CN100349316C - 燃料电池分隔板成型用材料及其制造方法 - Google Patents
燃料电池分隔板成型用材料及其制造方法 Download PDFInfo
- Publication number
- CN100349316C CN100349316C CNB2005100775858A CN200510077585A CN100349316C CN 100349316 C CN100349316 C CN 100349316C CN B2005100775858 A CNB2005100775858 A CN B2005100775858A CN 200510077585 A CN200510077585 A CN 200510077585A CN 100349316 C CN100349316 C CN 100349316C
- Authority
- CN
- China
- Prior art keywords
- fuel cell
- cell separator
- molding material
- epoxy resin
- powdered graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Epoxy Resins (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明提供一种燃料电池分隔板成型用材料的制造方法,在该方法中使用环氧树脂和作为石墨粉末的板状的膨胀石墨,预先将树脂、固化剂和其它添加剂溶解在丙酮中,然后,将其与石墨混合,由此制造燃料电池分隔板成型用材料。采用由该方法制造的燃料电池分隔板成型用材料制造的燃料电池分隔板具有气体透过率非常低、导电率优良、具有较大的强度且可使产品各部位的固态均质性最大化的效果。
Description
技术领域
本发明涉及燃料电池分隔板成型用材料及其制造方法,以及采用该方法制造的燃料电池分隔板及燃料电池。
作为燃料电池的核心的堆栈包括薄膜电极组件(Membrane electrodeassembly)和被称为分隔板的阳极板(bipolar plate)。其中分隔板起到提供氢和氧、使通过催化反应产生的电子移动的通道作用,且起到按照在各单位电池之间维持绝缘的方式进行分隔作用的核心部件。在燃料电池分隔板应具有的特性中,例如有弯曲强度、抗拉强度、气体透过率、导电率等项目。
背景技术
在现有技术中,作为该分隔板的材料使用了金属材料。但是,在与电解质接触的部分严重发生腐蚀现象,由此成为降低燃料电池的性能和缩短寿命的原因。因此,出现了以在所处的环境中腐蚀抵抗力优良的碳为材料的分隔板。石墨可作为它们的代表。石墨不仅具有耐腐蚀性,而且还具有耐化学性,且其导电率优良,可与金属相当,被提出为可代替金属分隔板的代用方案。
但是,在使用石墨的情况下,难以将其加工成所要的形状,与石墨的价格相比其加工费更高,其结果存在整体制造费用升高的缺点。因此,出现了能够保持石墨的高耐化学性和导电率等优点、且可成型为所希望的形状的碳复合材料分隔板。
这种碳复合材料分隔板,一般通过对石墨粉末和热固化性树脂或热塑性树脂混合,以压缩成型或射出成型的方式制造。一般使用的石墨粉末按照形状可分为球状和板状,按照制造方式可分为天然石墨和膨胀石墨。另外,作为热固化性树脂,使用不饱和聚酯树脂、环氧树脂、苯酚类树脂等。
在使用球状石墨粉末和天然石墨粉末的情况下,不仅在气体透过特性上,而且在导电率和强度特性上存在不良的问题。特别是,在该情况下使用粉末形树脂时,虽然可进行干式混合而存在工序简单的优点,但是,在另一方面,因为原料之间的分散度下降,在产品的均质性方面产生问题,在为提高性能而添加的各种添加剂的使用上也存在极大地受限制的问题。在制造燃料电池堆栈时,该问题最终导致使堆栈能量效率降低的严重的问题。
发明内容
本发明的发明人为了解决现有技术中存在的问题,经过精心研究的结果发现,虽然与环氧树脂一起使用作为石墨粉末的板状的膨胀石墨,但是事先将树脂、固化剂和其它添加剂溶解在丙酮中,然后混合石墨,由此可制造气体透过率非常低、导电率优良、可确保强度、并可使产品各部位的固态均质性最大化的燃料电池分隔板成型用材料,由此完成了本发明。
本发明的目的在于,通过将选择最适合的原料和适合于该原料的制造工序相结合,制造气体透过率非常低、导电率高、表现出高强度,并可使产品内部的固态均质性最大化的燃料电池分隔板成型用材料。
本发明的另一目的在于,提供一种采用由所述方法制造的成型用材料而制造的燃料电池分隔板和燃料电池。
本发明的燃料电池分隔板成型用材料的制造方法的特征在于,将环氧树脂、固化剂、固化促进剂、结合剂溶解于丙酮中,并将其与石墨混合,然后进行干燥和粉碎。
另外,本发明的特征在于,通过所述方法制造的燃料电池分隔板成型用材料、采用所述燃料电池分隔板成型用材料制造的燃料电池分隔板以及采用燃料电池分隔板制造的燃料电池。
通过由本发明制造的燃料电池分隔板成型用材料制造的燃料电池分隔板具有气体透过率非常低、导电率优良、具有较强强度、以及可使产品各部位的固态均质性最大化的效果。
附图说明
图1为对通过本发明的方法制造的燃料电池分隔板和现有的燃料电池分隔板的气体透过率特性进行比较的图表;
图2为对通过本发明的方法制造的燃料电池分隔板和现有的燃料电池分隔板的导电率特性进行比较的图表;
图3为对通过本发明的方法制造的燃料电池分隔板和现有的燃料电池分隔板的弯曲强度特性进行比较的图表;
图4为对通过本发明的方法制造的燃料电池分隔板和现有的燃料电池分隔板的密度特性进行比较的图表。
具体实施方式
在本发明中用来制造燃料电池分隔板成型用材料的基本的组成物质包括环氧树脂、固化剂、固化促进剂、结合剂、石墨粉末。首先,为了使高分子物质和其它添加剂更加均匀地混合,将环氧树脂、固化剂、固化促进剂、结合剂溶解于丙酮中,然后,将其与石墨粉末混合。之后,对流体状态的混合物进行干燥和粉碎,获得本发明的燃料电池分隔板成型用材料。
在本发明中使用的石墨粉末的含量优选的是相对于100重量份的环氧树脂为400~2,200重量份,石墨粉末优选使用形状为板状的,且为膨胀石墨。而石墨粉末的粒子大小可以根据用途和特性而不同,但是优选使用粒子大小在0.005~0.15mm范围的。
作为本发明中使用的树脂,有苯酚树脂、不饱和聚酯树脂(以下称之为UPE)、环氧树脂等,但在其中最优选的是环氧树脂。作为环氧树脂固化用固化剂,可使用胺类、酸酐类。其中更优选的是酸酐类。在本发明中固化剂的含量优选的是相对于100重量份环氧树脂为30~85重量份。
作为用来缩短所述环氧树脂和固化剂的固化时间的固化促进剂,可使用三苯基膦(以下称之为TPP)。该TPP的含量优选的是相对于100重量份的环氧树脂为0.3~6重量份。
另外,作为用来提高石墨粉末和树脂的胶合特性的结合剂,可使用硅烷,其含量优选的是相对于石墨粉末为0.3~6重量%。
根据本发明,为了混合得非常均匀,可以将溶解于丙酮中的环氧树脂、固化剂、固化促进剂、结合剂等混合溶剂与石墨粉末一起放入同时进行公转和自转的混合容器中,将其均匀地混合。
为了蒸发用来使高分子物质和其它添加剂更均匀地混合的溶剂的丙酮,可以将混合物在30~60℃的真空烤箱中放置1~6个小时,然后,进行干燥和粉碎,制造燃料电池分隔板成型用材料。
实施例1
相对于100重量份的环氧树脂添加1,200重量份的石墨粉末、50重量份的酸酐类固化剂、1重量份的作为固化促进剂的TPP。作为结合剂的硅烷的添加量与石墨粉末的质量比为1%。使用的石墨粉末的平均直径为0.05mm,并使用了板状的膨胀石墨。
为了进行均匀的混合,在将环氧树脂、固化剂、固化促进剂、结合剂等溶解于丙酮中后,将其与石墨粉末一起用容器的公转和自转同时进行的混合器进行了混合。
进行混合后,为了蒸发丙酮,在50℃的真空烤箱中放置3个小时,然后,进行粉碎,制造粉末材料,用该粉末材料以压缩成型方式制造了分隔板(以下称之为“本发明分隔板”)。
比较例1
使用与所述实施例中使用的石墨粉末相同粒子大小的球状石墨粉末,与热固化性粉末树脂一起放入而进行干式混合,使用由此获得的材料以压缩成型方式制造了分隔板(以下称之为“现有分隔板”)。对于高分子物质和石墨粉末的混合比,按照与实施例1相同的方式进行了设定。采用由此制造的粉末材料的压缩成型工序的条件也与实施例1完全相同。
在附图中,图1至图4为对本发明的实施例1(本发明分隔板)和作为现有例的比较例1(现有分隔板)的四个主要的物性,也就是气体透过率(图1)、导电率(图2)、弯曲强度(图3)和密度(图4)进行测定和比较的图表。
从图1中可知,实施例1(本发明分隔板)与比较例1(现有分隔板)相比,显示出了非常优良的气体透过率减少的现象。从图2和图3中可知,在导电率和弯曲强度方面也同样是实施例1(本发明分隔板)的情况与比较例1(现有分隔板)相比更优良。从图4的密度比较图表中也同样可知,实施例1(本发明分隔板)的密度比比较例1(现有分隔板)的密度大,且根据所示的标准偏差条可知,产品内部的固态均质性也非常优良。
Claims (6)
1.一种燃料电池分隔板成型用材料的制造方法,包括:将环氧树脂、作为固化剂的相对于100重量份环氧树脂为30~85重量份的酸酐类化合物和作为固化促进剂的相对于100重量份环氧树脂为0.3~6重量份的三苯基膦溶解在作为溶剂的丙酮中,将石墨粉末与该溶液均匀混合,然后,进行干燥和粉碎,其中所述的环氧树脂、固化剂和固化促进剂与作为结合剂的硅烷一起溶解在丙酮中,使用同时进行公转和自转的混合容器进行所述混合,且所述石墨粉末是颗粒尺寸在0.005~0.15mm范围的板状的膨胀石墨粉末。
2.根据权利要求1所述的方法,其特征在于,所述石墨粉末的添加量相对于100重量份的环氧树脂为400~2,200重量份范围。
3.根据权利要求1所述的方法,其特征在于,所述结合剂的添加量相对于石墨粉末为0.3~6重量%。
4.一种燃料电池分隔板成型用材料,通过根据权利要求1至3的任一项所述的方法制造。
5.一种燃料电池分隔板,采用根据权利要求4所述的燃料电池分隔板成型用材料。
6.一种燃料电池,采用根据权利要求5所述的燃料电池分隔板。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040045888A KR100597897B1 (ko) | 2004-06-19 | 2004-06-19 | 연료전지 분리판 성형용 소재, 그의 제조방법과 이로부터제조된 연료전지 분리판 및 연료전지 |
KR20040045888 | 2004-06-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1710739A CN1710739A (zh) | 2005-12-21 |
CN100349316C true CN100349316C (zh) | 2007-11-14 |
Family
ID=34941708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100775858A Expired - Fee Related CN100349316C (zh) | 2004-06-19 | 2005-06-20 | 燃料电池分隔板成型用材料及其制造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7465503B2 (zh) |
EP (1) | EP1608034B1 (zh) |
JP (1) | JP4417886B2 (zh) |
KR (1) | KR100597897B1 (zh) |
CN (1) | CN100349316C (zh) |
CA (1) | CA2510209C (zh) |
DE (1) | DE602005008512D1 (zh) |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006249338A (ja) * | 2005-03-11 | 2006-09-21 | Nichias Corp | 導電性エポキシ樹脂組成物及び燃料電池用セパレータ |
JP2008041444A (ja) * | 2006-08-07 | 2008-02-21 | Nichias Corp | 燃料電池用セパレータ用組成物、燃料電池用セパレータ及びその製造方法 |
KR100812269B1 (ko) * | 2006-11-22 | 2008-03-13 | 한국타이어 주식회사 | 연료전지 분리판용 성형 소재의 제조방법 |
US20080146470A1 (en) * | 2006-12-18 | 2008-06-19 | Zap-Lok Pipeline Systems, Inc. | Lubricating fast setting epoxy composition |
KR101041697B1 (ko) * | 2008-11-21 | 2011-06-14 | 한국타이어 주식회사 | 연료전지 분리판 성형재료 및 이로부터 제조된 연료전지 분리판 |
US8304143B2 (en) * | 2008-11-25 | 2012-11-06 | GM Global Technology Operations LLC | Conductive and hydrophilic coating for PEMFC bipolar plate |
CN101859905B (zh) * | 2010-06-23 | 2012-06-20 | 湖南大学 | 一种燃料电池用石墨/树脂复合双极板的制备方法 |
KR101227900B1 (ko) * | 2010-10-28 | 2013-02-06 | 주식회사 유니테크 | 기계적, 전기적 특성이 우수한 신규의 복합 재료 조성물 |
CN102074714A (zh) * | 2010-12-17 | 2011-05-25 | 湖南大学 | 一种以过渡金属—石墨层间复合物为填料制备燃料电池双极板的方法 |
KR101830767B1 (ko) * | 2011-07-14 | 2018-02-22 | 삼성전자주식회사 | 사용자의 감정 인식 장치 및 방법 |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
JP6237805B2 (ja) * | 2016-03-15 | 2017-11-29 | 日清紡ケミカル株式会社 | 燃料電池用多孔質セパレータ |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11793537B2 (en) | 2017-10-30 | 2023-10-24 | Cilag Gmbh International | Surgical instrument comprising an adaptive electrical system |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11678927B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Detection of large vessels during parenchymal dissection using a smart blade |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11331100B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Staple cartridge retainer system with authentication keys |
DE102020206776A1 (de) * | 2020-05-29 | 2021-12-02 | Sgl Carbon Se | Beschichtungsmittel |
CN111805899B (zh) * | 2020-06-09 | 2022-04-15 | 深圳市氢瑞燃料电池科技有限公司 | 一种燃料电池双极板及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1282349A (zh) * | 1997-10-14 | 2001-01-31 | 赛特技术有限公司 | 传导性的热固性模塑组合物及其制造方法 |
CN1428879A (zh) * | 2001-12-26 | 2003-07-09 | 三菱化学株式会社 | 燃料电池隔板及其成型用的复合材料和它们的制造方法 |
US20030175571A1 (en) * | 2000-09-04 | 2003-09-18 | Yoichi Kawano | Separator for fuel cell, process for producing the same, and material therefor |
US20030235750A1 (en) * | 2002-06-24 | 2003-12-25 | Fumio Tanno | Separator for fuel cell |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999067233A1 (fr) * | 1998-06-24 | 1999-12-29 | Nippon Kayaku Kabushiki Kaisha | Phenols polyhydriques, resines epoxydes, composition de resine epoxyde et produits durcis |
JP4743356B2 (ja) * | 2000-05-15 | 2011-08-10 | 日清紡ホールディングス株式会社 | 燃料電池セパレータの製造方法、燃料電池セパレータ及び固体高分子型燃料電池 |
JPWO2003079475A1 (ja) * | 2002-03-20 | 2005-07-21 | 株式会社三昌化工 | 燃料電池用セパレータ、その製造方法および該燃料電池用セパレータを用いた燃料電池 |
EP1453127A3 (en) * | 2003-01-30 | 2006-07-19 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell; semifinished product thereof and a method of producing |
-
2004
- 2004-06-19 KR KR1020040045888A patent/KR100597897B1/ko active IP Right Grant
-
2005
- 2005-06-16 JP JP2005176293A patent/JP4417886B2/ja not_active Expired - Fee Related
- 2005-06-16 DE DE200560008512 patent/DE602005008512D1/de active Active
- 2005-06-16 EP EP20050253739 patent/EP1608034B1/en not_active Ceased
- 2005-06-17 CA CA 2510209 patent/CA2510209C/en not_active Expired - Fee Related
- 2005-06-20 US US11/157,009 patent/US7465503B2/en active Active
- 2005-06-20 CN CNB2005100775858A patent/CN100349316C/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1282349A (zh) * | 1997-10-14 | 2001-01-31 | 赛特技术有限公司 | 传导性的热固性模塑组合物及其制造方法 |
US20030175571A1 (en) * | 2000-09-04 | 2003-09-18 | Yoichi Kawano | Separator for fuel cell, process for producing the same, and material therefor |
CN1428879A (zh) * | 2001-12-26 | 2003-07-09 | 三菱化学株式会社 | 燃料电池隔板及其成型用的复合材料和它们的制造方法 |
US20030235750A1 (en) * | 2002-06-24 | 2003-12-25 | Fumio Tanno | Separator for fuel cell |
Also Published As
Publication number | Publication date |
---|---|
DE602005008512D1 (de) | 2008-09-11 |
US20050288425A1 (en) | 2005-12-29 |
CN1710739A (zh) | 2005-12-21 |
EP1608034B1 (en) | 2008-07-30 |
EP1608034A1 (en) | 2005-12-21 |
JP4417886B2 (ja) | 2010-02-17 |
US7465503B2 (en) | 2008-12-16 |
CA2510209A1 (en) | 2005-12-19 |
KR100597897B1 (ko) | 2006-07-06 |
KR20050120516A (ko) | 2005-12-22 |
CA2510209C (en) | 2010-08-31 |
JP2006004944A (ja) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100349316C (zh) | 燃料电池分隔板成型用材料及其制造方法 | |
US20200335801A1 (en) | Bipolar plate of proton exchange membrane fuel cell and method of preparing same | |
US20050282056A1 (en) | Carbon composite material for fuel cell separator, preparation thereof and fuel cell separator utilizing the same | |
JP4731884B2 (ja) | 導電性エポキシ樹脂組成物、エポキシ樹脂成形体及び燃料電池用セパレータの製造方法 | |
KR101425562B1 (ko) | 연료전지용 분리판의 제조방법 및 이를 이용하여 제조된 연료전지용 분리판 | |
JP2004259497A (ja) | 固体高分子型燃料電池用セパレータの製造方法、及び、固体高分子型燃料電池用セパレータ | |
JPH01311570A (ja) | 燃料電池用セパレータ | |
JP2008047456A (ja) | 炭素材及びその製造方法、二次電池用負極材並びに非水電解質二次電池 | |
KR100881311B1 (ko) | 쌍극성 플레이트를 제조하기 위한 성형조성물 | |
JPH11354138A (ja) | リブ付き燃料電池セパレ―タ、その製造法及び燃料電池 | |
JPH10334927A (ja) | 固体高分子型燃料電池のセパレーターおよびその製造方法 | |
CN109546161B (zh) | 一种燃料电池用复合双极板及其制备方法与应用 | |
JP4281471B2 (ja) | 燃料電池用セパレータ成形用樹脂組成物及び燃料電池用セパレータ | |
JP5050604B2 (ja) | 炭素材及びその製造方法、二次電池用負極材並びに非水電解質二次電池 | |
JP2001216976A (ja) | 燃料電池セパレータ及びその製造方法 | |
JP2002216788A (ja) | 炭素質成形品の製造法 | |
KR100812269B1 (ko) | 연료전지 분리판용 성형 소재의 제조방법 | |
JP2010511279A (ja) | ニッケルがメッキされた燃料電池用セパレーターおよびその製造方法(fuelcellseparatorplatedwithnickelanditsmanufacturingmethod) | |
KR100808332B1 (ko) | 연료전지용 분리판의 제조방법 및 이를 이용하여 제조되는연료 전지용 분리판 | |
JP2006089349A (ja) | 炭素材の製造方法、二次電池用負極材、非水電解質二次電池 | |
JP2005071888A (ja) | 燃料電池用セパレータ成形用樹脂組成物の製造方法 | |
KR20120044671A (ko) | 에폭시 수지와 흑연을 함유하는 전도성 복합 재료 | |
CN118684997A (zh) | 一种高导电性环氧树脂基复合材料及其制备方法 | |
JP2005339899A (ja) | 燃料電池セパレータ用樹脂組成物 | |
JP2006089348A (ja) | 炭素材の製造方法、二次電池用負極材、非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071114 Termination date: 20180620 |
|
CF01 | Termination of patent right due to non-payment of annual fee |