CN100393909C - 用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法 - Google Patents

用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法 Download PDF

Info

Publication number
CN100393909C
CN100393909C CNB2006100787440A CN200610078744A CN100393909C CN 100393909 C CN100393909 C CN 100393909C CN B2006100787440 A CNB2006100787440 A CN B2006100787440A CN 200610078744 A CN200610078744 A CN 200610078744A CN 100393909 C CN100393909 C CN 100393909C
Authority
CN
China
Prior art keywords
charge bar
ceramic layer
dentrite
bar
thermal barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100787440A
Other languages
English (en)
Other versions
CN1844445A (zh
Inventor
宫声凯
魏秋利
徐惠彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNB2006100787440A priority Critical patent/CN100393909C/zh
Publication of CN1844445A publication Critical patent/CN1844445A/zh
Application granted granted Critical
Publication of CN100393909C publication Critical patent/CN100393909C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法,它是在镍基高温合金基体表面依次沉积一层粘结层材料和具有微孔多孔树枝晶结构的陶瓷层材料。该制备方法通过控制两个不同组分料棒A和料棒B的蒸发沉积工艺参数使陶瓷层具有较低的导热系数,有效地提高了在高温环境下热障涂层服役寿命。

Description

用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法
技术领域
本发明涉及一种用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法,所制备得到的热障涂层的陶瓷层为多孔树枝晶结构。
背景技术
随着现代高科技的发展,特别是在燃气涡轮发动机的高温环境下,现有金属材料的单独使用已经不能满足设计及使用要求。热障涂层是二十世纪六十年代开发出来的一种表面热防护技术,其设计思想是利用陶瓷材料优越的耐高温、抗腐蚀和低导热等性能,以涂层的方式将陶瓷与金属基体相复合,在提高金属热端部件抗高温腐蚀能力的同时,使其能承受更高的使用温度,并具有提高发动机的工作温度、延长热端部件使用寿命的效果。
目前热障涂层一般由陶瓷层(YSZ:7-8wt%Y2O3-ZrO2)与粘结层(Ni、Co、Cr、Al、Y)所构成的双层结构,粘结层制备在基体与陶瓷层之间(如图1所示)。其制备方法主要有电子束物理气相沉积与等离子喷涂。
采用等离子喷涂制备陶瓷层为层状结构,其优点是:层与层之间有空隙,并且空隙与热流方向垂直有利于提高涂层的隔热效果;但是,此涂层容易剥落,寿命较短。
采用电子束物理气相沉积制备陶瓷层为柱状晶结构,可以提高陶瓷层的应变容限,从而提高涂层的寿命;但是,电子束物理气相沉积热障涂层陶瓷层的密度高于等离子喷涂热障涂层陶瓷层,因此,其涂层导热系数较高,且柱状晶结构在高温环境下易产生烧结。因此,制备具有微孔多孔陶瓷柱状晶结构的热障涂层陶瓷层,提高涂层的抗高温烧结能力,对于提高热障涂层的隔热效果以至于提高涂层的工作温度及涂层的使用寿命具有重要的意义。
发明内容
本发明的目的是提出一种用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法,该方法通过在通用陶瓷层材料YSZ中添加稀土氧化物,利用电子束蒸发沉积过程中自阴影效果的特点,制备出具有微孔多孔树枝晶结构的热障涂层,利用树枝晶结构中数量极多的微孔,降低涂层的导热系数,提高涂层的隔热效果。
本发明是一种用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法,包含下列步骤:
(1)准备粘结层料棒,备用
粘结层料棒材料为镍、钴、铬、铝、钇,其重量百分比组份为40~60%的镍,18~22%的钴、19~25%的铬、6~8%的铝、0.07~1.5%的钇,上述各成分总量为100%;
(2)准备陶瓷层用的料棒A和料棒B,
料棒A化学成分由50.0~90.0wt%YSZ+10.0~50.0wt%稀土氧化物组成;
称取YSZ、稀土氧化物,采用高能球磨机充分混合1~72hrs,然后在高温1300~1500℃下焙烧24~120hrs;然后采用模压成型工艺制成棒材,并将棒材在高温1200~1300℃下焙烧2~6hrs;
料棒B化学成分由90.5~99.0wt%YSZ+0.5~9.5wt%稀土氧化物组成;
称取YSZ、稀土氧化物,采用高能球磨机充分混合1~72hrs,然后在高温1200~1400℃下焙烧24~120hrs;然后采用模压成型工艺制成棒材,并将棒材在高温1200~1300℃下焙烧2~6hrs;
(3)准备基体材料,并将基体安装在电子束物理气相沉积设备的旋转基板架上;
(4)将(1)步骤中的粘结层料棒放置在电子束物理气相沉积设备的坩埚中;
抽真空室真空度至5×10-4Pa;
设定旋转基板架所需旋转的速度10~20rpm,并用电子束加热基板600~1000℃,电子束电压17~19kV;
预蒸发粘结层料棒,并调节电子束流1.4~1.8A、料棒上升速率0.8~1.0mm/min,控制蒸发量;
拉开挡板,进行蒸发沉积粘结层,电子束电流为1.4~1.8A,料棒上升速率1.2~1.6mm/min;粘结层沉积结束,对粘结层进行真空热处理:温度1000~1100℃,时间2~6hrs;
(5)将(2)步骤中的料棒A、料棒B分别放置在电子束物理气相沉积设备的坩埚中;
抽真空室真空度至5×10-4Pa;
设定旋转基板架所需旋转的速度10~20rpm,并用电子束加热基板600~1000℃,电子束电压17~19kV;
预蒸发料棒A和料棒B,采用双电子束,电子束流1.4~1.8A、料棒上升速率0.8~1.0mm/min,控制蒸发量;
拉开挡板,进行蒸发沉积陶瓷层,充入氧气0.001~0.5L/min;
适用于料棒A的电子束电流为1.0~1.8A,且电流变化速率为0.01~0.3A/min,料棒上升速率1.0~3.0mm/min;
适用于料棒B的电子束电流为0.8~1.8A,且电流变化速率为0.01~0.3A/min,料棒上升速率1.0~5.0mm/min;
(6)关闭设备,制备结束。
所述稀土氧化物为Sc2O3、La2O3、Nd2O3、Yb2O3、Gd2O3、Sm2O3、CeO2、Er2O3、Dy2O3、Pr2O3、Tb2O3和Tm2O3中的两种或两种以上组合。
所述稀土氧化物为25~75wt%的Nd2O3+25~75wt%的Yb2O3或者25~75wt%的Yb2O3+25~75wt%的Gd2O3或者25~75wt%的La2O3+25~75wt%的Yb2O3组合。
所述稀土氧化物为20~60wt%的Nd2O3+20~60wt%的Yb2O3+20~60wt%的La2O3或者20~60wt%的Yb2O3+20~60wt%的Gd2O3+20~60wt%的Nd2O3或者20~60wt%的La2O3+20~60wt%的Yb2O3+20~60wt%的Sm2O3组合。
所述的用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层的方法,制备得到的陶瓷层为微孔多孔的树枝晶结构。
本发明用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法的优点:(1)制备得到的稀土参杂的YSZ陶瓷层与传统YSZ陶瓷层相比具有更好的抗烧结能力,在相同烧结时间条件下,烧结温度提高了50℃~100℃;(2)制备得到的稀土参杂的YSZ陶瓷层与传统YSZ陶瓷层相比导热系数降低了30~50%;(3)具有多孔树枝晶陶瓷层的热障涂层密度较低,隔热效果比传统YSZ陶瓷层的热障涂层提高了30~100%,粘结力强,使用寿命较长。
附图说明
图1是传统热障涂层的结构示意图。
图2是电子束物理气相沉积设备示意图。
图3是本发明陶瓷层截面的SEM照片。
图中:1.真空室2.第一坩埚3.第二坩埚4.挡板5.旋转基板架6.左电子枪7.右电子枪8.基板
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明的热障涂层,它是在高温合金基体表面依次沉积一层粘结层和具有多孔树枝晶结构的陶瓷层,所述陶瓷层所使用的两个蒸发源材料的稀土组份不同。
本发明是一种用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法,包含下列步骤:
(1)准备粘结层料棒,备用
粘结层料棒材料为镍、钴、铬、铝、钇,其重量百分比组份为40~60%的镍,18~22%的钴、19~25%的铬、6~8%的铝、0.07~1.5%的钇,上述各成分总量为100%;
(2)准备陶瓷层用的料棒A和料棒B,
料棒A化学成分由50.0~90.0wt%YSZ+10.0~50.0wt%稀土氧化物组成;
称取YSZ、稀土氧化物,采用高能球磨机充分混合1~72hrs,然后在高温1300~1500℃下焙烧24~120hrs;然后采用模压成型工艺制成棒材,并将棒材在高温1200~1300℃下焙烧2~6hrs;
料棒B化学成分由90.5~99.0wt%YSZ+0.5~9.5wt%稀土氧化物组成;
称取YSZ、稀土氧化物,采用高能球磨机充分混合1~72hrs,然后在高温1200~1400℃下焙烧24~120hrs;然后采用模压成型工艺制成棒材,并将棒材在高温1200~1300℃下焙烧2~6hrs;
(3)准备基体材料,并将基体安装在电子束物理气相沉积设备的旋转基板架5上;
(4)将(1)步骤中的粘结层料棒放置在电子束物理气相沉积设备的第一坩埚2中;
抽真空室1真空度至5×10-4Pa;
设定旋转基板架5所需旋转的速度10~20rpm,并用电子束(由左电子枪6提供)加热基板8至温度600~1000℃,电子束电压17~19kV;
预蒸发粘结层料棒(第一坩埚2),并调节电子束流1.4~1.8A、粘结层料棒上升速率0.8~1.0mm/min,控制蒸发量;
拉开挡板4,进行蒸发沉积粘结层,电子束电流为1.4~1.8A,粘结层料棒上升速率1.2~1.6mm/min;粘结层沉积结束,对粘结层进行真空热处理:温度1000~1100℃,时间2~6hrs;
(5)将(2)步骤中的料棒A放置在电子束物理气相沉积设备的第一坩埚2中,料棒B放置在电子束物理气相沉积设备的第二坩埚3中;
抽真空室1真空度至10-4Pa;
设定旋转基板架5所需旋转的速度10~20rpm,并用电子束(由左电子枪6或者右电子枪7提供)加热基板8至温度600~1000℃,电子束电压17~19kV;
预蒸发料棒A(第一坩埚2)和料棒B(第二坩埚3),采用双电子束(同时打开左电子枪6、右电子枪7),电子束流1.4~1.8A、料棒上升速率0.8~1.0mm/min,控制蒸发量;
拉开挡板,进行蒸发沉积陶瓷层,充入氧气0.001~0.5L/min;
适用于料棒A的电子束(左电子枪6提供)电流为1.0~1.8A,且电流变化速率为0.01~0.3A/min,料棒上升速率1.0~3.0mm/min;
适用于料棒B的电子束(右电子枪7提供)电流为0.8~1.8A,且电流变化速率为0.01~0.3A/min,料棒上升速率1.0~5.0mm/min;
(6)关闭设备,制备结束。
下面将通过表一和表二中列举的具体实施例组分对本发明制备方法获得的陶瓷层结构进行对比说明。电子束物理气相沉积设备结构如图2所示,用J8M-5800型扫描电镜观察陶瓷层截面形貌。
选取表一和表二中实施例1的组分采用电子束物理气相沉积多孔树枝晶陶瓷层的步骤有:
(1)取镍钴铬铝钇(Ni,Co,Cr,Al,Y)合金料棒直径70mm,长200mm放入真空室1的料棒蒸发源第一坩埚2中;并在镍钴铬铝钇(Ni,Co,Cr,Al,Y)合金料棒表面添加70g铌,在蒸发沉积时使此料棒表面形成“热池”;
抽真空室1真空度至5×10-4Pa;
将镍基高温合金基体安装在旋转基板架5上,设定旋转基板架5所需旋转的速度15rpm,并用电子束(选取左电子枪6)加热基板650℃,电子束电压18kV;
预蒸发粘结层料棒,并调节电子束流1.6A、料棒上升速率0.8mm/min,控制蒸发量;
拉开挡板,进行蒸发沉积粘结层厚度30μm,电子束电流为1.6A,料棒上升速率1.2mm/min,沉积时间15min;
(2)取料棒A直径70mm,长200mm;料棒B直径70mm,长200mm分别放入真空室1的料棒蒸发源第一坩埚2和料棒蒸发源第二坩埚3中;
抽真空室1真空度至5×10-4Pa;
将经上述处理后的镍基高温合金基体安装在旋转基板架5上,设定旋转基板架5所需旋转的速度15rpm,并用电子束(选取左电子枪6)加热基板750℃,电子束电压18kV;
预蒸发料棒A(第一坩埚2中)和料棒B(第二坩埚3中),采用双电子束(打开设备上的左电子枪6和右电子枪7),电子束流1.5A、料棒上升速率0.8mm/min,控制蒸发量;
拉开挡板,进行蒸发沉积陶瓷层,充入氧气0.02L/min;
适用于料棒A的电子束(左电子枪6提供)电流为1.0A,且电流变化速率为0.05A/min,料棒上升速率1.0mm/min;
适用于料棒B的电子束(右电子枪7提供)电流为0.8A,且电流变化速率为0.1A/min,料棒上升速率2.0mm/min;制备陶瓷层厚度50μm,沉积时间30min。
制备完成后,关闭设备,取出制备有热障涂层的镍基高温合金基体,并对陶瓷层观察组织结构为微孔多孔树枝晶(截面形貌如图3所示),孔径为100纳米~2微米。采用火焰法对本发明制备的热障涂层进行隔热性能测试:在气体压强为0.2MPa,流量为2m3/h下,陶瓷层表面温度为1100℃时,测得基体的温度为967℃。在相同条件下,传统热障涂层中陶瓷层表面温度为1100℃时,测得基体的温度为1002℃。制备过程中由于电子束蒸发沉积自阴影效果的特点,陶瓷层中的数量极多的微孔有效地阻止了热流的传播,从而降低了陶瓷层的导热系数,提高了基体的服役寿命。
对表一和表二中其它的实施例的制备步骤与实施例1相似,不同之处在于对电流大小及其变化速率大小的控制、相应的料棒上升速率的控制。其遵循原则一般为:料棒组分为多种组合时,电流适当加大、电流变化速率快。
Figure C20061007874400101
Figure C20061007874400111

Claims (5)

1.一种用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法,其特征在于:包含下列步骤,
(1)准备粘结层料棒,备用
粘结层料棒材料为镍、钴、铬、铝、钇,其重量百分比组份为40~60%的镍,18~22%的钴、19~25%的铬、6~8%的铝、0.07~1.5%的钇,上述各成分总量为100%;
(2)准备陶瓷层用的料棒A和料棒B,
料棒A化学成分由50.0~90.0wt%YSZ+10.0~50.0wt%稀土氧化物组成;
称取YSZ、稀土氧化物,采用高能球磨机充分混合1~72hrs,然后在高温1300~1500℃下焙烧24~120hrs;然后采用模压成型工艺制成棒材,并将棒材在高温1200~1300℃下焙烧2~6hrs;
料棒B化学成分由90.5~99.0wt%YSZ+0.5~9.5wt%稀土氧化物组成;
称取YSZ、稀土氧化物,采用高能球磨机充分混合1~72hrs,然后在高温1200~1400℃下焙烧24~120hrs;然后采用模压成型工艺制成棒材,并将棒材在高温1200~1300℃下焙烧2~6hrs;
(3)准备基体材料,并将基体安装在电子束物理气相沉积设备的旋转基板架上;
(4)将(1)步骤中的粘结层料棒放置在电子束物理气相沉积设备的坩埚中;
抽真空室真空度至5×10-4Pa;
设定旋转基板架所需旋转的速度10~20rpm,并用电子束加热基板600~1000℃,电子束电压17~19kV;
预蒸发粘结层料棒,并调节电子束流1.4~1.8A、料棒上升速率0.8~1.0mm/min,控制蒸发量;
拉开挡板,进行蒸发沉积粘结层,电子束电流为1.4~1.8A,料棒上升速率1.2~1.6mm/min;粘结层沉积结束,对粘结层进行真空热处理:温度1000~1100℃,时间2~6hrs;
(5)将(2)步骤中的料棒A、料棒B分别放置在电子束物理气相沉积设备的坩埚中;
抽真空室真空度至5×10-4Pa;
设定旋转基板架所需旋转的速度10~20rpm,并用电子束加热基板600~1000℃,电子束电压17~19kV;
预蒸发料棒A和料棒B,采用双电子束,电子束流1.4~1.8A、料棒上升速率0.8~1.0mm/min,控制蒸发量;
拉开挡板,进行蒸发沉积陶瓷层,充入氧气0.001~0.5L/min;
适用于料棒A的电子束电流为1.0~1.8A,且电流变化速率为0.01~0.3A/min,料棒上升速率1.0~3.0mm/min;
适用于料棒B的电子束电流为0.8~1.8A,且电流变化速率为0.01~0.3A/min,料棒上升速率1.0~5.0mm/min;
(6)关闭设备,制备结束。
2.根据权利要求1所述的用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层的方法,其特征在于:所述稀土氧化物为Sc2O3、La2O3、Nd2O3、Yb2O3、Gd2O3、Sm2O3、CeO2、Er2O3、Dy2O3、Pr2O3、Tb2O3和Tm2O3中的两种或两种以上组合。
3.根据权利要求2所述的用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层的方法,其特征在于:所述稀土氧化物为25~75wt%的Nd2O3+25~75wt%的Yb2O3或者25~75wt%的Yb2O3+25~75wt%的Gd2O3或者25~75wt%的La2O3+25~75wt%的Yb2O3组合。
4.根据权利要求2所述的用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层的方法,其特征在于:所述稀土氧化物为20~60wt%的Nd2O3+20~60wt%的Yb2O3+20~60wt%的La2O3或者20~60wt%的Yb2O3+20~60wt%的Gd2O3+20~60wt%的Nd2O3或者20~60wt%的La2O3+20~60wt%的Yb2O3+20~60wt%的Sm2O3组合。
5.根据权利要求1所述的用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层的方法,其特征在于:制备得到的陶瓷层为微孔多孔的树枝晶结构。
CNB2006100787440A 2006-05-11 2006-05-11 用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法 Expired - Fee Related CN100393909C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100787440A CN100393909C (zh) 2006-05-11 2006-05-11 用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100787440A CN100393909C (zh) 2006-05-11 2006-05-11 用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法

Publications (2)

Publication Number Publication Date
CN1844445A CN1844445A (zh) 2006-10-11
CN100393909C true CN100393909C (zh) 2008-06-11

Family

ID=37063415

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100787440A Expired - Fee Related CN100393909C (zh) 2006-05-11 2006-05-11 用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法

Country Status (1)

Country Link
CN (1) CN100393909C (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200126B (zh) * 2007-12-12 2010-11-17 哈尔滨工业大学 一种热障涂层及其制备方法
CN102517549B (zh) * 2011-12-31 2013-08-21 北京航空航天大学 电子束物理气相沉积与熨压组合改善镍基高温合金涂层表面完整性的方法
CN103935957A (zh) * 2014-05-07 2014-07-23 文力 具有微米孔的网状薄膜及制造方法
CN105648416B (zh) * 2014-11-13 2018-05-15 中国科学院沈阳计算技术研究所有限公司 物理气相沉积制备叶片热障涂层的控制系统与工艺方法
CN106756811A (zh) * 2015-11-19 2017-05-31 中国航空工业集团公司北京航空制造工程研究所 一种高温合金涂层的制备方法
CN106567077B (zh) * 2016-11-15 2019-04-12 东莞市联洲知识产权运营管理有限公司 一种高温合金表面热障涂层的制备方法
CN108286036B (zh) * 2018-01-04 2020-05-19 湘潭大学 一种原位补氧型扫描式电子束气相沉积(ioc-sevd)装置及其方法
CN110129729A (zh) * 2019-06-28 2019-08-16 西北有色金属研究院 镍基合金表面NiCrAlY/NiCrAlY-YSZ/YSZ热障涂层及其制备方法
CN111349378A (zh) * 2020-05-06 2020-06-30 北京矿冶科技集团有限公司 一种长寿命高温封严涂层材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621557A (zh) * 2004-12-28 2005-06-01 北京航空航天大学 适用于高Mo含量镍基高温合金的热障涂层
CN1635178A (zh) * 2004-12-21 2005-07-06 北京航空航天大学 一种抗海洋性气氛腐蚀热障涂层
US20050153160A1 (en) * 2004-01-12 2005-07-14 Yourong Liu Durable thermal barrier coating having low thermal conductivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050153160A1 (en) * 2004-01-12 2005-07-14 Yourong Liu Durable thermal barrier coating having low thermal conductivity
CN1635178A (zh) * 2004-12-21 2005-07-06 北京航空航天大学 一种抗海洋性气氛腐蚀热障涂层
CN1621557A (zh) * 2004-12-28 2005-06-01 北京航空航天大学 适用于高Mo含量镍基高温合金的热障涂层

Also Published As

Publication number Publication date
CN1844445A (zh) 2006-10-11

Similar Documents

Publication Publication Date Title
CN100393909C (zh) 用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法
CN102094170B (zh) 用于燃气轮机涡轮动叶的氧化锆热障涂层及制备方法
CN108914039B (zh) 核用锆合金防护涂层材料及其制备方法
CN112831751B (zh) 一种高温自转变非晶/纳米晶高熵氧化物薄膜、制备方法及应用
CN104988454A (zh) 一种抗熔融cmas腐蚀的稀土铝酸盐热障涂层及其制备方法
CN112813399B (zh) 一种高熵金属玻璃防护涂层及制备方法
CN107699840A (zh) 多孔氧化锆热障涂层的制备方法
CN104988466A (zh) 一种利用双辉等离子渗金属技术低温制备α-Al2O3涂层的方法
CN101885623A (zh) 脉冲水热电泳沉积法制备碳/碳复合材料莫来石外涂层的方法
JP2018527693A (ja) ナノ構造化層の製造方法
CN109161889A (zh) 一种抗烧结双模复合结构热障涂层及其制备工艺
Zhang et al. Low-thermal-conductivity thermal barrier coatings with a multi-scale pore design and sintering resistance following thermal exposure
CN102925871A (zh) 一种复合热障涂层及其制备方法
CN112853288A (zh) 一种具有长时间耐高温水蒸汽氧化的Fe-Cr-Al基防护涂层及其制备方法
CN104790013B (zh) 一种耐烧结热障陶瓷涂层结构的制备方法
CN101015970A (zh) 一种新型铬酸镧超高温热障涂层陶瓷层材料
CN1702191A (zh) 一种合金薄板的制备方法
CN106637116B (zh) 一种二次电子发射薄膜的简易制备方法
CN104388900A (zh) 一种γ-TiAl合金表面渗镀LaTaAlY合金层的方法
CN109280895A (zh) 一种高致密、高界面结合的Mo/Ag层状复合材料的制备方法
CN110373700B (zh) 一种Ti2AlC耐腐蚀涂层的制备方法
Niu et al. Microstructure Evolution of Plasma-Sprayed MoSi 2 Coating at RT-1200° C in Air
Azizi‐Malekabadi et al. Enhancement of the Ti‐6Al‐4V alloy corrosion resistance by applying CrN/CrAlN multilayer coating via Arc‐PVD method
CN1635178A (zh) 一种抗海洋性气氛腐蚀热障涂层
CN103614698B (zh) 一种高温抗氧化铌合金复合涂层及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080611