CN100435933C - 单层碳纳米突吸附材料的制造方法 - Google Patents

单层碳纳米突吸附材料的制造方法 Download PDF

Info

Publication number
CN100435933C
CN100435933C CNB2004800168539A CN200480016853A CN100435933C CN 100435933 C CN100435933 C CN 100435933C CN B2004800168539 A CNB2004800168539 A CN B2004800168539A CN 200480016853 A CN200480016853 A CN 200480016853A CN 100435933 C CN100435933 C CN 100435933C
Authority
CN
China
Prior art keywords
walled carbon
single walled
carbon nanohorn
methane
swnh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004800168539A
Other languages
English (en)
Other versions
CN1805785A (zh
Inventor
饭岛澄男
村田克之
金子克美
汤田坂雅子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Japan Science and Technology Agency
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, NEC Corp filed Critical Japan Science and Technology Agency
Publication of CN1805785A publication Critical patent/CN1805785A/zh
Application granted granted Critical
Publication of CN100435933C publication Critical patent/CN100435933C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0207Compounds of Sc, Y or Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明通过在单层碳纳米突上担载镧族金属,获得具有甲烷吸附性的单层碳纳米突吸附材料,由此提供一种甲烷吸附量大,作为甲烷吸附材料有效的单层碳纳米突吸附材料。

Description

单层碳纳米突吸附材料的制造方法
技术领域
本申请的发明涉及单层碳纳米突(carbon nanohorn)吸附材料及其制造方法。更详细地,本申请的发明涉及甲烷吸附量大、作为甲烷吸附材料有效的单层碳纳米突吸附材料及其制造方法。
背景技术
单层碳纳米突具有管状的单层碳纳米管的前端部突起成角(horn)状的圆锥形状,与碳纳米管同样地主要由石墨结构的碳原子面构成。该单层碳纳米突通常是使多个单层碳纳米突的角状前端部朝外,集合成直径为80~100nm左右的球状,制成所谓的大丽花状的碳纳米突集合体,此碳纳米突集合体表面积非常大,容易高纯度地大量合成,所以期待用作重量轻、成本低的吸附材料等(专利文献1(特开2002-159851)和专利文献2(特开2002-326032))。
另一方面,为了解决近年来的能量问题和环境问题,期望将作为天然气原料的甲烷代替媒和石油等燃料,所以提出了各种甲烷的贮藏方法,例如,期待活性炭和活性炭纤维以及高比表面积活性炭等各种碳吸附材料和金属络合物等可以作为甲烷吸附材料。
作为甲烷吸附用的碳类吸附材料,单层碳纳米突(SWNH:singlewalled carbon nanohorn)具有前述特征,SWNH与其它的碳材料相比,可以高密度地吸附甲烷,期待作为优异的甲烷吸附材料,但是目前还略低于实用的目标(美国能源部:35个大气压,150v/v),或者限于具有相同程度的性能。另外,如图6所示,加热SWNH(图6的□(加热到693K),与未加热的SWNH(图6中的○(303K))相比,可以增加甲烷的吸附量,在这种情况下,与图6的△(A20:活性炭纤维(303K))或
Figure C20048001685300031
(AX21:高比表面积活性炭(303K))相比,甲烷吸附量较多,但是◇是(A5:活性炭纤维(303K)并未发现甲烷吸附量有显著的不同,所以需要进一步提高甲烷吸附量。
因此,本申请发明是根据以上事实提出的,课题在于提供可以解决现有技术的问题,甲烷吸附量大,可以贮藏甲烷的新的作为甲烷吸附材料有用的单层碳纳米突吸附材料。
发明内容
本申请的发明作为解决上述课题的方法,首先第1在于提供一种单层碳纳米突吸附材料,其特征在于:在单层碳纳米突上担载镧族金属,从而具有甲烷吸附性。
第2是,本申请的发明提供一种单层碳纳米突吸附材料,其特征在于:相对于每1g单层碳纳米突,镧族金属担载在单层碳纳米突上的担载量为大于等于0.01mmol、小于等于5mmol。
第3是提供一种单层碳纳米突吸附材料,其特征在于:在第1或第2发明中,镧族金属是La、Ce、Pr、Nd、Pm、Sm、Eu、Gd和Tb中的任一种。
第4是提供一种单层碳纳米突吸附材料的制造方法,其特征在于:将单层碳纳米突悬浮于乙醇中,然后加入一定量的硝酸镧族元素的乙醇溶液,再进行超声波处理后,蒸发干燥,将镧族金属担载在单层碳纳米突上。
第5是提供一种单层碳纳米突吸附材料的制造方法,其特征在于:在第4发明中,在将单层碳纳米突悬浮于乙醇中前,加热而在氧气流下氧化。
附图简要说明
图1是表示本申请的发明的单层碳纳米突吸附材料的镧族金属的原子序号导致甲烷吸附密度不同的图。
图2是表示测定本申请的发明的单层碳纳米突吸附材料、通常的单层碳纳米突吸附材料和活性炭纤维的甲烷吸附密度的结果的图。
图3是表示测定本申请的发明的单层碳纳米突吸附材料、通常的单层碳纳米突吸附材料和活性炭纤维以及其它的碳材料的甲烷吸附密度的结果的柱状图。
图4是表示该发明的实施例中的SWNH和Eu/SWNH-ox的甲烷吸附密度的图。
图5是表示该发明的实施例中的SWNH颗粒和Eu/SWNH-ox颗粒的甲烷的吸附量的图。
图6是表示现有的SWNH(加热·非加热)、活性炭纤维、活性炭的甲烷吸附量的图。
具体实施方式
本申请的发明具有上述的特征,在下文中就其实施方式进行说明。
本申请的发明的单层碳纳米突吸附材料的重要的特征在于:在单层碳纳米突上担载镧族金属,具有甲烷吸附性。这种单层碳纳米突吸附材料与通常的单层碳纳米突相比,甲烷吸附量大幅度地增加,特别是,每1g单层碳纳米突,优选担载大于等于0.01mmol、小于等于5mmol的担载量,通过以这种担载量在单层碳纳米突上担载镧族金属,可以进一步提高该单层碳纳米突吸附材料的甲烷吸附量。
此时,使用其它的镧族金属当然也是可以的,特别是作为镧族金属适合选择La、Ce、Pr、Nd、Pm、Sm、Eu、Gd和Tb中的任一种,如图1所示,担载了这些镧族金属的单层碳纳米突吸附材料可以特别高效地吸附甲烷,可以作为极为有用的甲烷吸附材料。另外,图1的横轴表示镧族金属的原子序号,纵轴表示担载了镧族金属的单层碳纳米突吸附材料的甲烷吸附密度。
另外,吸附到担载了镧族金属的单层碳纳米突吸附材料的甲烷,可以仅通过减压而简单且快速地从单层碳纳米突吸附材料脱离。
另外,本申请的发明的单层碳纳米突吸附材料可以通过将单层碳纳米突悬浮于乙醇中,再加入一定量的硝酸镧族元素的乙醇溶液,进行超声波处理后,蒸发干燥,将镧族金属担载在单层碳纳米突上的方法而适当地制造,此外,通过在将单层碳纳米突悬浮于乙醇之前进行加热,在氧气流下氧化,可以增加单层碳纳米突的细孔容量,所以进行加热、氧化,担载了镧族金属的单层碳纳米突与不加热、氧化担载了镧族金属的单层碳纳米突相比,甲烷吸附密度变小,但是整体的甲烷吸附量可能增大。
然后,本申请的发明中的单层碳纳米突(SWNH)通常作为集合体生成,所以镧族金属可以担载在该集和组织体的单层碳纳米突上,也可以担载在各单独的碳纳米突上。
以下,依照附图例示实施例,对本申请的发明的实施方式进行更详细地说明。当然,本发明并不限于以下的例子,对细节方面可以有各种的方式。
实施例
<实施例1>
在惰性气氛气中,对固体状的碳单体物质照射激光,使碳激光蒸发,通过所谓的激光烧蚀法制备单层碳纳米突(SWNH),将该单层碳纳米突悬浮于乙醇中,然后加入一定量的硝酸镧族元素乙醇溶液,进行5分钟超声波处理后,蒸发干燥,得到担载了镧族金属的单层碳纳米突吸附材料。使用的镧族元素是La、Eu、Er和Lu,担载量分别是每1g的SWNH为0.1mmol。另外,为了比较,根据与上述同样的方法,在活性炭纤维A10上担载进行了同样处理的镧族金属。需说明的是,担载在活性炭纤维A10上的镧族元素是Eu,镧族金属的担载量是每1g的A10为0.1mmol。
在77K下进行氮吸附测定,确认各碳材料的细孔结构,结果如表1所示,几乎没有发现担载镧族金属的细孔容量变化。另外,表面积也几乎没有变化。
表1
 样品   表面积(m<sup>2</sup>g<sup>-1</sup>)   细孔容量(mLg<sup>-1</sup>)
 生长出的SWNH(SWNH as grown)   310   0.11
 La/SWNH   370   0.107
 Eu/SWNH   340   0.101
 Er/SWNH   350   0.101
 Lu/SWNH   350   0.108
 A10   1010   0.46
 Eu/A10   1050   0.46
接着,在303K、35个大气压下,测定各碳材料的甲烷吸附,结果如图2所示,担载了镧族金属的单层碳纳米突(图2中,黑圈:La/SWNH,黑正方形:Eu/SWNH,黑菱形:Er/SWNH,黑三角形:Lu/SWNH)与未担载镧族金属的单层碳纳米突(图2中的白圈)相比,甲烷吸附密度增加到约1.5倍。特别是,可以知道担载Eu或La的碳纳米突与担载Er或Lu的碳纳米突相比,可以更高效地吸附甲烷。另一方面,A10(图2中的白色倒三角)即使担载了镧族金属(Eu),也未发现甲烷吸附密度增加的效果(图2中的黑色倒三角)。
另外,在图3的柱状图中,表示SWNH、将SWNH高温氧化形成的物质(图3中的SWNH-ox)、担载了镧族金属的SWNH(图3中的La/SWNH、Eu/SWNH、Er/SWNH、Lu/SWNH)、担载镧族金属在高温下氧化形成的物质(Eu/SWNH-ox)的甲烷吸附密度的测定结果。另外,作为比较还测定作为甲烷吸附材料的A5(活性炭纤维)、A10(活性炭纤维)、A20(活性炭纤维)、AX21(高比表面积活性炭)和MCMB(活化中位碳(メソカ一ボン)微珠)的甲烷吸附密度。
从图3可以知道吸附到担载了镧族金属的SWNH中的甲烷吸附密度比其它碳材料的甲烷吸附密度更大。
<实施例2>
接着,将用激光烧蚀法制造的单层碳纳米突(SWNH)在氧气流、693K下氧化后,悬浮于乙醇中,然后,加入一定量的硝酸镧族元素的乙醇溶液,进行5分钟超声波处理后,蒸发干燥。使用的镧族元素是Eu,担载量是每1g的SWNH为0.1mmol。为了比较,还测定将SWNH在氧气流、693K下氧化的物质的甲烷吸附密度。其结果如表2和图4所示。
表2
  样品   表面积(m<sup>2</sup>g<sup>-1</sup>)   细孔容量(mLg<sup>-1</sup>)
  SWNH-ox   1010   0.47
  Eu/SWNH-ox   780   0.33
在这种情况下,如表2所示,由于担载了Eu细孔容量有一定的减少,但是从图4可以知道甲烷吸附密度增大。
另外,如表2表明的那样,加热、氧化后的SWNH的细孔容量比表1的未加热、氧化的SWNH的细孔容量更大。
<实施例3>
将用激光烧蚀法制造的SWNH悬浮于乙醇中,加入一定量的硝酸镧族元素的乙醇溶液,进行5分钟超声波处理后,蒸发干燥。之后,将该样品在颗粒成形器中颗粒化。使用的镧族元素为Eu,担载量是每1g的SWNH为0.1mmol。测定它们的甲烷吸附量的结果如图5所示。另外,为了比较,将用激光烧蚀法制造的SWNH悬浮于乙醇中,用颗粒形成器颗粒化,制备样品。从图5可知,在该情况下,担载了Eu的SWNH颗粒的甲烷吸附量与通常的SWNH颗粒的情况相比,增加到约1.5倍。
如以上的详细说明,根据本申请的发明可以提供甲烷吸附量多,作为甲烷吸附材料有效的单层碳纳米突吸附材料及其制造方法。

Claims (4)

1.单层碳纳米突吸附材料的制造方法,其特征在于:将单层碳纳米突悬浮于乙醇中,然后加入一定量的硝酸镧、硝酸铕、硝酸铒以及硝酸镥中的任一种的乙醇溶液,再进行超声波处理后,蒸发干燥,将镧、铕、铒以及镥中的任一种担载在单层碳纳米突上。
2.根据权利要求1所记载的单层碳纳米突吸附材料的制造方法,其特征在于:制造具有甲烷吸附性的单层碳纳米突吸附材料。
3.根据权利要求1记载的单层碳纳米突吸附材料的制造方法,其特征在于:相对于每1g单层碳纳米突,镧、铕、铒以及镥中的任一种担载在单层碳纳米突上的担载量为大于等于0.01mmol、小于等于5mmol。
4.根据权利要求1记载的单层碳纳米突吸附材料的制造方法,其特征在于:在将单层碳纳米突悬浮于乙醇中之前,进行加热,在氧气流下进行氧化。
CNB2004800168539A 2003-06-18 2004-05-31 单层碳纳米突吸附材料的制造方法 Expired - Lifetime CN100435933C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003174016A JP4394383B2 (ja) 2003-06-18 2003-06-18 単層カーボンナノホーン吸着材およびその製造方法
JP174016/2003 2003-06-18

Publications (2)

Publication Number Publication Date
CN1805785A CN1805785A (zh) 2006-07-19
CN100435933C true CN100435933C (zh) 2008-11-26

Family

ID=33534747

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800168539A Expired - Lifetime CN100435933C (zh) 2003-06-18 2004-05-31 单层碳纳米突吸附材料的制造方法

Country Status (5)

Country Link
US (1) US8007908B2 (zh)
EP (1) EP1637223A4 (zh)
JP (1) JP4394383B2 (zh)
CN (1) CN100435933C (zh)
WO (1) WO2004112955A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723829B2 (ja) * 2004-08-13 2011-07-13 独立行政法人科学技術振興機構 貴金属担持カーボンナノホーンの製造方法
JP5013722B2 (ja) * 2005-03-10 2012-08-29 独立行政法人科学技術振興機構 ナノ金属微粒子/炭素ナノ繊維構造体の製造方法
US20090196993A1 (en) 2006-01-31 2009-08-06 Sumio Iijima Carbon Nanohorn Carried Material And Process For Producing Carbon Nanotube
JP5305347B2 (ja) * 2009-02-27 2013-10-02 独立行政法人産業技術総合研究所 分岐型単層カーボンナノホーンとその分散液
JP6068334B2 (ja) * 2011-04-15 2017-01-25 株式会社環境・エネルギーナノ技術研究所 カーボンナノ材料製造装置及びその利用
CN105431379A (zh) * 2013-08-02 2016-03-23 国立研究开发法人产业技术综合研究所 含有光响应性分散剂的含有分散剂的碳材料膜、使用该含有分散剂的碳材料膜的碳材料膜的制造方法
US10813257B2 (en) * 2016-09-05 2020-10-20 Nec Corporation Electromagnetic wave absorbing material
CN109966533A (zh) * 2019-05-23 2019-07-05 李学书 一种利用碳纳米角制成的除臭剂及用途
CN118079863B (zh) * 2024-04-29 2024-06-28 四川大学 生物质衍生功能化多孔碳球固相吸附剂及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039706A (ja) * 1999-07-26 2001-02-13 Futaba Corp 水素吸臓材料の製造方法
JP2001064004A (ja) * 1998-07-25 2001-03-13 Japan Science & Technology Corp 単層カーボンナノホーン構造体とその製造方法
JP2001212453A (ja) * 2000-02-04 2001-08-07 Ulvac Japan Ltd 水素又はメタンガス貯蔵材料及び貯蔵方法
JP2002159851A (ja) * 2000-11-24 2002-06-04 Japan Science & Technology Corp 単層カーボンナノホーンからなる吸着材、触媒および触媒担体
JP2002326032A (ja) * 2001-01-29 2002-11-12 Japan Science & Technology Corp カーボンナノホーン吸着材とその製造方法
WO2003006361A1 (en) * 2001-07-13 2003-01-23 Japan Science And Technology Corporation Carbon nano-horn and method for preparation thereof
CN1398664A (zh) * 2002-08-28 2003-02-26 武汉理工大学 储氢金属或储氢合金修饰的一维纳米碳储氢材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706431B2 (en) * 2000-11-14 2004-03-16 Fullerene Usa, Inc. Fuel cell
JP3825336B2 (ja) * 2001-03-12 2006-09-27 双葉電子工業株式会社 ナノカーボンの製造方法及びナノカーボンの製造装置
JP2003292316A (ja) 2002-03-29 2003-10-15 Osaka Gas Co Ltd 金属担持炭素材料、該炭素材料からなるガス吸蔵材及び該ガス吸蔵材を用いるガス貯蔵方法並びに燃料電池用電極材料
JP2004016976A (ja) 2002-06-18 2004-01-22 Japan Science & Technology Corp セルフロッキングカーボン吸着体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064004A (ja) * 1998-07-25 2001-03-13 Japan Science & Technology Corp 単層カーボンナノホーン構造体とその製造方法
JP2001039706A (ja) * 1999-07-26 2001-02-13 Futaba Corp 水素吸臓材料の製造方法
JP2001212453A (ja) * 2000-02-04 2001-08-07 Ulvac Japan Ltd 水素又はメタンガス貯蔵材料及び貯蔵方法
JP2002159851A (ja) * 2000-11-24 2002-06-04 Japan Science & Technology Corp 単層カーボンナノホーンからなる吸着材、触媒および触媒担体
JP2002326032A (ja) * 2001-01-29 2002-11-12 Japan Science & Technology Corp カーボンナノホーン吸着材とその製造方法
WO2003006361A1 (en) * 2001-07-13 2003-01-23 Japan Science And Technology Corporation Carbon nano-horn and method for preparation thereof
CN1398664A (zh) * 2002-08-28 2003-02-26 武汉理工大学 储氢金属或储氢合金修饰的一维纳米碳储氢材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Pore structure of single-wall carbon nanohorn aggregates. K. Murata et al.Chemical Physics Letters,Vol.331 No.1. 2000
Pore structure of single-wall carbon nanohorn aggregates. K. Murata et al.Chemical Physics Letters,Vol.331 No.1. 2000 *

Also Published As

Publication number Publication date
CN1805785A (zh) 2006-07-19
WO2004112955A1 (ja) 2004-12-29
EP1637223A4 (en) 2009-01-07
EP1637223A1 (en) 2006-03-22
US8007908B2 (en) 2011-08-30
US20060165992A1 (en) 2006-07-27
JP2005007281A (ja) 2005-01-13
JP4394383B2 (ja) 2010-01-06

Similar Documents

Publication Publication Date Title
US6113673A (en) Gas storage using fullerene based adsorbents
Texier-Mandoki et al. Hydrogen storage in activated carbon materials: role of the nanoporous texture
Lithoxoos et al. Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study
JP3989256B2 (ja) カーボンナノホーン吸着材とその製造方法
US6749826B2 (en) Carbon nanotube coatings as chemical absorbers
CN100435933C (zh) 单层碳纳米突吸附材料的制造方法
Rzepka et al. Hydrogen storage capacity of catalytically grown carbon nanofibers
Hunyadi Murph et al. Controlled release of hydrogen isotopes from hydride-magnetic nanomaterials
CN109174042A (zh) 一种聚多巴胺-石墨烯水凝胶吸附剂的制备方法及其应用
Vasiliev et al. New sorbent materials for the hydrogen storage and transportation
Burchell et al. Passive CO2 removal using a carbon fiber composite molecular sieve
Joshi et al. Sodium hydroxide activated nanoporous carbons based on Lapsi seed stone
WO2003099717A1 (fr) Nanocornes de carbone haute densite et leur procede de production
Molina-Jordá Highly adsorptive and magneto-inductive Guefoams (multifunctional guest-containing foams) for enhanced energy-efficient preconcentration and management of VOCs
US5972826A (en) Densified carbon black adsorbent and a process for adsorbing a gas with such an adsorbent
Nandy et al. Heterogeneous Ice Nucleation in Model Crystalline Porous Organic Polymers: Influence of Pore Size on Immersion Freezing
EP1237643B1 (en) Gas storage using fullerene based adsorbents
JPH08319108A (ja) 積層構造を有する活性複合体及び反応媒体としてのその利用
Chung et al. Increase in the amount of adsorption on modified activated carbon by using neutron flux irradiation
CN113484378B (zh) 一种石墨烯纳米卷固化沙丁胺醇电化学传感器的制备方法
Vasiliev et al. Activated carbon and hydrogen adsorption storage
AU688491B2 (en) Densified carbon black adsorbent and a process for adsorbing a gas with such an adsorbent
CN113311045B (zh) 一种石墨烯纳米卷固化盐酸克仑特罗传感器制备方法
Xu et al. Increase of adsorption capacity of single-walled carbon nanotubes by opening holes for application in cryopumps
Loutfy et al. Gas storage using fullerene based adsorbents

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Saitama Prefecture, Japan

Co-patentee after: NEC Corp.

Patentee after: National Research and Development Corporation Science and technology revitalization organization

Address before: Saitama Prefecture, Japan

Co-patentee before: NEC Corp.

Patentee before: JAPAN SCIENCE AND TECHNOLOGY AGENCY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190123

Address after: Tokyo, Japan

Patentee after: NEC Corp.

Address before: Saitama Prefecture, Japan

Co-patentee before: NEC Corp.

Patentee before: National Research and Development Corporation Science and technology revitalization organization

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20081126