CN100396609C - 微小线宽金属硅化物的制作方法 - Google Patents

微小线宽金属硅化物的制作方法 Download PDF

Info

Publication number
CN100396609C
CN100396609C CNB2004100005919A CN200410000591A CN100396609C CN 100396609 C CN100396609 C CN 100396609C CN B2004100005919 A CNB2004100005919 A CN B2004100005919A CN 200410000591 A CN200410000591 A CN 200410000591A CN 100396609 C CN100396609 C CN 100396609C
Authority
CN
China
Prior art keywords
wall
patterning
metal silicide
opening
mentioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100005919A
Other languages
English (en)
Other versions
CN1517300A (zh
Inventor
张志维
王美匀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN1517300A publication Critical patent/CN1517300A/zh
Application granted granted Critical
Publication of CN100396609C publication Critical patent/CN100396609C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • H01L29/66507Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide providing different silicide thicknesses on the gate and on source or drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明公开了一种新的微小线宽金属硅化物的制作方法。首先,于基底表面形成一间隔层;接着,图案化该间隔层,以于间隔层中形成一开口,同时去除开口两侧以外未被图案化处理的间隔层,保留开口两侧图案化后的间隔层;接着,于整个基底表面全面性形成一多晶硅层,不仅填满开口内部,且覆盖于开口两侧图案化后的间隔层表面;接着,图案化该多晶硅层,仅留下位于开口内以及开口与其两侧图案化后的间隔层上方的多晶硅层;接着,共形于整个基底形成一金属层;最后,实施热处理程序,使图案化后的多晶硅层高于图案化后的间隔层的部分与金属层发生反应,形成金属硅化物。

Description

微小线宽金属硅化物的制作方法
技术领域
本发明涉及一种金属硅化物,且特别是涉及一种微小线宽金属硅化物及其制作方法。
背景技术
在半导体技术中,金属氧化物半导体(metal-oxide-semiconductor;MOS)晶体管(transistor)是由栅极(gate)、源极(source)与漏极(drain)等三个电极所构成,其中MOS便是构成栅极结构的主体。早期的MOS是由金属层(metal layer)、二氧化硅(SiO2)与含硅基底(silicon-basedsubstrate)等三层材质所组成的。但是,由于大多数金属对于二氧化硅的附着能力(adhesion)很差,所以对于二氧化硅具有较佳附着能力的多晶硅(polysilicon)便被提出以取代金属层。然而,使用多晶硅却有电阻值太高的问题存在。即使多晶硅经过掺杂,其电阻值还是太高,并不适合用来取代MOS的金属层。于是,熟悉本领域的技术人员便提出一解决方法,也就是于多晶硅的表面再多加一层厚度与多晶硅层相当的金属硅化物(metalsalicide),利用导电性较佳的金属硅化物与多晶硅共同组成导电层。
随着半导体组件的集积度不断增加,各组件的线宽必需随之缩小,目前栅极层的线宽已经由0.13、0.10微米降至0.07微米甚至0.05微米以下。
然而,栅极层的线宽小于0.1微米以下(0.07微米、0.05微米)的金属硅化物却有聚附(agglomeration)的问题发生,因而导致其阻值的增加,甚至导致断线。
发明内容
有鉴于此,本发明主要目的在于解决上述问题,提供一种微小线宽金属硅化物及其制作方法,其可适用于线宽小于0.1微米的栅极层的制程,可避免金属硅化物聚附的现象发生。
本发明解决问题的主要技术特征在于使多晶硅延伸至开口两侧的间隔层上方,如此一来,虽然两间隔层之间的多晶硅线宽很微小,但是高于间隔层的多晶硅部分向间隔层的表面延伸覆盖后,便具有足够的线宽,以致在形成金属硅化物后仍不会有聚附的现象发生。
为达到上述目的,本发明提出了一种微小线宽金属硅化物的制作方法,该方法的步骤主要包括:
提供一基底;在基底表面形成一间隔层;图案化所述间隔层,以于间隔层中形成一开口,同时去除上述开口两侧以外未被图案化处理的间隔层,保留开口两侧图案化后的间隔层;于整个基底表面全面性形成一硅层(多晶硅层),不仅填满上述开口内部且覆盖于上述开口两侧图案化后的间隔层表面;图案化上述硅层,仅留下位于上述开口内以及上述开口与其两侧图案化后的间隔层上方的硅层;共形于整个基底形成一金属层;以及实施一热处理程序,使上述图案化后的硅层高于上述图案化后的间隔层的部分与上述金属层发生反应,形成一金属硅化物。
在本发明的制作方法中,通过去除开口两侧以外未被图案化处理的间隔层,而使得由横截面观看的间隔层于开口两侧形成两柱状图案化后的间隔层,其中所述开口宽度根据制程优选小于0.1微米,而开口与其两侧图案化后的间隔层宽度的总和应不小于0.1微米。并且,上述图案化后的硅层高于图案化后的间隔层的部分的宽度也应不小于0.1微米。
根据本发明的具体实施方案,图案化后的硅层高于图案化后的间隔层的部分的厚度约为200-500
Figure C20041000059100051
以便高于图案化后的间隔层的图案化多晶硅于后续热处理程序时可与金属层反应,完全转变成金属硅化物。另外,间隔层的厚度约为400-600
Figure C20041000059100061
本发明中,所述间隔层的材质可包括氮化物,例如Si3N4。所述金属层可包括钛(Ti)、钴(Co)或镍(Ni)。
在具体实施时,本发明的方法中还可进一步包括:形成一衬垫氧化层于所述多晶硅层与基底之间。并且,在形成金属硅化物之后还可进一步包括:去除未参与反应的金属层。
本发明的方法中所述热处理优选为快速加热制程(rapid thermalprocess;RTP)。
在提供上述方法的同时,本发明还提供了一种微小线宽金属硅化物,其包括:
一基底;二柱状间隔层,设置于基底表面;一多晶硅层,设置于上述柱状间隔层表面且填满两柱状间隔层的间隔区域;以及一金属硅化物层,设置于多晶硅层表面。
综上所述,本发明提供的微小线宽金属硅化物及其制作方法,由于使多晶硅延伸至开口两侧的间隔层上方,而使两间隔层之间的多晶硅线宽虽然很微小,但是高于间隔层的多晶硅部分向间隔层的表面延伸覆盖后,便具有足够的线宽,以致在形成金属硅化物后仍不会有聚附的现象发生。本发明的微小线宽金属硅化物及其制作方法可适用于栅极层的线宽小于0.1微米以下的制程,并可避免金属硅化物聚附的现象发生。
附图说明
图1至图11B为显示根据本发明的一优选实施例的制程剖面示意图。
图中主要符号说明:
100基底       102间隔层          104图案化第一光刻胶  I开口
102a图案化后的间隔层(柱状间隔层) 106栅极氧化层        108多晶硅层
110图案化第二光刻胶  d金属硅化物宽度  108a图案化后的多晶硅层
112金属层            114金属硅化物    101衬垫氧化层
具体实施方式
为使本发明的上述目的、特征和优点能更明显易懂,现列举具体优选实施例,并配合附图,详细说明如下:
以下请参见图1至图11所示的制程剖面图,说明根据本发明的一优选实施例。
首先,请参见图1,先提供一基底100,例如:适用于半导体的硅基底,再于上述基底100表面形成一间隔层102,预备作为后续制作的栅极层的间隔层。间隔层的厚度例如可大于500
Figure C20041000059100071
其材质可包括氮化物,例如Si3N4。另外,基底100与间隔层102之间可形成一衬垫氧化层101,形成方法例如利用适当化学气相沉积法(CVD)等。
接着,请参见图2,例如利用适当的旋涂法(spin coating)上光刻胶与适当的光刻、显像过程定义光刻胶图案,以于间隔层102表面形成具有预定图案的第一光刻胶104。
接着,请参见图3,以图案化第一光刻胶104为掩膜,蚀刻未被图案化第一光刻胶104遮蔽的间隔层102,使间隔层102图案化,以形成一开口I于间隔层102中,同时去除开口I两侧以外未被图案化处理的间隔层102,使得由横截面观看到的间隔层102于开I两侧形成两柱状间隔层(图案化后的间隔层)102a,该柱状间隔层的厚度可约为400-600
Figure C20041000059100072
后续将在开口I位置制作栅极层,因此开口I的宽度需与制程中栅极层的线宽一致,例如:0.07微米或0.05微米。必须注意的是,间隔层的宽度必须经过设计、控制,使得开口I宽度与其两侧图案化后的间隔层102a宽度的总和必须不小于0.1微米。例如:针对栅极线宽0.07微米的制程,开口I宽度则为0.07微米,而图案化后的间隔层102a的宽度至少为0.03微米。然后,再去除图案化第一光刻胶104。
接着,请参见图4,可例如利用适当沉积程序,共形于整个基底表面形成一栅极氧化层106,其材质例如为高介电常数的氧化物,厚度约为15-200
Figure C20041000059100081
其可利用热氧化法在650-1000℃之间,反应5-3600秒而得。
接着,请参见图5,先例如利用化学气相沉积(chemical vapordeposition;CVD),于整个基底表面全面性形成一多晶硅层108,不仅填满开口I内部且覆盖于开口两侧图案化后的间隔层(柱状间隔层)102a表面,其厚度约为3000-8000
Figure C20041000059100082
再实行一化学机械研磨(chemicalmechanical polishing;CMP)程序,使多晶硅层108的表面平坦化,直到多晶硅层108高于图案化后的间隔层102a部分的厚度约为200-500
Figure C20041000059100083
为止,以便高于图案化后的间隔层102a的多晶硅108可在后续制程阶段完全转变成金属硅化物。
接着,请参见图6,例如利用适当的旋涂法上光刻胶与适当的光刻、显像过程定义光刻胶图案,仅在两图案化后的间隔层102a的范围内上方的多晶硅层108表面形成一图案化第二光刻胶110。
接着,请参见图7A与图7B,以图案化第二光刻胶110为掩膜,蚀刻未被图案化的第二光刻胶110遮蔽的多晶硅层108,以图案化多晶硅层108,仅留下位于开口I内以及开口I与其两侧图案化后的间隔层102a上方的图案化后的多晶硅层108a。图案化后的多晶硅层108a可以覆盖满整个图案化后的间隔层102a表面,如图7A所示;也可以仅覆盖部分图案化后的间隔层102a表面,如图7B所示。重要的是,图案化后的多晶硅层108a高于图案化后的间隔层102a的部分的宽度d,也就是后续与金属层反应形成金属硅化物的部分,必须不小于0.1微米,此为本发明的特征。后续继续以图7B为例说明以下制程。
接着,请参见图8,去除图案化第二光刻胶110后,实施一离子注入程序500,使未被图案化后的间隔层102a与图案化后的多晶硅层108a覆盖的基底内形成离子掺杂的源极S/漏极D(source/drain)。
接着,请参见图9,例如利用溅镀法(sputtering),于整个基底共形形成一金属层112。上述金属层包括钛(Ti)、钴(Co)或镍(Ni)。
接着,请参见图10,实施一热处理程序,例如:快速加热制程(rapidthermal process;RTP),使图案化后的多晶硅层108a高于图案化后的间隔层102a的部分与金属层112发生反应,形成一金属硅化物114。如前所述,需适当选择多晶硅的厚度,才能使高于图案化后的间隔层102a的图案化后的多晶硅108a完全转变成金属硅化物114。并且,由于图案化后的多晶硅层108a高于图案化后的间隔层102a的部分的宽度d不小于0.1微米,所以,形成金属硅化物114后不会有聚附的问题产生。
最后,请参见图11A与图11B,利用适当蚀刻程序,去除未参与反应的金属层112,便完成应用于线宽小于0.1微米的栅极层的金属硅化物制作。本发明的微小线宽金属硅化物包括:一基底100;二柱状间隔层102a,设置于上述基底100表面;一多晶硅层108a,设置于上述柱状间隔层102a表面且填满上述两柱状间隔层102a的间隔区域;以及一金属硅化物层114,设置于上述多晶硅层108a表面。图11A显示由图7A所得的结果,即金属硅化物114覆盖满整个间隔层102a表面。图11B显示由图7B所得的结果,即仅覆盖部分间隔层102a表面。
本发明虽以优选实施例揭露如上,然其并非用以限定本发明的范围,任何熟悉本领域的技术人员,在不脱离本发明的精神和范围内,当可做各种的更动与润饰,本发明的保护范围应以权利要求书为准。

Claims (10)

1.一种微小线宽金属硅化物的制作方法,包括:
提供一基底;
于上述基底表面形成一间隔层;
图案化上述间隔层,以于间隔层中形成一开口,同时去除上述开口两侧以外未被图案化处理的间隔层,保留开口两侧图案化后的间隔层;
于整个基底表面全面性形成一硅层,不仅填满上述开口内部且覆盖于上述开口两侧图案化后的间隔层表面;
图案化上述硅层,仅留下位于上述开口内以及上述开口与其两侧图案化后的间隔层上方的硅层;
共形于整个基底形成一金属层;以及
实施一热处理程序,使上述图案化后的硅层高于上述图案化后的间隔层的部分与上述金属层发生反应,形成一金属硅化物,其中该金属硅化物的微小线宽小于0.1微米。
2.如权利要求1所述的微小线宽金属硅化物的制作方法,其中所述开口的宽度小于0.1微米。
3.如权利要求1所述的微小线宽金属硅化物的制作方法,其中所述图案化后的硅层高于图案化后的间隔层的部分的宽度不小于0.1微米。
4.如权利要求1所述的微小线宽金属硅化物的制作方法,其中所述图案化后的硅层高于图案化后的间隔层的部分的厚度为200-500
Figure C2004100005910002C1
5.如权利要求1所述的微小线宽金属硅化物的制作方法,其中所述间隔层的厚度为400-600
6.如权利要求1所述的微小线宽金属硅化物的制作方法,其中所述间隔层包括氮化硅。
7.如权利要求1所述的微小线宽金属硅化物的制作方法,其中所述金属层是钛、钴或镍。
8.如权利要求1所述的微小线宽金属硅化物的制作方法,其中进一步包括:于所述硅层与基底之间形成一衬垫氧化层。
9.如权利要求1所述的微小线宽金属硅化物的制作方法,其中形成金属硅化物之后进一步包括:去除未参与反应的金属层。
10.如权利要求1所述的微小线宽金属硅化物的制作方法,其中所述热处理为快速加热制程。
CNB2004100005919A 2003-01-17 2004-01-15 微小线宽金属硅化物的制作方法 Expired - Fee Related CN100396609C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/347,007 2003-01-17
US10/347,007 US20040142517A1 (en) 2003-01-17 2003-01-17 Hatted polysilicon gate structure for improving salicide performance and method of forming the same

Publications (2)

Publication Number Publication Date
CN1517300A CN1517300A (zh) 2004-08-04
CN100396609C true CN100396609C (zh) 2008-06-25

Family

ID=32712287

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100005919A Expired - Fee Related CN100396609C (zh) 2003-01-17 2004-01-15 微小线宽金属硅化物的制作方法

Country Status (4)

Country Link
US (2) US20040142517A1 (zh)
CN (1) CN100396609C (zh)
SG (1) SG116522A1 (zh)
TW (1) TWI228779B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499158B1 (ko) * 2003-02-28 2005-07-01 삼성전자주식회사 상부면적이 확장된 확장형 게이트 및 이를 구비하는반도체 소자의 제조방법
KR100629266B1 (ko) 2004-08-09 2006-09-29 삼성전자주식회사 샐리사이드 공정 및 이를 사용한 반도체 소자의 제조방법
US7115921B2 (en) * 2004-08-31 2006-10-03 International Business Machines Corporation Nano-scaled gate structure with self-interconnect capabilities
US7456058B1 (en) * 2005-09-21 2008-11-25 Advanced Micro Devices, Inc. Stressed MOS device and methods for its fabrication
KR100696197B1 (ko) * 2005-09-27 2007-03-20 한국전자통신연구원 실리콘 기판을 이용한 다중 게이트 모스 트랜지스터 및 그제조 방법
US8901665B2 (en) * 2011-12-22 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Gate structure for semiconductor device
CN104943082A (zh) * 2014-03-27 2015-09-30 杨登任 可替换安装多个模仁的成型模具组
FR3076394A1 (fr) * 2018-01-04 2019-07-05 Stmicroelectronics (Rousset) Sas Espaceurs de transistors mos et leur procede de fabrication
CN111584432A (zh) * 2020-05-28 2020-08-25 福建省晋华集成电路有限公司 动态随机存取存储器及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1213163A (zh) * 1997-09-29 1999-04-07 Lg半导体株式会社 半导体器件的制造方法
US5918143A (en) * 1997-02-12 1999-06-29 Universite De Sherbrooke Fabrication of sub-micron silicide structures on silicon using resistless electron beam lithography
US5970370A (en) * 1998-12-08 1999-10-19 Advanced Micro Devices Manufacturing capping layer for the fabrication of cobalt salicide structures
JP2000196081A (ja) * 1998-12-22 2000-07-14 Hyundai Electronics Ind Co Ltd チタンポリサイドゲ―ト電極形成方法
US6262458B1 (en) * 1997-02-19 2001-07-17 Micron Technology, Inc. Low resistivity titanium silicide structures

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448640A (ja) * 1990-06-14 1992-02-18 Oki Electric Ind Co Ltd Mosトランジスタの製造方法
WO1996030946A1 (fr) 1995-03-29 1996-10-03 Hitachi, Ltd. Dispositif semi-conducteur et son procede de fabrication
JP2848299B2 (ja) * 1995-12-21 1999-01-20 日本電気株式会社 半導体装置及びその製造方法
US6197645B1 (en) * 1997-04-21 2001-03-06 Advanced Micro Devices, Inc. Method of making an IGFET with elevated source/drain regions in close proximity to gate with sloped sidewalls
US5937299A (en) * 1997-04-21 1999-08-10 Advanced Micro Devices, Inc. Method for forming an IGFET with silicide source/drain contacts in close proximity to a gate with sloped sidewalls
US6159781A (en) * 1998-10-01 2000-12-12 Chartered Semiconductor Manufacturing, Ltd. Way to fabricate the self-aligned T-shape gate to reduce gate resistivity
US6630712B2 (en) * 1999-08-11 2003-10-07 Advanced Micro Devices, Inc. Transistor with dynamic source/drain extensions
US6214680B1 (en) * 1999-12-13 2001-04-10 Chartered Semiconductor Manufacturing, Ltd. Method to fabricate a sub-quarter-micron MOSFET with lightly doped source/drain regions
US6433371B1 (en) * 2000-01-29 2002-08-13 Advanced Micro Devices, Inc. Controlled gate length and gate profile semiconductor device
US6326290B1 (en) 2000-03-21 2001-12-04 Taiwan Semiconductor Manufacturing Company Low resistance self aligned extended gate structure utilizing A T or Y shaped gate structure for high performance deep submicron FET
US6204133B1 (en) * 2000-06-02 2001-03-20 Advanced Micro Devices, Inc. Self-aligned extension junction for reduced gate channel
US6579783B2 (en) 2000-07-07 2003-06-17 Applied Materials, Inc. Method for high temperature metal deposition for reducing lateral silicidation
US6350688B1 (en) 2000-08-01 2002-02-26 Taiwan Semiconductor Manufacturing Company Via RC improvement for copper damascene and beyond technology
US6890854B2 (en) 2000-11-29 2005-05-10 Chartered Semiconductor Manufacturing, Inc. Method and apparatus for performing nickel salicidation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5918143A (en) * 1997-02-12 1999-06-29 Universite De Sherbrooke Fabrication of sub-micron silicide structures on silicon using resistless electron beam lithography
US6262458B1 (en) * 1997-02-19 2001-07-17 Micron Technology, Inc. Low resistivity titanium silicide structures
CN1213163A (zh) * 1997-09-29 1999-04-07 Lg半导体株式会社 半导体器件的制造方法
US5970370A (en) * 1998-12-08 1999-10-19 Advanced Micro Devices Manufacturing capping layer for the fabrication of cobalt salicide structures
JP2000196081A (ja) * 1998-12-22 2000-07-14 Hyundai Electronics Ind Co Ltd チタンポリサイドゲ―ト電極形成方法

Also Published As

Publication number Publication date
US20040259342A1 (en) 2004-12-23
CN1517300A (zh) 2004-08-04
US6884669B2 (en) 2005-04-26
TWI228779B (en) 2005-03-01
SG116522A1 (en) 2005-11-28
TW200423259A (en) 2004-11-01
US20040142517A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
TWI255007B (en) Method of fabricating a semiconductor device having reduced contact resistance
US4635347A (en) Method of fabricating titanium silicide gate electrodes and interconnections
CN100487911C (zh) 用于cmos工艺的双金属栅极晶体管及其制造方法
JP2007513498A (ja) FETゲート電極用のCVDタンタル化合物(TaおよびNを含む化合物の化学的気相堆積方法および半導体電界効果デバイス)
JP2006501685A (ja) ニッケルゲルマノシリサイド化したゲートを組み込んだmosfetおよびこれらのmosfetを形成する方法
US20080211038A1 (en) Semiconductor device and method of fabricating the same
CN100396609C (zh) 微小线宽金属硅化物的制作方法
US6440868B1 (en) Metal gate with CVD amorphous silicon layer and silicide for CMOS devices and method of making with a replacement gate process
US6436840B1 (en) Metal gate with CVD amorphous silicon layer and a barrier layer for CMOS devices and method of making with a replacement gate process
TW200406047A (en) Metal spacer gate for CMOS fet
US20040014306A1 (en) Ms type transistor and its manufacturing method
WO2022217782A1 (zh) 半导体器件的制造方法及其半导体器件
US6528362B1 (en) Metal gate with CVD amorphous silicon layer for CMOS devices and method of making with a replacement gate process
US6440867B1 (en) Metal gate with PVD amorphous silicon and silicide for CMOS devices and method of making the same with a replacement gate process
JP4533155B2 (ja) 半導体装置及びその製造方法
US6245620B1 (en) Method for foaming MOS transistor having bi-layered spacer
JP4347479B2 (ja) 電界効果トランジスタ
KR100634222B1 (ko) 반도체 장치의 제조방법
US20020192932A1 (en) Salicide integration process
US20080217776A1 (en) Process for manufacturing integrated circuits formed on a semiconductor substrate and comprising tungsten layers
US7465660B2 (en) Graded/stepped silicide process to improve MOS transistor
US6586320B2 (en) Graded/stepped silicide process to improve mos transistor
US5946599A (en) Method of manufacturing a semiconductor IC device
JPH07263674A (ja) 電界効果型半導体装置とその製造方法
KR100317338B1 (ko) 반도체 소자 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080625