dlog(D)孔隙大小分布中代表大于20埃的孔隙尺寸的第二个清晰峰。因此本发明还涉及包括大网状含碳材料的储能设备,其中大网状含碳材料的孔隙大小分布的测量得到了当利用H-K dv/dlog(W)孔隙大小分布测量时代表小于或等于20埃的孔隙尺寸的至少一个第一清晰峰以及当利用BJH dv/dlog(D)孔隙大小分布测量时代表大于20埃的孔隙尺寸的至少一个第二清晰峰。至少一个第一清晰峰的另一个例子是代表了小于或等于17埃的孔隙尺寸的峰。至少一个第二清晰峰的其它例子是代表了大于25埃,大于30埃,大于35埃,大于40埃,大于45埃,大于50埃或大于100埃的孔隙尺寸的峰。至少一个第一峰有助于含碳材料的高表面积和电容,而至少一个第二峰已经发现有助于快速放电时间和高功率特性。可用于本发明中的大网状含碳材料的双峰分布的例子在图1中给出。
在本发明的另一个方面,本发明的储能设备含有含碳材料,其中含碳材料的孔隙大小分布的测量得到了当利用H-K dv/dlog(W)孔隙大小分布测量时代表小于或等于20埃的孔隙尺寸的至少一个第一清晰峰以及当利用BJH dv/dlog(D)孔隙大小分布测量时代表大于125埃的孔隙尺寸的至少一个第二清晰峰。至少一个第二清晰峰的另一个例子是当利用BJH dv/dlog(D)孔隙大小分布测量时代表大于150埃的孔隙大小的一个峰。这一含碳材料的例子是非大网状的和另一个例子是大网状的。
可用于本发明中的大网状含碳材料能够从大网络树脂或聚合物前体形成。术语大网状和大孔性的常常在离子交换多孔聚合物领域中可互换地使用。当谈及碳、聚合物或树脂时,该术语大网状/大孔性的能够被定义为具有含大孔,中孔和微孔的开放、连续孔隙网络的结构。正如IUPAC命名法所定义,微孔是具有低于20埃的直径的孔隙,中孔是具有20-500埃的直径的孔隙和大孔是具有大于500埃的直径的孔隙。大网络树脂或聚合物例如与通过气泡分散于材料中所产生的聚合物泡沫体不同或与通过超临界二氧化碳技术的使用所形成的聚合物气凝胶不同。具体地说,聚合物泡沫体含有孔径尺寸的窄分布,因此,当使用聚合物泡沫体作为含碳材料的前体时,难以获得可用于本发明中的大孔、中孔和微孔的最佳分布。
属于可用于本发明的实施中的大网状含碳材料的大网状聚合物前体包括,但不限于,苯酚甲醛缩合共聚物,间苯二酚甲醛缩合共聚物,交联的和非交联的聚丙烯腈共聚物,磺化的交联聚苯乙烯共聚物,改性的交联聚苯乙烯共聚物,交联的蔗糖,聚糠醇和聚氯乙烯。大网状聚合物前体的形成已公开在美国专利No.4,221,871中和交联的大网状苯酚/甲醛缩合聚合物已经描述在Ind.Eng.Chem.Prod.Res.Dev.1975,14,2,108-112中。
大网状聚合物能够通过添加剂的添加进一步改性。添加剂包括金属氢氧化物,胺,氢氧化铵,无机酸,路易斯酸和交联剂。这些添加剂能够溶胀或收缩所存在的大网状聚合物结构,改变聚合物的孔隙结构和密度。因为本发明的含碳材料从大网状聚合物前体派生出它的孔隙结构,所以在结构和密度上的这些变化也可以在所形成的碳中见到。因此,本发明的另一个方面是包括聚合物的热解的一种制造含碳材料的方法,其中孔隙大小和密度通过在热解之前溶胀或收缩聚合物的孔隙来改变。碱金属氢氧化物的例子包括但不限于氢氧化钠,氢氧化锂,氢氧化钾,氢氧化钡,氢氧化镁。胺的例子包括氨和三甲胺。氢氧化铵的例子包括但不限于氢氧化铵,氢氧化四乙铵,和氢氧化四丁铵。无机酸的例子包括但不限于硫酸,磷酸和硼酸。路易斯酸的例子包括但不限于二氯化锌,氯化铝和二氯化锡。交联剂包括但不限于二酸酐,脲,二异氰酸酯。在碳化时发生石墨化和非石墨化反应的附加添加剂能够被添加到大网状聚合物中。此类添加剂包括但不限于纤维素,碳纤维,碳纳米管,蔗糖,聚丙烯腈,沥青,煤焦油,煤焦油沥青,蒽,木质素和聚氯乙烯。
该大网状聚合物能够制成或形成为各种的成形体或制品和然后碳化形成了本发明的成形的含碳材料。形状或形式的例子包括粉末,微粒,单块,珠粒,片,块,线状物,长丝,管,纸,薄膜,毡,泡沫体,板,织物和无纺布。成形和模塑技术包括但不限于压缩模塑和注塑。粉末能够通过使用为本领域中的技术人员所熟知的研磨技术来生产。
为了制备可用于本发明中的大网状含碳材料,大网络树脂或聚合物前体在惰性或活化气氛中热解。该热解温度例如是约500到2000℃,另一个例子是在700和1500℃之间和再另一个例子是在800和1200℃之间。该热解时间典型地是在1和12小时之间,另一个例子是在2和10小时之间和再另一个例子是在3和8小时之间。该热解气氛能够是惰性或活化的或两者的结合。惰性热解气氛包括惰性、非氧化气体如氮气,氩气或氦气的使用。活化气氛包括,例如,一氧化碳,二氧化碳,蒸汽或空气的使用。另外,化学活化能够通过使用碱金属氢氧化物如氢氧化钾,无机酸如硫酸或路易斯酸如二氯化锌来进行。
由大网络树脂或聚合物前体的热解所生产的大网状含碳材料的例子是苯酚/甲醛聚合物的热解,其中苯酚/甲醛聚合物是通过苯酚与甲醛在低于50的苯酚/催化剂比率下的碱催化缩合反应所形成的。这些类型的大网络树脂或聚合物前体的例子可以从Rohm and Haas Company以商品名AmberhteTM XAD761商购。
可用于本发明中的大网状含碳材料具有微孔、中孔和大孔的孔隙分布。小于或等于20埃的孔径的孔隙尺寸通过使用氩气吸附等温线和Horvath-Kawazoe(H-K)孔隙大小分析来测定的。大于17埃的孔径的孔隙尺寸通过使用氮吸附/解吸等温线和Barrett-Joyner-Halenda(BJH孔隙大小分析来测定的。该表面积通过使用Brunauer,Emmett,Teller(BET)分析方法来测定。大网状含碳材料体现特征于具有,例如BJH孔隙大小分布,其中总表面积中的20-80%归属于具有17埃-100,000埃的直径的孔径,BJH孔隙大小分布,其中总表面积的24-60%归属于具有17埃-100,000埃的直径的孔隙,或作为再一个例子,BJH孔隙大小分布,其中总表面积的24-60%归属于具有17埃-3000埃的直径的孔隙。例如,可用于本发明中的大网状含碳材料被测得具有2025m2/g的总表面积和576m2/g的在17埃和100,000埃之间的孔隙的BJH解吸累积表面积。这一大网状含碳材料有28%的总表面积归属于具有17埃到100,000埃的直径的孔隙。
大网状含碳材料的表面积通过使用BET法测得。大网状碳材料能够具有例如大于500m2/g到2500m2/g的表面积,作为另一个例子,表面积能够是800m2/g-2500m2/g,又一个例子是1000m2/g-2500m2/g的表面积,和另一个例子是1300m2/g-2500m2/g和再另一个例子是1500m2/g-2500m2/g。
根据本发明,该储能设备能够是包括含有大网状含碳材料(如上所述)的至少一个电极的电容器。该电容器的例子包括通过将电解质溶于有机溶剂中所获得的有机型电解质溶液。对于可用于本发明中的含碳材料所使用的电解质溶液能够包括有机的或含水的电解质溶液。一个例子,有机电解质溶液,显示了比电解质水溶液大至少两倍的分解电压和因为电容器的能量密度与电容跟电压的平方的乘积的一半成正比,能够获得高得多的能量密度。然而,因为有机电解质的电阻高于含水电解质,电容器循环的速度急剧下降。因此,本发明的另一个方面是碳基储能设备,其中从0.1Hz到1000Hz,在有机电解质中电容减少低于100%和在含水电解质中减少低于75%。
本发明的储能设备能够用作,例如,电容器,电池,燃料电池,功率稳定设备,或电容性去离子设备。电容器的例子包括超级电容器和不对称电容器。对于本发明的储能设备有许多最终应用。这些最终应用中的一些例如是用于汽车应用,电力质量(power quality),发动机的起动,在光致电压中的能量存储,在风车中的能量存储,医学应用,汽车推进系统,军用和防御电子领域,运输系统,商业和商品电子领域,消费者电子领域,声频系统,和消费者器械中。
实施例1
大网状苯酚-甲醛树脂缩合聚合物,从Rohm and Haas Company商购的AmberliteTM XAD761,具有以下范围的性能:
水分保持能力:60-65%
湿的堆积密度:0.550-0.650g/ml
干的堆积密度:0.200-0.400g/ml
表面积:100-300m2/g
孔隙度:0.6cm3/g-1.3cm3/g
平均孔径:100埃-500埃
这些商购的材料通过在真空下于100℃加热12小时来干燥。
以上大网状苯酚-甲醛树脂缩合聚合物因此热解:
具有272m2/g的表面积和1.02cm3/g的孔隙度的干燥60克XAD761样品被放入到在室温下的管式炉中。2L/min氮气流然后被启动和在60分钟之后样品以10℃/分钟的速率被加热至200℃。样品在200℃下保持30分钟,和然后以5℃/min的速率继续升温至1000℃。在达到1000℃后,样品保持1小时,然后2L/min二氧化碳流被启动,并在1000℃下继续另外3小时。大网状含碳材料发现具有1321m2/g的总表面积,1.62cm3/g的总孔隙度,以及具有17埃到100,000埃的孔隙直径的微孔和中孔和大孔占总表面积的48%的分布。该大网状含碳材料然后研磨到低于20微米的粒度。
实施例2.实施例1大网状苯酚-甲醛树脂缩合聚合物的另一种热解
以2小时二氧化碳活化步骤制备实施例1的大网状聚合物。大网状含碳材料样品发现具有923m2/g的总表面积,1.10cm3/g的总孔隙度,以及具有17埃到100,000埃的孔隙直径的微孔和中孔和大孔占总表面积的37%的分布。该大网状含碳材料然后研磨到低于20微米的粒度。
实施例3
具有210m2/g的表面积和0.548cm3/g的孔隙度的干燥60克XAD761样品被放入到在室温下的管式炉中。2L/min氮气流然后被启动和在60分钟之后样品以10℃/分钟的速率被加热至200℃。样品在200℃下保持30分钟,和然后以5℃/min的速率继续升温至1000℃。在达到1000℃后,样品保持1小时,然后2L/min二氧化碳流被启动,并在1000℃下继续另外3小时。大网状含碳材料发现具有1587m2/g的总表面积,1.14cm3/g的总孔隙度,以及具有17埃到100,000埃的孔隙直径的微孔和中孔和大孔占总表面积的28%的分布。该大网状含碳材料然后研磨到低于20微米的粒度。
实施例4.大网状交联丙烯腈共聚物
向装有冷凝器、机械搅拌器和热电偶的1升圆底烧瓶中添加300克的含有悬浮稳定剂的水相。在搅拌下,添加含有151.5克的有机相,它含有60克的4-甲基-2-戊醇,60克的丙烯腈,30克的55%二乙烯基苯和1.5克的AIBN。搅拌维持在150rpm下形成液滴和反应被加热至70℃并在70℃下维持12小时。经蒸馏从聚合物珠粒中抽提出4-甲基-2-戊醇,该聚合物珠粒用DI水洗涤几次。最终的大孔性共聚物珠粒然后在60℃和真空下干燥12小时。
实施例5.所述大网状交联丙烯腈共聚物的热解
将大网状交联丙烯腈共聚物的干燥25克样品加入到在室温下的管式炉中。0.06L/min的空气流被启动和该样品以5℃/min的速率从室温加热至200℃。样品在200℃下和在空气中保持10小时。该气氛然后转换为氮气和样品以10℃/min的速率被加热至850℃。在达到850℃后,样品保持1小时和然后在氮气下冷却。大网状含碳材料发现具有1200m2/g的总表面积,1.0cm3/g的总孔隙度,以及具有17埃到100,000埃的孔隙直径的微孔和中孔和大孔占总表面积的27%的分布。该大网状含碳材料然后研磨到低于20微米的粒度。
电容测量
试验设备
频率响应分析器(FRA),Schlumberger Solartron Model 1250
恒电位仪,EG & G Model 273
数字式万用表,Keithley Model 197
电容试验盒S/N 005,100欧姆设定值
RCL仪,Philips PM6 303
电源,Hewlett-Packard Model E3610A
天平,Mettler H10
微米计,Brown/Sharp
泄漏电流装置
电池/电容器试验器,Arbin Model HSP-2042
有机电解质电容器
所述碳样品作为在具有有机电解质的电化学电容器中的电极而评价它们的性能和工作特性。获得由Kuraray Chemical Company制造的商购碳BP-15并用于对比目的。全部是颗粒状形式并形成为具有1.59cm直径和0.005cm厚度的电极。隔板是0.0076cm厚度。电极在最后制备步骤中浸泡在电解质中之前在真空条件(机械初步抽空泵)下、在195℃下干燥18小时。冷却了的电极盘(仍然处于真空下)被转移到干燥箱中。在干燥箱中进行全部后续的装配工作。该电极盘在有机电解质中浸泡10分钟,然后组装到电池中。该电解质是含有1.0M的四乙基铵四氟硼酸盐(TEATFB)的碳酸亚丙基酯(PC)和碳酸二甲基酯(DMC)的等体积混合物。隔板是“开孔泡沫型”材料,当组装在电池中时它是大约0.0076cm厚度。组装的电池从干燥箱中取出以进行试验。金属板相对各导电性面板夹紧并用作集流器。电容器电池(Capacitor cells)在1.0V下调理十分钟,测量性能,然后在2.0V下调理10分钟和测量性能。
试验测量
下列实施例表明本发明的大网状碳具有高的电容,高的FOM,低的等效串联电阻(ESR)和在有机电解质中的快速响应时间。全部测量是在室温下进行。在1.0V下的顺序是如下:使用RCL仪的1kHz ESR,使用电容试验盒以100欧姆串联电阻为电容充电,使用泄漏电流装置在30分钟后的泄漏电流,使用恒电位仪的电化学阻抗谱(EIS)测量和FRA。然后该电池将电压提高到2.0V以进行10分钟调理,之后进行相同顺序的试验。最后的测量是使用Arbin的恒流充电/放电测量。EIS测量是在具有0.010-V-振幅正弦波-信号的四引线(four-lead)构型中进行。
通过在串联的电容器和100Ω电阻器上施加1.0或2.0V之后测量从0·V到(1-1/e)·V=0.632·V为电容器充电的时间来测定C100充电电容。通过将充电时间(秒)除以100(串联电阻值)来计算电容(F)。响应时间是1kHz ESR和C100电容的乘积。通过10欧姆串联电阻对电容器施加试验电压,然后用万用表测量该电阻器两端的电压,来测量泄漏电流。然后该电压升高到2.0V和在30分钟后再次记录泄漏电流。该特征时间是作为阻抗达到-45°相角时的频率(fo)的倒数来测定。能量来源于在相同频率下的阻抗值。FOM等于重量分析的能量密度除以特征时间。作为频率的函数的电容损失是通过使用表示为串联-阻容电路(series-RCcircuit)的阻抗数据在1.5V偏压下测定。
表I:使用采用有机电解质的在实施例1,2和3中所述的大网状含碳材料所构造的电容器的试验结果。报导的值是在1.0V下调理之后的测定值。
Figure C20051012716500131
含水硫酸电解质电容器
所述碳样品作为在具有含水硫酸电解质的电化学电容器中的电极而评价它们的性能和工作特性。全部是颗粒状形式并用电解质进行制造和润湿。通过使用0.0025cm厚度微孔性隔板,热塑性塑料封边材料和导电性面板将电极对组装到如上所述的原型电容器电池中。周边缘密封通过使用脉冲热封机来进行,后者最大程度地减少热量输入到电池中。金属板相对各导电性面板夹紧并用作集流器。电容器电池在1.0V下和在60℃下调理十分钟并测量性能。
试验测量
下列实施例表明本发明的大网状碳具有高的电容,高的品质因数(FOM),低的ESR和在含水电解质中的快速响应时间。全部测量是在室温下进行。顺序是如下:使用RCL仪的1kHz等效串联电阻(ESR),使用电容试验盒以100欧姆串联电阻为电容充电,使用泄漏电流装置在30分钟后的在0.5、0.75和1.0V下的泄漏电流,使用恒电位仪的电化学阻抗谱(EIS)测量和在三种偏压下的FRA,和最后使用Arbin的充电/放电测量。EIS测量是在四引线构型中,以0.010-V-振幅正弦波-信号,在0.5、0.75和1.0V的直流偏压下,和在65kHz-典型地0.01Hz的频率范围中进行。
通过在串联的电容器和100Ω电阻器上施加1.0V之后测量从0·V到(1-1/e)·V=0.632·V为电容器充电的时间来测定C100充电电容。通过将充电时间(秒)除以100(串联电阻值)来计算电容(F)。响应时间是1kHz ESR和C100电容的乘积。通过10欧姆串联电阻对电容器施加试验电压,然后用万用表测量该电阻器两端的电压,来测量泄漏电流。在0.5V施加于电容器之后,泄漏电流记录30分钟。然后该电压升高到0.75V和在30分钟后再次记录泄漏电流。然后该电压升高到1.0V和在30分钟后再次记录泄漏电流。该特征时间是作为阻抗达到-45°相角时的频率的倒数来测定。能量来源于在相同频率下的阻抗值。FOM等于重量分析的能量密度除以特征时间。作为频率的函数的电容损失是通过使用表示为串联-阻容电路的阻抗数据在0.75V偏压下测定。
表II:使用采用含水电解质的在实施例1和2中所述的大网状含碳材料所构造的电容器的试验结果。报导的值是在1.0V下调理之后的测定值。
Figure C20051012716500141
实施例6.使用含有大网状含碳材料的电极的电容性水去离子作用
将含有大网状含碳材料的两个电极放置在样品池中,该大网状含碳材料具有509m2/g的总表面积,1.10cm3/g的总孔隙度,以及具有17埃到100,000埃的孔隙直径的微孔和中孔和大孔占总表面积的52%的分布,这些孔隙是由大网状苯酚-甲醛树脂缩合聚合物片的碳化所产生。在碳质电极之间是由聚丙烯栅(mesh)制成的隔板(5cm×5cm×0.1cm)。在该碳质电极之外是Ti栅极。整个电极组装体被放置于由0.6cm厚度聚丙烯酸类板材制成的夹持器中。正面、背面和侧面被密封。在顶部和底部开钻合适的开孔以供管路接头用,从而将水溶液输入和输出该电池并与Ti电极实现电连接。
含有NaCl的水(5.8meq/L,340mg/L)从贮器中泵出,穿过样品电池,穿过电导电池,和回到贮器中。初始溶液导电性是0.700mS/cm。流速是1mL/min。该电路由直流电源,与碳质电极平行的数字电压表,和与碳质电极串联的数字安培计组成。配备计算机的数据获取系统记录电位,电流,和排放液(effluent)导电性,作为消逝时间的函数。当1.2V的电位施加于碳质电极时,记录80mA的初始电流。该电流经4小时的时间降低到3mA的值。同时,观察到在排放溶液导电性上的初始减少,达到0.35mS/cm的最低值。这是随着离子以静电被吸引到碳质电极时离子浓度减少50%的指征。该导电性然后经过4hr负荷时间慢慢地回到初始值。当碳质电极一起短路时,记录-80mA的初始电流,它然后经过3小时时间下降到-0.1mA。同时,观察到排放溶液的初始增加,达到1.8mS/cm的最大值。这是随着碳质电极释放离子时离子浓度显著提高的指征。该导电性然后经过3hr再生时间回到初始值。在流入液和排放液浓度之间的差异乘以当在整个消逝时间中积分时的流速得到了从碳质电极中吸附或解吸的总电荷。对于这一实验,积分估计350μeq的离子被吸附和370μeq被解吸。电流相对时间曲线的积分得到了提供给碳质电极的或从碳质电极中除去的总电子电荷。

Claims (11)

1.包括具有微孔、中孔和大孔的分布的大网状含碳材料的储能设备,其中大网状含碳材料具有大于500m2/g到2500m2/g的总表面积和其中总表面积的20%-80%归属于具有17埃到100,000埃的直径的孔隙;所述微孔、中孔和大孔的分布是双峰型,大网状含碳材料的孔隙大小分布的测量得到了当利用H-K dv/dlog(W)孔隙大小分布测量时代表小于或等于20埃的孔隙尺寸的第一清晰峰以及当利用BJHdv/dlog(D)孔隙大小分布测量时代表大于100埃的孔隙尺寸的第二清晰峰;所述微孔的直径小于20埃,中孔的直径为20-500埃,大孔的直径大于500埃。
2.根据权利要求1的储能设备,其中大网状含碳材料具有大于800m2/g到2500m2/g的总表面积。
3.根据权利要求1的储能设备,其中总表面积的24%-60%归属于具有17埃到100,000埃的直径的孔隙。
4.包括含碳材料的储能设备,其中,所述含碳材料具有双峰孔隙大小分布,含碳材料的孔隙大小分布的测量得到了当利用H-K dv/dlog(W)孔隙大小分布测量时代表小于2 0埃的孔隙尺寸的第一清晰峰以及当利用BJH dv/dlog(D)孔隙大小分布测量时代表大于125埃的孔隙尺寸的第二清晰峰。
5.权利要求1或权利要求4的储能设备,其中储能设备是电容器,电池,电力稳定设备,或电容性去离子设备。
6.权利要求1或权利要求4的储能设备,其中储能设备是燃料电池。
7.权利要求1或权利要求4的储能设备,其中测量品质因数并且在有机电解质中是大于5W/g和在含水电解质中是大于25W/g。
8.权利要求1或权利要求4的储能设备,其中含碳材料是选自粉末,微粒,珠粒,片,块,线状物,管,纸,薄膜,泡沫体,板,和织物的形式。
9.权利要求1或权利要求4的储能设备,其中含碳材料是选自单块,毡和无纺布的形式。
10.权利要求1或权利要求4的储能设备在汽车应用中的用途。
11.权利要求1或权利要求4的储能设备在电力质量,发动机的起动,在光致电压中的能量存储,在风车中的能量存储,医学应用,汽车推进系统,军用和防御电子领域,运输系统,商业和商品电子领域,消费者电子领域,声频系统,或消费者器械中的用途。
CNB2005101271656A 2003-09-12 2004-09-02 用于能量存储设备的大网状含碳材料 Expired - Fee Related CN100445323C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50259003P 2003-09-12 2003-09-12
US60/502,590 2003-09-12

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
CNA2004100006860A Division CN1557260A (zh) 2004-01-16 2004-01-16 脑出血穿刺定位仪
CNA2004100686900A Division CN1611530A (zh) 2003-09-12 2004-09-02 用于能量存储设备的大网状含碳材料

Publications (2)

Publication Number Publication Date
CN1803896A CN1803896A (zh) 2006-07-19
CN100445323C true CN100445323C (zh) 2008-12-24

Family

ID=34135386

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2004100686900A Pending CN1611530A (zh) 2003-09-12 2004-09-02 用于能量存储设备的大网状含碳材料
CNB2005101271656A Expired - Fee Related CN100445323C (zh) 2003-09-12 2004-09-02 用于能量存储设备的大网状含碳材料

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2004100686900A Pending CN1611530A (zh) 2003-09-12 2004-09-02 用于能量存储设备的大网状含碳材料

Country Status (8)

Country Link
US (1) US7419649B2 (zh)
EP (1) EP1514859A3 (zh)
JP (1) JP4662730B2 (zh)
KR (1) KR100639112B1 (zh)
CN (2) CN1611530A (zh)
AU (1) AU2004210507B2 (zh)
HK (1) HK1090941A1 (zh)
TW (1) TWI274453B (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4401984B2 (ja) 2004-03-08 2010-01-20 三星エスディアイ株式会社 リチウム二次電池用負極活物質、リチウム二次電池用負極活物質、およびリチウム二次電池
WO2005118471A1 (en) * 2004-06-01 2005-12-15 Tartu Tehnoloogiad OÜ A method of making the porous carbon material and porous carbon materials produced by the method
US20060093915A1 (en) * 2004-11-04 2006-05-04 Lundquist Eric G Carbons useful in energy storage devices
US7723262B2 (en) * 2005-11-21 2010-05-25 Energ2, Llc Activated carbon cryogels and related methods
US20070154381A1 (en) * 2005-12-29 2007-07-05 Miller Douglas J Carbon foam with improved graphitizability
US20070155847A1 (en) * 2005-12-29 2007-07-05 Miller Douglas J High surface area activated carbon foam
KR101328982B1 (ko) 2006-04-17 2013-11-13 삼성에스디아이 주식회사 음극 활물질 및 그 제조 방법
KR20090032050A (ko) * 2006-05-31 2009-03-31 메르크 파텐트 게엠베하 다공성 탄소 주조물의 제조 방법
KR101496934B1 (ko) 2006-11-15 2015-03-03 유니버시티 오브 워싱톤 스루 이츠 센터 포 커머셜리제이션 전기 이중층 캐패시턴스 장치
KR100818263B1 (ko) 2006-12-19 2008-03-31 삼성에스디아이 주식회사 다공성 음극 활물질, 그 제조 방법 및 이를 채용한 음극과리튬 전지
JP2009117159A (ja) * 2007-11-06 2009-05-28 Sony Corp 正極及びリチウムイオン二次電池
WO2009119572A1 (ja) * 2008-03-25 2009-10-01 有限会社ターナープロセス 飲料水の硬度を調整するための携帯用硬度調整装置
DE102008030921A1 (de) * 2008-07-02 2010-01-07 Bayerisches Zentrum für Angewandte Energieforschung e.V. Mikro- und mesoporöses Kohlenstoff-Xerogel mit charakteristischer Mesoporengröße und dessen Vorstufen, sowie ein Verfahren zur Herstellung dieser und deren Anwendung
WO2009157388A1 (ja) * 2008-06-23 2009-12-30 有限会社ターナープロセス 殺菌方法および殺菌装置
WO2011002536A2 (en) 2009-04-08 2011-01-06 Energ2, Inc. Manufacturing methods for the production of carbon materials
CN105226284B (zh) 2009-07-01 2017-11-28 巴斯夫欧洲公司 超纯合成碳材料
DE102009040818A1 (de) 2009-09-10 2011-03-17 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Kohlenstoff-Schaumstoffen
US20110159375A1 (en) * 2009-12-11 2011-06-30 Energ2, Inc. Carbon materials comprising an electrochemical modifier
US8916296B2 (en) 2010-03-12 2014-12-23 Energ2 Technologies, Inc. Mesoporous carbon materials comprising bifunctional catalysts
DE112010005730A5 (de) 2010-07-13 2013-05-29 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Kohlenstoff-Schaumstoffen
US8809230B2 (en) * 2010-08-02 2014-08-19 Lawrence Livermore National Security, Llc Porous substrates filled with nanomaterials
US8654507B2 (en) 2010-09-30 2014-02-18 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
CN103370756B (zh) * 2010-12-28 2018-05-11 巴斯福股份公司 包含增强的电化学特性的碳材料
CN102674313A (zh) * 2011-03-16 2012-09-19 财团法人工业技术研究院 多孔碳材材料及其制作方法
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
CN107785180A (zh) 2011-06-03 2018-03-09 巴斯福股份公司 用于混合能量存储装置中的碳‑铅共混物
EP2592048A1 (fr) * 2011-11-10 2013-05-15 Yunasko Limited Procédé de dopage à l'azote d'un matériau charbonneux et charbon actif dopé à l'azote pour électrodes de supercondensateur
WO2013120011A1 (en) 2012-02-09 2013-08-15 Energ2 Technologies, Inc. Preparation of polymeric resins and carbon materials
TWI472483B (zh) 2012-10-30 2015-02-11 Ind Tech Res Inst 多孔性碳材材料及其製作方法、以及超級電容器
CN110112377A (zh) 2013-03-14 2019-08-09 14族科技公司 包含锂合金化的电化学改性剂的复合碳材料
US9607776B2 (en) 2013-10-24 2017-03-28 Corning Incorporated Ultracapacitor with improved aging performance
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
KR102663138B1 (ko) 2014-03-14 2024-05-03 그룹14 테크놀로지스, 인코포레이티드 용매의 부재하의 졸-겔 중합을 위한 신규한 방법 및 그러한 방법으로부터의 가변형 탄소 구조의 생성
US10381643B2 (en) 2014-10-08 2019-08-13 Energizer Brands, Llc Fluorosurfactant as a zinc corrosion inhibitor
US10205206B2 (en) 2014-10-08 2019-02-12 Energizer Brands, Llc Zinc-air electrochemical cell
US10319991B2 (en) 2014-10-23 2019-06-11 Energizer Brands, Llc Zinc anode composition
WO2017030995A1 (en) 2015-08-14 2017-02-23 Energ2 Technologies, Inc. Nano-featured porous silicon materials
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
JP7376360B2 (ja) 2017-03-09 2023-11-08 グループ14・テクノロジーズ・インコーポレイテッド 多孔質足場材料の上のケイ素含有前駆体の分解
CN112289990A (zh) * 2020-04-20 2021-01-29 董荣芳 一种复合纳米材料作为电池负极材料的应用
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242879A (en) * 1990-12-13 1993-09-07 Mitsubishi Gas Chemical Company, Inc. Active carbon materials, process for the preparation thereof and the use thereof
US5529971A (en) * 1992-01-17 1996-06-25 Regents Of The University Of California Carbon foams for energy storage devices
JPH10297912A (ja) * 1997-02-26 1998-11-10 Kanebo Ltd メソポアカーボンおよびその製造方法
US5945084A (en) * 1997-07-05 1999-08-31 Ocellus, Inc. Low density open cell organic foams, low density open cell carbon foams, and methods for preparing same
EP0948071A2 (en) * 1998-03-31 1999-10-06 Matsushita Electric Industrial Co., Ltd. Electrode for fuel cell and method of producing the same
EP1049116A1 (en) * 1999-04-30 2000-11-02 Asahi Glass Co., Ltd. Carbonaceous material, its production process and electric double layer capacitor employing it
CN1315046A (zh) * 1998-08-25 2001-09-26 钟纺株式会社 电极材料及其制造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040990A (en) * 1975-02-18 1977-08-09 Rohm And Haas Company Partially pyrolyzed macroporous polymer particles having multimodal pore distribution with macropores ranging from 50-100,000 angstroms
JPH01230414A (ja) * 1987-11-20 1989-09-13 Osaka Gas Co Ltd 活性炭及びその製造方法
US4839331A (en) * 1988-01-29 1989-06-13 Rohm And Haas Company Carbonaceous adsorbents from pyrolyzed polysulfonated polymers
US4957897A (en) * 1988-01-29 1990-09-18 Rohm And Haas Company Carbonaceous adsorbents from pyrolyzed polysulfonated polymers
US4873218A (en) * 1988-05-26 1989-10-10 The United States Department Of Energy Low density, resorcinol-formaldehyde aerogels
CA2083346A1 (en) * 1991-12-13 1993-06-14 Eric G. Lundquist A catalyzed esterification process
US5328936A (en) * 1993-02-01 1994-07-12 Rohm And Haas Company Polymerization process for making porous polymeric particles
US5336274A (en) * 1993-07-08 1994-08-09 Regents Of The University Of California Method for forming a cell separator for use in bipolar-stack energy storage devices
US5475154A (en) * 1994-03-10 1995-12-12 Rohm And Haas Company Method for producing high-purity bisphenols
JP3446339B2 (ja) * 1994-10-18 2003-09-16 三菱化学株式会社 活性炭の製造方法
US5726118A (en) * 1995-08-08 1998-03-10 Norit Americas, Inc. Activated carbon for separation of fluids by adsorption and method for its preparation
US6043183A (en) * 1995-09-28 2000-03-28 Westvaco Corporation High power density carbons for use in double layer energy storage devices
US5905629A (en) * 1995-09-28 1999-05-18 Westvaco Corporation High energy density double layer energy storage devices
US5990041A (en) * 1996-04-05 1999-11-23 Research Foundation Of State University Of New York At Buffalo Mesoporous activated carbon filaments
JPH09328308A (ja) * 1996-04-10 1997-12-22 Mitsubishi Chem Corp 活性炭及びその製造方法、並びにこれを用いたキャパシタ
US6673328B1 (en) * 2000-03-06 2004-01-06 Ut-Battelle, Llc Pitch-based carbon foam and composites and uses thereof
US5993996A (en) * 1997-09-16 1999-11-30 Inorganic Specialists, Inc. Carbon supercapacitor electrode materials
US6297293B1 (en) * 1999-09-15 2001-10-02 Tda Research, Inc. Mesoporous carbons and polymers
JP2001118753A (ja) * 1999-10-21 2001-04-27 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ用活性炭およびその製造方法
CN1191195C (zh) * 2000-04-27 2005-03-02 中国科学院物理研究所 热解硬碳材料及其制备方法和用途
DE60113195T2 (de) * 2000-06-27 2006-07-06 Asahi Glass Co., Ltd. Aktivkohlematerial, Verfahren zu dessen Herstellung und elektrischer Doppelschichtkondensator, welcher dieses verwendet
DE60143107D1 (de) * 2000-07-25 2010-11-04 Honda Motor Co Ltd Aktivierter Kohlenstoff, Herstellungsverfahren, polarisierbare Elektrode, und Doppelschichtkondensator
JP2002128514A (ja) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc 炭素質材料、電気二重層キャパシタ用分極性電極及び電気二重層キャパシタ
EP1392600A4 (en) * 2001-02-28 2005-02-23 Penn State Res Found MICRO-MESOPOROUS ACTIVE CHARCOAL AND METHOD FOR TREATING THE SAME
US6867275B2 (en) * 2001-03-30 2005-03-15 Rohm And Haas Company Solid media
US6719147B2 (en) * 2001-04-27 2004-04-13 The University Of Delaware Supported mesoporous carbon ultrafiltration membrane and process for making the same
JP2003086469A (ja) * 2001-06-27 2003-03-20 Honda Motor Co Ltd 電気二重層キャパシタの電極用活性炭の製造に用いられる炭素化物
US7167354B2 (en) * 2002-02-12 2007-01-23 Tda Research, Inc. Mesoporous carbons and polymers from hydroxylated benzenes
US7098252B2 (en) * 2002-04-01 2006-08-29 Rohm And Haas Company Preparation of macroreticular polymers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242879A (en) * 1990-12-13 1993-09-07 Mitsubishi Gas Chemical Company, Inc. Active carbon materials, process for the preparation thereof and the use thereof
US5338462A (en) * 1990-12-13 1994-08-16 Mitsubishi Gas Chemical Company, Inc. Active carbon materials, process for the preparation thereof and the use thereof
US5529971A (en) * 1992-01-17 1996-06-25 Regents Of The University Of California Carbon foams for energy storage devices
JPH10297912A (ja) * 1997-02-26 1998-11-10 Kanebo Ltd メソポアカーボンおよびその製造方法
US5945084A (en) * 1997-07-05 1999-08-31 Ocellus, Inc. Low density open cell organic foams, low density open cell carbon foams, and methods for preparing same
EP0948071A2 (en) * 1998-03-31 1999-10-06 Matsushita Electric Industrial Co., Ltd. Electrode for fuel cell and method of producing the same
CN1315046A (zh) * 1998-08-25 2001-09-26 钟纺株式会社 电极材料及其制造方法
EP1049116A1 (en) * 1999-04-30 2000-11-02 Asahi Glass Co., Ltd. Carbonaceous material, its production process and electric double layer capacitor employing it

Also Published As

Publication number Publication date
HK1090941A1 (en) 2007-01-05
EP1514859A3 (en) 2012-12-05
US7419649B2 (en) 2008-09-02
CN1803896A (zh) 2006-07-19
EP1514859A2 (en) 2005-03-16
KR20050027026A (ko) 2005-03-17
TW200514330A (en) 2005-04-16
CN1611530A (zh) 2005-05-04
TWI274453B (en) 2007-02-21
AU2004210507B2 (en) 2009-10-08
KR100639112B1 (ko) 2006-10-30
AU2004210507A1 (en) 2005-04-07
US20050058589A1 (en) 2005-03-17
JP2005093984A (ja) 2005-04-07
JP4662730B2 (ja) 2011-03-30

Similar Documents

Publication Publication Date Title
CN100445323C (zh) 用于能量存储设备的大网状含碳材料
Chen et al. Biomass‐based hierarchical porous carbon for supercapacitors: effect of aqueous and organic electrolytes on the electrochemical performance
Bu et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh‐volumetric‐performance supercapacitors
Hu et al. Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors
Inal et al. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea
Zheng et al. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol–formaldehyde resins with high performance for supercapacitors
Inagaki et al. Carbon materials for electrochemical capacitors
Lang et al. Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes
Sun et al. Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors
Ma et al. Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode
Shen et al. A novel activated carbon for supercapacitors
Hong et al. Hierarchically porous carbon derived from the activation of waste chestnut shells by potassium bicarbonate (KHCO3) for high‐performance supercapacitor electrode
Li et al. Mesoporous carbons templated by PEO‐PCL block copolymers as electrode materials for supercapacitors
Zhou et al. Nitrogen‐Doped Hierarchical Porous Carbon Framework Derived from Waste Pig Nails for High‐Performance Supercapacitors
Zhong et al. Hierarchically N/O-enriched nanoporous carbon for supercapacitor application: Simply adjusting the composition of deep eutectic solvent as well as the ratio with phenol-formaldehyde resin
Cao et al. Potassium chloride templated carbon preparation for supercapacitor
CN105518814B (zh) 蓄电装置的电极用活性炭及其制备方法
CN102797111A (zh) 三聚氰胺树脂/聚乙烯醇水溶液通过高压静电纺丝技术制备多孔含氮碳纤维电极材料的方法
Jin et al. Graphitized activated carbon based on big bluestem as an electrode for supercapacitors
Jain et al. Almond shell-based activated nanoporous carbon electrode for EDLCs
Hao et al. High performance supercapacitors from hierarchical porous carbon aerogels based on sliced bread
Zou et al. Hierarchical N‐and O‐Doped Porous Carbon Composites for High‐Performance Supercapacitors
Lu et al. Facile Synthesis of Porous‐Carbon Nanoarchitectures as Advanced and Durable Electrodes for Supercapacitors
Yuan et al. Highly ordered mesoporous carbon synthesized via in situ template for supercapacitors
Geng et al. Influence of reactivation on the electrochemical performances of activated carbon based on coconut shell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1090941

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1090941

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081224

Termination date: 20180902