CN100411584C - 在预脉冲和成象脉冲列之间需要长等待时间的核磁共振机 - Google Patents

在预脉冲和成象脉冲列之间需要长等待时间的核磁共振机 Download PDF

Info

Publication number
CN100411584C
CN100411584C CNB018188680A CN01818868A CN100411584C CN 100411584 C CN100411584 C CN 100411584C CN B018188680 A CNB018188680 A CN B018188680A CN 01818868 A CN01818868 A CN 01818868A CN 100411584 C CN100411584 C CN 100411584C
Authority
CN
China
Prior art keywords
imaging
regularly
prepulsing
nmr
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018188680A
Other languages
English (en)
Other versions
CN1543326A (zh
Inventor
金泽仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1543326A publication Critical patent/CN1543326A/zh
Application granted granted Critical
Publication of CN100411584C publication Critical patent/CN100411584C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56308Characterization of motion or flow; Dynamic imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/567Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Vascular Medicine (AREA)
  • Psychiatry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

在应用双倒置脉冲的黑血方法中,即使在心跳周期中循环-循环发生变化,也能以可靠方式捕获心动周期中的图象。使用由双倒置脉冲DIV和成象脉冲列SEQima组成的黑血方法的脉冲序列。与成象对象的ECG信号同步施加该序列,从而进行核磁共振成象。以第一延迟时间td1(固定值)与在给定时刻出现在ECG信号上的R波:R1同步施加双倒置信号,并且以第二延迟时间td2(固定值:相应于收缩期而设定)与后面的R波:R2同步施加成象脉冲列SEQima。心动周期的变化被倒置时间BBTI所吸收。

Description

在预脉冲和成象脉冲列之间需要长等待时间的核磁共振机
技术领域
本发明涉及核磁共振机(MRI),用于用包含预脉冲的成象序列对对象内部进行成象,尤其涉及使用成象序列的MR成象,其中,在施加预脉冲之后、在开始施加成象脉冲列之前,有一个等待时间,与黑血(black blood)方法等方法一样,该等待时间比心动周期长。
背景技术
目前,核磁共振成象作为一种医用成象方法被广泛应用。核磁共振成象是一种成象方法,该方法用频率为拉莫尔频率的高频信号引起位于静态磁场中、将被成象的对象中的核自旋的磁力激发,然后用与激发相关联而产生的MR信号重建被成象对象内部的图象。核磁共振机包括各种类型,并根据用于磁力激发和信号捕获的脉冲序列来区分类型。
在对心脏部分成象的核磁共振成象的情况下,影状假象(血流假象)容易以相位编码的方向显现在重建图象上,该相位编码方向始于由于血液脉动的作用而产生大量血流的位置。为了抑制这些假象,通常使用心脏同步成象方法,通过该方法,RF激发和回波捕获与心电图扫描器扫描波形同时进行。根据这种方法,可以抑制在每次发射(激发)中产生的各种回波信号,从而能减少上述血流假象。
并且,如同我们可以一些文章中看到的那样,这些文章有:Edelman RR等人,“Fast selective black blood MR imaging”,Radiology 1991 Dec.181(3):655-60,1991;Edelman RR等人,“Extracranial carotid arteries:evaluation with“black blood”MRangiography”,Radiology 1990 Oct.177(1):45-65,1990等等,其目的主要是提高挤压心肌的能力,已经提出了一种所谓的黑血方法,通过它在正常RF激发和回波捕获的脉冲列之前附加用于抑制血液MR信号之捕获的预脉冲。关于RF激发和回波捕的脉冲列,通过域回波方法、快速域回波方法、快速自旋回波方法等方法的脉冲列用作脉冲列。
而且,最近已经有报告指出,使用所谓双倒置脉冲的黑血方法,成功地施加选择性倒置脉冲和非选择性倒置脉冲,其中选择性倒置脉冲在基本与成象平面相同的区域引起倒置激发,而非选择性倒置脉冲在整个被成象对象内引起倒置激发,在该施加的400-700ms后进行成象的RF激发和回波捕获(参见文章,例如,Simonetti OP等人,““Black Blood”T2-weighted inversion-recovery MR imaging or theheart”,Radiology 1996 Apr.199(1):49-57,1996;;Sechoing MK等人,“Single-shot T1-and T2-weighted magnetic resonance”,MAGMA1996 Sep Dec,4(3-4):231-40,1996;Arai AE等人,“Visualization ofaortic valve leaflets using black blood MRI”,J Magn.Reson.Imaging1999 Nov.,10(5):771-7,1999;等等。
使用双倒置脉冲的黑血方法引起了注意,是因为它具有这样的优点,即,血液信号的抑制作用高且其它组织的信号的劣化较小,因而希望该方法能被更广泛地应用。由于基本上是想要预脉冲把血液信号的纵向磁化减小至零或足够小的水平,所以在所有的报告中,从施加预脉冲到施加成象激发脉冲的时间大约是400-700ms,这个时间比为了其它目的而施加的预脉冲的情况要长。
由于该原因,即使当使用心脏同步成象方法检测R波之后立即施加预脉冲,可以实际成象的以及瞬时相位是在后半段心动周期(即,在心脏舒张期)的时间区域中的那些。所以,我们在前面可以看到,Simonetti Op等人,““Black Blood ”T2-weighted inversion-recoveryMR imaging of the heart”,Radiology 1996 Apr.199(1):49-57,1996,当应用黑血方法时,其基本上在心脏舒张期获得图象。
图1表示了使用双倒置脉冲的传统黑血方法的脉冲序列。如图所示,在从ECG(心电图)信号的R波开始预定时间td之后,与ECG信号同时施加作为抑制血液的预脉冲的双倒置脉冲DIV,然后,当从该施加开始到预定等待时间BBTI结束时,施加成象脉冲列SEQima,由此获得回波信号。在图中,RF表示RF脉冲,Gs表示切片方向倾斜磁场,Gr表示读出方向倾斜磁场,Ge表示相位编码方向倾斜磁场,而Echo表示回波信号。
在双倒置脉冲DIV的两个RF脉冲当中,一个以0强度的切片方向倾斜磁场Gs施加,另一个以必要强度的切片方向倾斜磁场Gs施加,以便引起与用成象脉冲序列进行选择性激发的切片相同的区域中的激发。通常等待时间BBTI大约为500-600ms,并被设定在一个时间,在该时间,血液的纵向磁化被减小至或几乎减小至零点。
但是,当使用传统的黑血方法时,有这样的问题,即,在时间上位于R波附近的心脏收缩中的图象难以获得,并且难以获得具有象电影模式显示一样以规则间隔变化的等待时间的一系列图象。
因为从施加预脉冲开始到回波捕获需要一长段时间:BBTI(黑血方法的倒置时间),以便获得心脏收缩中的图象,所以必须使用相对于实际获得图象的心动周期来说的最后或早些心动周期中的R波作为同步触发。图2中表示了该状态。即,如该图所示,为了获取从R2至R3期间心脏收缩中的图象,在早些心动周期中,例如,在从R1至R2期间的心动周期中,同步必须与R波:R1有一个预定延迟时间td。
即使是在正常的健康对象内,心跳循环也会有10-20%的不同。即,R波的位置设置在每次心跳的时间轴上。所以,即使当从最后或早些心动周期中的R波开始的一定时间“td+BBTI”之后获得图象,各次拍摄中的回波捕获的时间点处的心肌位置也会摆动,这如此严重地劣化了图象质量,以致不能得到可以用于诊断的图象。图3A和图3B是示意性地表示以长心动周期(图3A)和短心动周期(图3B)这两种条件分开图2的示图。如图3A和图3B所示,在传统情况中,通过固定延迟时间td1和倒置时间BBTI来控制成象脉冲列SEQima的开始时刻,这造成了延迟时间td2,其与心肌的实际动作有紧密联系,以便以与心动周期改变相同的方式改变。
由于该原因,如上所述,在传统方法中只能获得在心脏舒张期的图象。
本发明将打破前述相关技术的现实状况,因此,本发明的目的是提供一种成象方法,能够以可靠的方法捕获心脏收缩中的图象,即使出现心动周期的循环-循环变化,与使用双倒置脉冲的黑血方法对心动周期成象相比,应用脉冲序列的MR成象中,在施加预脉冲之后直到施加成象脉冲时的等待时间比较长。
发明内容
为了达到上述及其它目的,根据本发明的核磁共振机,在表示心脏瞬时相位的信号(例如,ECG信号)的时间系列上,脉冲序列的预脉冲和成象脉冲列分别与多个特定波形(例如,R波)同步。
更加具体地,根据本发明的一个方面,一种核磁共振成象装置,向待成象对象施加预脉冲,然后,在施加了所述预脉冲之后,通过向所述对象施加成象脉冲列而进行扫描,所述装置包括:获取部件,用于获取表示所述对象的心脏瞬时相位的信号;第一检测部件,用于根据所述信号检测第一定时;预脉冲施加部件,用于以一个第一延迟时间,与第一定时同步地向所述对象施加所述预脉冲;第二检测部件,用于根据所述信号检测第二定时,所述第二定时比所述第一定时晚至少一个心动周期;以及扫描部件,用于以一个第二延迟时间,与第二定时同步地向所述对象的期望区域施加所述成象脉冲列。
例如,所述预脉冲是双倒置脉冲,其形成通过黑血方法的一部分脉冲序列。并且,例如,所述表示心脏瞬时相位的信号是ECG信号,而所述特定波形是所述ECG信号的R波。另外,例如,所述至少晚一个心动周期的时刻,所述扫描部件在该时刻开始扫描,该时刻已经过了一个心动周期或两个心动周期。
并且,其特征在于,所述预定的待命时间足够长,以致大约占一次心跳循环的一半或更长。
另外,优选地,所述第二延迟时间是一个根据心跳收缩而设定的时间,所述第一延迟时间是用所述第二延迟时间、所述待命时间的期望值、和心跳的平均循环计算出的时间,
并且,根据本发明的另一方面,在一个核磁共振成象装置中,其向成象对象施加预脉冲,然后,当从施加所述预脉冲开始、已经过了需要的待命时间时,通过向所述成象对象的需要区域施加成象脉冲列,进行扫描,其特征在于该装置包括:同步装置,用于使所述预脉冲和所述成象脉冲列分别与同类型的两个波形同步,所述两个波形出现在表示所述成象对象的心脏瞬时相位的信号上的不同时刻。
根据本发明的另一方面,一种核磁共振成象的扫描同步方法,使用代表待成象对象的心脏瞬时相位的一个信号,将用于核磁共振成象的一个脉冲序列施加到所述待成象的受试者上,所述脉冲序列包括一个预脉冲和一个成象脉冲列,其中在施加所述预脉冲之后施加所述成象脉冲列,所述方法包括:第一检测步骤,根据所述信号检测第一定时;以一个第一延迟时间,与所述第一定时同步地对所述对象施加所述预脉冲;  第二检测步骤,根据所述信号检测第二定时,所述第二定时比所述第一定时晚至少一个心动周期;以及以一个第二延迟时间,与所述第二定时同步地对所述对象的期望区域施加所述成象脉冲列,而进行扫描。
另外,在本发明中,可以提供一种计算机可读的记录介质,其用于向核磁共振成象施加预脉冲的核磁共振机,该核磁共振成象由如下步骤组成:与表示所述成象对象的心脏瞬时相位同步,向成象对象施加预脉冲和成象脉冲列,所述记录介质记录一种程序,该程序使计算机进行:以第一延迟时间,与在给定时刻在所述信号上显示特定波形同步地施加所述预脉冲的功能;以第二延迟时间,通过与在晚于所述时刻至少一个心动周期的时刻显示在所述信号上的所述特定波形同步地施加所述成象脉冲列进行扫描的功能。
并且,提供一种用于适加核磁共振成象的预脉冲的核磁共振成象程序,该核磁共振成象由如下步骤组成:与表示所述成象对象的心脏瞬时相位同步,向成象对象施加预脉冲和成象脉冲列,所述记录介质记录一种程序,该程序使计算机进行:以第一延迟时间,与在给定时刻在所述信号上显示特定波形同步地施加所述预脉冲的功能;以第二延迟时间,通过与在晚于所述时刻至少一个心动周期的时刻显示在所述信号上的所述特定波形同步地施加所述成象脉冲列,进行扫描的功能。
根据本发明,可以使形成黑血方法等方法中的预脉冲和脉冲序列分别以不同的延迟时间与表示成象对象的心脏瞬时相位的信号(ECG信号等)的不同的、特定的波形(R波等)同步。因而,即使出现心动周期变化,本发明也能维持获取回波信号的成象脉冲列的规律的施加时刻。因此,在应用预脉冲和成象脉冲列之间的等待时间比心动周期长的脉冲序列的MR成象中,即使出现心动周期的循环-循环变化,也能以可靠的方法捕获心脏收缩中的图象。因而能通过减少假象来改善MR图象的图象质量。
应当注意,在通过根据本发明核磁共振机的黑血方法成象的过程中,从施加预脉冲开始到施加成象脉冲列的时间BBTI比一个心动周期的时间要长,而由大约400-700ms范围内的BBTI的变化而引起的血液信号的抑制作用的变化如此之小,以致对图象质量产生的影响几乎可以忽略不计。
附图说明
在这些附图中:
图1是表示传统黑血方法的脉冲序列;
图2是表示通过传统的黑血方法实施同步方法的一个实施例的脉冲序列;
图3A和图3B表示用于解释通过传统黑血方法实施同步方法的不便之处的脉冲序列;
图4是表示本发明一实施方案的核磁共振成象装置的示意性结构的一个实施例的功能框图;
图5是表示该实施方案中所用的黑血方法的脉冲序列;
图6是表示进行图5的脉冲序列的心脏同步处理的概要的流程图;
图7A和图7B是解释吸收心动周期变化的安排的示图;
图8是表示本发明一改进实施方案中所用的黑血方法的脉冲序列;以及
图9是用于解释根据本发明另一改进实施方案的电影模式成象方法的脉冲序列。
具体实施方式
下面参照图4-6和图7A、7B描述本发明一实施方案。
图4示意性地表示了该实施方案的核磁共振成象装置的结构。
该核磁共振成象装置包括:受试者躺卧部分,被成象对象P(被成象的人)躺在该部分上;静态磁场产生部分,用于产生静态磁场;倾斜磁场产生部分,用于把位置信号添加到该静态磁场;发送/接收部分,用于发送和接收高频信号;控制和操作部分,用于可靠地控制整个系统和图象重建;心电图测量部分,用于测量作为表示成象对象P的心脏瞬时相位的信号的ECG(心电图)信号;以及屏气命令部分,用于指示成象对象P屏住呼吸。
静态磁场产生部分包括,例如,超导类型的磁体1,以及静态磁场电源2,用于向磁体1供应电流,它在圆柱形开口部分(诊断空间)的轴向(z轴方向)中产生静态磁场H0,成象对象P被送入该开口部分中。应当注意,静态磁场产生部分设有垫片线圈14。以下面将要说到的主机的控制下,从垫片线圈电源15向垫片线圈14供应用于使静态磁场均匀化的电流。成象对象P躺在上面的受试者躺卧部分的受试者躺卧顶部可以以它能被拉出的方式插入到磁体1的开口部分中。
倾斜磁场产生部分包括结合进磁体1中的倾斜磁场线圈单元3。倾斜磁场线圈单元3包括x,y,z三组(种)线圈3x-3z,用于在彼此以直角相交的X-,Y-,Z-方向上产生倾斜磁场。倾斜磁场产生部分还包括倾斜磁场电源4,向x,y,z线圈3x-3z提供电流。以下述定序器5的控制下,倾斜磁场电源4向x,y,z线圈3x-3z提供用于产生倾斜磁场的脉冲电流。
通过控制从倾斜磁场电源4向x,y,z线圈3x-3z提供的脉冲电流,可以按需要设定并改变切片方向倾斜磁场Gs、相位编码方向倾斜磁场Ge、和读出方向(频率编码方向)倾斜磁场Gr的各个逻辑轴向,它们彼此以直角相交,通过在X-,Y-,Z-方向这三个物理轴上合成倾斜磁场。在切片方向、相位编码方向、和读出方向中的各倾斜磁场附加在静态磁场H0上。
发送/接收部分包括:RF线圈7,它被设置在磁体1内部的诊断空间中很接近成象对象P的位置;以及,发送器8T和接收器8R,它们都连接在线圈7上。发送器8T和接收器8R在下述定序器5的控制下进行工作。发送器8T向RF线圈7供应频率为拉莫尔频率的RF电流脉冲,用于减小核磁共振(NMR)。接收器8R接收RF线圈7接收到的MR信号(高频信号),并进行各种信号处理,如预放大、倒置成为中间频率、相位检测、低频放大、和过滤、至MR信号,其后,它通过模-数转换器产生与MR信号相应的数值数据(原始数据)。
另外,控制和操作部分包括:定序器(也叫作序列控制器)5;主机6;操作单元10;存储单元11;显示器12;输入器13;和语音发生器16。在这些元件中,主机6的不仅具有指定向定序器5输入的脉冲序列信息的功能,而且通过基于预存的软件的程序对整个装置进行操作。
在预备工作之后,通过图5所示的黑血方法并结合心脏同步方法,主机6进行MR成象的扫描,例如定位的扫描(未示出),从而获取图象重建所需要的回波数据组。根据这种黑血方法,施加双倒置脉冲DIV,该脉冲作为用于抑制来自血液的预脉冲,然后,当从施加双倒置脉冲DIV开始经过了预定等待时间(由双倒置脉冲倒置的磁自旋的纵向磁化被减小至或几乎减小至零点的时间)BBTI时,施加成象脉冲列SEQima。任何脉冲列,包括基本2-D扫描或3-D扫描FE(场回波)、SE(自旋回波)、EPI(平面成象)等的脉冲列,都可以用作成象脉冲列SEQima
在这种黑血方法中,根据本发明的特征在于,如下所述,分别向双倒置脉冲DIV和成象脉冲列SEQima施加心脏同步。
定序器5包括CPU和存储器,并以这样一种方式设置,使得它存储从主机6发出的脉冲序列信息,并在接收从接收器8R发出的MR信号的数字数据的同时,根据该信息控制倾斜磁场电源4、发送器8T、接收器8R的操作,所述数据随后被传送到操作单元10。这里提到的脉冲序列信息是指需要根据一系列脉冲序列来激活倾斜磁场电源4、发送器8T、和接收器8R的所有信息,例如,它包括与向x,y,z线圈3x至3z供应的脉冲电流的强度、施加时间、以及施加时刻有关的信息。
操作单元10通过定序器5接收接收器8R发出的数值的原数据(也称为原始数据),然后,在内部存储器上的傅立叶空间(k空间或频率空间)中绘制原数据,并通过对各组数据进行2-D或3-D傅立叶变换,把绘制的原数据重建成真实空间中的图象数据。并且,当需要时,操作单元可以进行关于图象数据的合成(附加)处理、微分操作处理等。
存储单元11可以存储装置进行信号控制、数据处理、和数据计算所必需的计算机程序,以及重建图象数据和已经施加了前述合成处理或微分处理的图象数据。所以,设置在存储单元11中的记录介质11A也通过本发明的黑血方法预存储MR成象程序,该程序被主机6和定序器5读取。记录介质11A可以是例如FC、CD、和硬盘这样的盘元件,以及各种类型的半导体存储器。
显示器12显示图象。并且,通过输入器13,操作者期望的成象条件、脉冲序列信息、如图象合成和微分处理这样的计算方法的参数等被输入主机6。
并且,设置语音发生器16,作为一个形成屏气命令部分的元件。向主机6中输入与计算相关的信息。当接收到主机6发出的命令时,语音发生器16可以发出声音讯息,指示何时开始屏住呼吸以及结束屏气。
另外,心电图测量部分包括ECG传感器17,安装在成象对象P主体的表面上,用于检测作为表示心脏瞬时相位倍的ECG(心电图)信号,以及ECG单元18,用于处理ECG信号并与,例如,R波的峰值同步地向定序器5输出触发信号。当通过心脏同步方法进行黑血方法的MR成象时,定序器5中应用该触发信号。
在该实施方案的设置中,ECG传感器17和ECG单元18形成本发明的获取部件,用于获取表示心脏瞬时相位的信号。并且,磁体1、倾斜磁场线圈单元3、倾斜磁场电源4、定序器5、主机6、RF线圈7、发送器8T、和存储单元11形成本发明的预脉冲供应部件和扫描部件的主要部分。而且,存储单元11包括用作本发明的记录介质的存储器部件。
下面参照图5-7描述该实施方案的核磁共振成象装置的操作。
图5表示应用双倒置脉冲的黑血方法的脉冲序列,其是依据该实施方案中的心脏同步方法而产生的。定序器5通过图6所示的程序形成脉冲序列。该程序作为脉冲序列信息被从主机6传递给定序器5。
定序器5首先判断ECG信号的R波出现峰值的时刻的到来,同时努力从ECG单元18读出触发信号(步骤S1和S2)。ECG单元18中产生该触发信号。ECG单元18重复从ECG传感器17接收ECG信号的动作,然后检测R波的峰值,并根据检测输出触发信号(步骤E1-E3)。
当检测到R波峰值出产时,定序器5开始预装软件计时器的计时(步骤S3)。这时检测的R波是图5中所示的第一R波:R1。
然后,定序器5判断计时器的计算值CT是否与图5所示的R波发出的预定延迟时间td1一致(CT=td1)(步骤S4)。延迟时间td1是向作为预脉冲的双倒置脉冲DIV施加心脏同步所需要的时间,与本发明的第一延迟时间相应。如下所述,延迟时间td1是事先设定好的。
如果步骤S4的判断结果是“否”,即,当计算的时间还没有达到延迟时间td1时,继续计时;如果结果是“是”,判断出计算的时间已经到达了延迟时间td1,则继续流程,以进行如下步骤。即,定序器5指示开始施加作为预脉冲的双倒置脉冲DIV(步骤S5)。然后,清除前述软件计时器的计算值(步骤6)。
随后,定序器5进行关于成象脉冲列SEQima的的心脏同步处理。久之,设法读取触发信号,并且,当它以上述相同的方式成功地读取触发信号时,判断R波峰值信号的到来(步骤S7和S8)。这时检测到的R波是图5中所示的R波:R2。
当检测到R波峰值时,软件计时器开始计时,并以上述同时的方法判断计算值CT是否等于延迟时间td2(步骤S9和S10)。延迟时间td2是以其它R波(R2)向成象脉冲列SEQima施加心脏同步所需的时间,该R波(R2)不同于用于预脉冲的R波。延迟时间td2是提前给定的,所以,例如,在一个心动周期内的心脏舒张期中所期望的时刻可以开始进行数据捕获。
由于该原因,当在步骤S9中判断出“是”(CT=td2)时,开始施加图5中所示的成象脉冲列SEQima(步骤S11)。然后,当接着通过相位编码进行数据捕获时,计时器清零,程序返回步骤S1(步骤S12和S13)。
现在解释双倒置脉冲DIV的前述延迟时间td1的设定方法。延迟时间td1(固定值)是用前述给定的延迟时间td2(固定时间)、黑血方法所需的倒置时间BBTI、以及ECG信号的平均R-R空间:RR根据如下公式提前计算好的:
td1=RR+td2-BBTI
所以,由上述定序器5通过处理进行根据图5所示的黑血方法的MR成象的扫描。
也就是说,当ECG信号的R波:R1在给定点出现时,从峰值时间点开始,与预定延迟时间td1同步施加双倒置脉冲DIV。根据该脉冲,成功地施加不需要施加切片方向倾斜磁场Gs而引起整个成象对象中自旋的倒置激发的倒置脉冲、以及单独施加切片方向倾斜磁场Gs而引起成象平面中自旋的倒置激发的倒置脉冲。
在开始施加双倒置脉冲DIV之后,等待后面的R波:R2的出现。当R波:R2出现时,例如,当从峰值时刻开始已经过了预定延迟时间td2时,开始根据快速SE方法施加成象脉冲列SEQima。由此获得了分别对应于多个相位编码数的回波信号。这些回波信号被转换成接收器8R中的图象信号,并传送到操作单元10用于图象重建。
因而,本发明能在几乎不被R-R空间(即,心动周期的变化)影响的同时获得回波信号。例如,当图7A所示的长心动周期的状态变成图7B所示的短心动周期的状态时,R-R空间缩短。但是,这种缩短被倒置时间BBTI的减小自动吸收。相反,即使当心动周期变大,虽然R-R空间扩大,这种扩大也能随着倒置时间BBTI的延长而被自动吸收。在这种黑血方法中,只要倒置时间BBTI在大约400-700ms的时间宽度的范围内变化,血液信号的抑制作用的变化就会很小,以致于对图象质量产生的影响可以忽略不计。
如上所述,因为通过改变倒置时间BBTI,在必要范围内吸收了R-R空间的变化,所以能分别使双倒置脉冲DIV和成象脉冲列SEQima与数值固定的预定延迟时间td1和td2同步。
换言之,成象脉冲列SEQima可以与双倒置脉冲DIV的R波单独同步。所以,通过单独计算延迟时间td2,可以在一个心动周期内的心脏收缩其中的希望时刻开始进行扫描,这使得能在收缩期间获得回波数据。因此,即使是在使用具有长等待时间(从施加预脉冲开始到数据捕获为止的时间)的脉冲序列的MR成象过程中,例如黑血方法,可以不受心动周期的变化而获得回波,从而使捕获时的心脏瞬时相位变得规律。结果,能避免在各次拍摄中捕获时的心肌位置摆动的传统问题。因而能通过减少假象以可靠的方法稳定地提供收缩时的高质量的MR图象。
另外,关于通过在必要时间(大约400-700ms)的范围内改变倒置时间BBTI,R-R空间的变化可以吸收,上面已经对其操作和作用进行了描述,下面将更详细地说明其原因。
在施加成象所需的成象脉冲列之前施加预脉冲的方法,除了应用预脉冲(如双倒置脉冲)的黑血方法之外,还包括倒置-还原方法。双倒置-还原方法是类属名称,它包括一系列,根据从施加倒置脉冲后开始直到施加成象脉冲列为止的时间以及使用倒置脉冲的目的,命名为FLAIR方法(抑制CSF(脑脊髓液))和STIR方法(抑制脂肪)。
在基于倒置还原的成象方法(FLAIR方法和STIR方法)的情况中,反应于从施加预脉冲开始到施加成象脉冲列为止的时间的变化,在图象上具有信号值的所有组织的一些纵向磁化发生改变,这极大地影响了整个图象的对比度。相反,如果是黑血方法,在图象上主要具有信号值的组织,如心肌和胸腔壁,由来自两个作为预脉冲的倒置脉冲一起进行倒置激发(经历两次倒置激发)。由于这个原因,即使当从施加预脉冲开始到施加成象脉冲列为止的时间有变化,已经经历过再次倒置激发的纵向磁化会维持开始施加成象脉冲列时的大多数数量。换言之,因为在开始成象时可以维持接近初始状态的一些纵向磁化,所以图象上的信号值造成微小变化。这为设定从施加预脉冲开始到施加成象脉冲列为止的时间(拳术倒置时间BBTI)时留出了空白。
并且,根据这种黑血方法,关于注入显示区域(例如,切片)的血液,和基于倒置还原的传统成象方法一样,反应于从施加预脉冲开始到施加成象脉冲列为止的时间的变化,血流的信号值会改变。但是,这种改变相对于前述组织(如心肌和胸腔壁)的信号值来说足够小。
在黑血方法中,即使当从施加预脉冲开始到施加成象脉冲列为止的时间宽度有大约10%的变化时,对图象质量产生的影响也几乎不会产生问题。
如上所述,就整个图象的质量这一点来说,与传统成象方法相比,这种黑血方法对于从施加预脉冲开始到施加成象脉冲列为止的时间的变化有强抵抗力。所以,为设定从施加预脉冲开始到施加成象脉冲列为止的时间(前述倒置时间BBTI)留出了余量,并且,由于在上述实施方案中形成,所以能吸收一定范围内的R-R空间的变化。
本发明的核磁共振成象装置和扫描同步方法不限于上述的实施方案,并能以各种方式实施。下面描述一个实施例。
上述实施方案的设置使得双倒置脉冲DIV和成象脉冲列SEQima分别与两个不同的连续的R波:R1和R2同步。但是,本发明不限于这种安排,而可以以这样一种方式来实施,例如,如图8所示,在双倒置脉冲DIV与R波:R1同步之后,成象脉冲列SEQima跳过一个R波:R2而与R波:R3同步。可以跳过两个或更多个R波。为了这样实施,例如,计算需要的R波个数的过程可以插入到图6中所示的步骤S8和S9之间,从而当计算的个数达到想要的个数时,流程前进到步骤S9所示的程序。通过以这种方式设置,除了操作及效果与上述实施方案中所描述的一样之外,可以提供倒置时间BBTI的设定方法的变化。
并且,通过黑血方法,可以把核磁共振成象方法应用于影片模式成象,而这在以前是不可能实现的。图9示意性地表示了用于影片模式成象的本发明方法的一个序列。如该序列所示,来自R波的成象脉冲列SEQima的延迟时间td2被连续地变成不同的值,td2=td2-1,td2-2,td2-3,等等,例如,特定切片的图象被形成多个具有不同R-R空间的瞬时相位。首先指定延迟时间td2为希望的值td2-1,td2-2,td2-3,等,并根据前述计算公式(td1=RR+td2-BBTI)对这些指定值进行计算。换言之,双倒置脉冲DIV的td1=td1-1,td1-2,td1-3,等等,分别与在预定范围内变化的倒置时间BBTI和用作平均值的R-R空间有关。
另外,本发明不限于上述实施方案及改进实施方案的设置,而是在不偏离所述请求保护的范围以其它实施方案实施。
例如,上述表示心跳的信号的检测方法不限于检测ECG信号的方法,可以用检测脉冲波的方法、使用MR信号本身的强度的方法、通过使用回波信号中的相位移动进行检测的方法、应用导航回波的方法等作为临时需要。
并且,可以应用本发明的MR成象的成象序列不限于黑血方法。成象序列中所用的预脉冲也不限于上述双倒置脉冲。例如,虽然使用的目的与双倒置脉冲不同,但预脉冲可以是使用单90°脉冲的预饱和脉冲,或者应用单180°脉冲的倒置脉冲。另外,应用本发明的MR成象可以既可以用于2-D扫描也可以用于3-D扫描。
另外,上面参照图5和图8描述的实施方案描述了一种情况,其中设定延迟时间td2,使得成象脉冲列的开始时间是在收缩的时间中,从而能在收缩期间成象的时间。但是,本发明的成象方法不限于这种情况。例如,通过把延迟时间td2变成足够的值,能使成象脉冲列的开始时间在心动周期的舒张的时间内,这能使得在舒张期中进行成象。
工业适用性
本发明可以用于使用成象序列的MR成象的领域,其中,比起心动周期来,和黑血方法等方法一样,从施加预脉冲开始到施加成象脉冲列为止的等待时间较长。换言之,因为不受心动周期的变化的影响就能获得回波,所以能避免每次拍摄中组织(如心肌)的位置在捕获的时刻摆动。因而能通过减少假象以可靠的方法稳定地提供收缩中的高质量的MR图象,这对医学图象诊断领域作出了极大的贡献。

Claims (19)

1. 一种核磁共振成象装置,向待成象对象施加预脉冲,然后,在施加了所述预脉冲之后,通过向所述对象施加成象脉冲列而进行扫描,所述装置包括:
获取部件,用于获取表示所述对象的心脏瞬时相位的信号;
第一检测部件,用于根据所述信号检测第一定时;
预脉冲施加部件,用于以一个第一延迟时间,与第一定时同步地向所述对象施加所述预脉冲;
第二检测部件,用于根据所述信号检测第二定时,所述第二定时比所述第一定时晚至少一个心动周期;以及
扫描部件,用于以一个第二延迟时间,与第二定时同步地向所述对象的期望区域施加所述成象脉冲列。
2. 如权利要求1所述的核磁共振成象装置,其特征在于:
所述预脉冲是双倒置脉冲,其形成了黑血方法的一部分脉冲序列。
3. 如权利要求1所述的核磁共振成象装置,其特征在于:
所述表示心脏瞬时相位的信号是ECG信号,所述第一定时和第二定时中的每一个是所述ECG信号的R波出现时的定时。
4. 如权利要求1所述的核磁共振成象装置,其特征在于:
所述第二定时是从第一定时后经过所述对象的一个心动周期的定时。
5. 如权利要求1所述的核磁共振成象装置,其特征在于:
所述第二定时是从第一定时后经过所述对象的两个心动周期的定时。
6. 如权利要求1所述的核磁共振成象装置,其特征在于:
所述第一和第二延迟时间被设置成满足以下条件:从施加所述预脉冲到开始施加所述成象脉冲列的等待时间间隔大约是所述对象的一次心动周期的一半或更长。
7. 如权利要求6所述的核磁共振成象装置,其特征在于:
所述第二延迟时间是一个根据心跳收缩而设定的时间,所述第一延迟时间是用所述第二延迟时间、所述等待时间间隔的期望值、和心跳的平均周期计算出的时间。
8. 一种核磁共振成象的扫描同步方法,使用代表待成象对象的心脏瞬时相位的一个信号,将用于核磁共振成象的一个脉冲序列施加到所述待成象的受试者上,所述脉冲序列包括一个预脉冲和一个成象脉冲列,其中在施加所述预脉冲之后施加所述成象脉冲列,所述方法包括:
第一检测步骤,根据所述信号检测第一定时;
以一个第一延迟时间,与所述第一定时同步地对所述对象施加所述预脉冲;
第二检测步骤,根据所述信号检测第二定时,所述第二定时比所述第一定时晚至少一个心动周期;以及
以一个第二延迟时间,与所述第二定时同步地对所述对象的期望区域施加所述成象脉冲列,而进行扫描。
9. 如权利要求8所述的扫描同步方法,其特征在于:
所述预脉冲是双倒置脉冲,其形成了黑血方法的一部分脉冲序列。
10. 如权利要求8所述的扫描同步方法,,其特征在于:
所述表示心脏瞬时相位的信号是ECG信号,所述第一定时和第二定时中的每一个是所述ECG信号的R波出现时的定时。
11. 如权利要求8所述的扫描同步方法,其特征在于:
所述第二定时是从第一定时后经过所述对象的一个心动周期的定时。
12. 如权利要求8所述的扫描同步方法,其特征在于:
所述第二定时是从第一定时后经过所述对象的两个心动周期的定时。
13. 如权利要求8所述的扫描同步方法,其特征在于:
所述第一和第二延迟时间被设置成满足以下条件:从施加所述预脉冲到开始施加所述成象脉冲列的等待时间间隔大约是所述对象的一次心动周期的一半或更长。
14. 如权利要求13所述的扫描同步方法,其特征在于:
所述第二延迟时间是一个根据心跳收缩而设定的时间,所述第一延迟时间是用所述第二延迟时间、所述等待时间间隔的期望值、和心跳的平均周期计算出的时间。
15. 如权利要求2所述的核磁共振成象装置,其特征在于:
所述表示心脏瞬时相位的信号是ECG信号,所述第一定时和第二定时中的每一个是所述ECG信号的R波出现时的定时。
16. 如权利要求15所述的核磁共振成象装置,其特征在于:
所述第二定时是从第一定时后经过所述对象的一个心动周期的定时。
17. 如权利要求15所述的核磁共振成象装置,其特征在于:
所述第二定时是从第一定时后经过所述对象的两个心动周期的定时。
18. 如权利要求16所述的核磁共振成象装置,其特征在于:
所述第一和第二延迟时间被设置成满足以下条件:从施加所述预脉冲到开始施加所述成象脉冲列的等待时间间隔大约是所述对象的一次心动周期的一半或更长。
19. 如权利要求18所述的核磁共振成象装置,其特征在于:
所述第二延迟时间是一个根据心跳收缩而设定的时间,所述第一延迟时间是用所述第二延迟时间、所述等待时间间隔的期望值、和心跳的平均周期计算出的时间。
CNB018188680A 2001-11-15 2001-11-15 在预脉冲和成象脉冲列之间需要长等待时间的核磁共振机 Expired - Fee Related CN100411584C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/009997 WO2003041579A1 (fr) 2001-11-15 2001-11-15 Imagerie par resonance magnetique necessitant un temps d'attente prolonge entre les preimpulsions et le train d'impulsions d'imagerie

Publications (2)

Publication Number Publication Date
CN1543326A CN1543326A (zh) 2004-11-03
CN100411584C true CN100411584C (zh) 2008-08-20

Family

ID=11737941

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018188680A Expired - Fee Related CN100411584C (zh) 2001-11-15 2001-11-15 在预脉冲和成象脉冲列之间需要长等待时间的核磁共振机

Country Status (6)

Country Link
US (1) US7623901B2 (zh)
EP (1) EP1444949B1 (zh)
KR (1) KR100646914B1 (zh)
CN (1) CN100411584C (zh)
DE (1) DE60126359T2 (zh)
WO (1) WO2003041579A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7809426B2 (en) 2004-04-29 2010-10-05 The Cleveland Clinic Foundation Acquiring contrast-enhanced, T1 weighted, cine magnetic resonance images
US8320646B2 (en) * 2005-05-04 2012-11-27 Mayo Foundation For Medical Education And Research MRI acquisition using 2D sense and partial fourier pace sampling
US8155419B2 (en) * 2005-05-04 2012-04-10 Mayo Foundation For Medical Education And Research MRI acquisition using sense and highly undersampled fourier space sampling
JP5002222B2 (ja) * 2006-09-13 2012-08-15 学校法人東海大学 磁気共鳴イメージング装置
US8086297B2 (en) * 2007-01-31 2011-12-27 Duke University Dark blood delayed enhancement magnetic resonance viability imaging techniques for assessing subendocardial infarcts
DE102007018089B4 (de) * 2007-04-02 2010-10-14 Siemens Ag Herz-Bildgebung mittels MRI mit adaptiver Inversionszeit
JP5383036B2 (ja) * 2007-12-28 2014-01-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置
JP5280089B2 (ja) * 2008-04-23 2013-09-04 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置
DE102009019592B4 (de) * 2009-04-30 2014-02-20 Siemens Aktiengesellschaft Verfahren zur getriggerten Messung an einem Magnetresonanztomograhiegerät sowie ein Magnetresonanztomographiegerät hierfür
CN102018511A (zh) 2009-09-18 2011-04-20 株式会社东芝 磁共振成像装置以及磁共振成像方法
US8581582B2 (en) * 2009-09-18 2013-11-12 Kabushiki Kaisha Toshiba MRI non-contrast time-slip angiography using variably positioned cine sub-sequence
JP2011092678A (ja) * 2009-09-30 2011-05-12 Toshiba Corp 磁気共鳴イメージング装置
US9149203B2 (en) 2010-05-05 2015-10-06 Duke University Blood signal suppressed enhanced magnetic resonance imaging
US9131870B2 (en) 2010-05-05 2015-09-15 Duke University Blood signal suppressed contrast enhanced magnetic resonance imaging
US9151815B2 (en) 2010-11-15 2015-10-06 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
EP2572638B1 (en) * 2010-11-15 2023-07-26 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and magnetic resonance imaging method
RU2013151800A (ru) * 2011-04-21 2015-05-27 Конинклейке Филипс Н.В. Магнитно-резонансная визуализация венозной крови с использованием стимулированной эхо-импульсной последовательности с градиентами сенсибилизации потока
US8971602B2 (en) * 2011-04-22 2015-03-03 Mayo Foundation For Medical Education And Research Method for magnetic resonance elastography using transient waveforms
CN103845055B (zh) * 2012-12-04 2015-07-22 上海联影医疗科技有限公司 心脏磁共振成像方法及系统
DE102013204310A1 (de) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Betriebsverfahren für einen Rechner zur Bestimmung einer optimierten Messsequenz für eine bildgebende medizintechnische Anlage
CN103976735B (zh) * 2014-05-04 2016-03-23 清华大学 基于磁共振的黑血电影成像方法
WO2016168979A1 (zh) * 2015-04-20 2016-10-27 深圳市长桑技术有限公司 一种生命体征分析方法与系统
EP3651161A1 (de) * 2018-11-07 2020-05-13 Siemens Healthcare GmbH Verfahren, system und medizinisches bildgebungssystem zur erstellung eines abbildes von einem untersuchungsobjekt sowie verwendung derartiger abbilder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215352A (ja) * 1984-04-11 1985-10-28 株式会社島津製作所 心電同期nmrイメ−ジング方法
JPH0260635A (ja) * 1988-08-29 1990-03-01 Hitachi Ltd 磁気共鳴イメージング装置
CN1116077A (zh) * 1994-08-04 1996-02-07 深圳安科高技术有限公司 一种磁共振图像的相位测速方法
CN1151858A (zh) * 1995-12-15 1997-06-18 通用电器横河医疗系统株式会社 扩散敏化成像方法和磁共振成像装置
CN1226415A (zh) * 1998-02-20 1999-08-25 通用电气公司 用epi脉冲序列采集分段的mri心脏数据

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000182A (en) 1989-08-11 1991-03-19 Picker International, Inc. Cardiac synchronization magnetic resonance imaging
JP3532311B2 (ja) * 1995-07-31 2004-05-31 株式会社日立メディコ 磁気共鳴イメージング装置
JPH09238916A (ja) 1996-03-11 1997-09-16 Toshiba Corp 磁気共鳴イメージング装置
US6498946B1 (en) * 2001-10-05 2002-12-24 Ge Medical Systems Global Technology Co., Llc Efficient multi-slice acquisition with black blood contrast

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215352A (ja) * 1984-04-11 1985-10-28 株式会社島津製作所 心電同期nmrイメ−ジング方法
JPH0260635A (ja) * 1988-08-29 1990-03-01 Hitachi Ltd 磁気共鳴イメージング装置
CN1116077A (zh) * 1994-08-04 1996-02-07 深圳安科高技术有限公司 一种磁共振图像的相位测速方法
CN1151858A (zh) * 1995-12-15 1997-06-18 通用电器横河医疗系统株式会社 扩散敏化成像方法和磁共振成像装置
CN1226415A (zh) * 1998-02-20 1999-08-25 通用电气公司 用epi脉冲序列采集分段的mri心脏数据

Also Published As

Publication number Publication date
EP1444949A1 (en) 2004-08-11
CN1543326A (zh) 2004-11-03
DE60126359T2 (de) 2007-11-08
KR20030062335A (ko) 2003-07-23
US20040049106A1 (en) 2004-03-11
KR100646914B1 (ko) 2006-11-17
EP1444949B1 (en) 2007-01-24
WO2003041579A1 (fr) 2003-05-22
DE60126359D1 (de) 2007-03-15
EP1444949A4 (en) 2005-07-27
US7623901B2 (en) 2009-11-24

Similar Documents

Publication Publication Date Title
CN100411584C (zh) 在预脉冲和成象脉冲列之间需要长等待时间的核磁共振机
US10226192B2 (en) Magnetic resonance imaging apparatus and image processing apparatus
US9700220B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US9301704B2 (en) Magnetic resonance imaging system for non-contrast MRA and magnetic resonance signal acquisition method employed by the same
US9687171B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP4693227B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージングのスキャン同期方法
JPH1075937A (ja) Mrアンジオグラフィ計測法及び装置
JP2002200054A (ja) Mri装置及びmrイメージング方法
US6889071B2 (en) Acquisition of high-temporal free-breathing MR images
EP1221624A2 (en) Method and apparatus for fast breath-held 3d mr data acquisition using variable sampling
JP2000201903A (ja) Mrイメ―ジング方法、mri装置、および記録媒体
JP2012081277A (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
US6068595A (en) Control of setting phase-encoding direction in MRI
JP2001178701A (ja) Mri装置及びmrイメージング方法
JP4220592B2 (ja) Mri装置
JP5175420B2 (ja) Mri装置及びmrイメージング方法
JPH08299297A (ja) 磁気共鳴イメージング装置
US20040254452A1 (en) Dynamic magnetic resonance angiography
US6510335B1 (en) Visualization of nonenhanced MR lymphography
JP4086544B2 (ja) 磁気共鳴イメージング装置
JP5575695B2 (ja) Mri装置
KR100732790B1 (ko) 프리펄스와 촬상펄스열 사이에 긴 대기시간을 요하는자기공명 이미징
JPH04141143A (ja) 磁気共鳴アンギオグラフィ装置
JP2005080855A (ja) 磁気共鳴イメージング装置
JPH0280035A (ja) 磁気共鳴イメージング方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160720

Address after: Japan Tochigi

Patentee after: Toshiba Medical System Co., Ltd.

Address before: Tokyo, Japan, Japan

Patentee before: Toshiba Corp

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080820

Termination date: 20201115

CF01 Termination of patent right due to non-payment of annual fee