CN100346875C - 氧化铁敏化的片状氧化钛可见光催化剂及制备方法 - Google Patents
氧化铁敏化的片状氧化钛可见光催化剂及制备方法 Download PDFInfo
- Publication number
- CN100346875C CN100346875C CNB2005100239615A CN200510023961A CN100346875C CN 100346875 C CN100346875 C CN 100346875C CN B2005100239615 A CNB2005100239615 A CN B2005100239615A CN 200510023961 A CN200510023961 A CN 200510023961A CN 100346875 C CN100346875 C CN 100346875C
- Authority
- CN
- China
- Prior art keywords
- tio
- titanium oxide
- sensitized
- sheet
- fe2o3
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Catalysts (AREA)
Abstract
本发明提供了窄禁带半导体α-Fe2O3敏化的纳米氧化钛片状光催化剂及原位合成的制备方法。主要特征是利用合成了片状纳米氧化钛,然后利用巯基乙酸原位合成了黏附于片状TiO2表面的纳米α-Fe2O3颗粒,为了促进α-Fe2O3的晶化,对α-Fe2O3改性后的TiO2片进行水热处理。紫外-可见吸收光谱分析表明α-Fe2O3敏化后的粉体吸收范围移到了可见光区,并且其吸收特征显示为TiO2和α-Fe2O3的共有吸收特征。对敏化后的催化剂进行可见光催化测试表明,氧化钛纳米片的吸附性能很强,敏化改性后的片状TiO2可见光催化性能提高。本方法合成的纳米光催化剂在太阳能转换,环境保护、光催化中有较好的应用潜力。
Description
技术领域
本发明是关于窄禁带半导体氧化铁敏化的氧化钛纳米片可见光催化剂及其原位合成的制备方法,所制得的催化剂可用于工业废水或环境中有机染料和污染物的降解,属于纳米材料领域。
技术背景
TiO2由于具有化学性质稳定、催化活性高、价廉,不产生二次污染等优点在处理低浓度生物难降解有机废水方面具有广阔的应用前景(A.Fujishima,T.N.Rao,and D.A.Tryk,J.Phochem.Phobiol.C:Phochem.Review 1(2000)1-21)。在大于其带隙能光照条件下,TiO2光催化剂不仅能完全降解环境中的有害有机物生成CO2和H2O,而且可除去大气中低浓度的氧氮化物NOx和硫化物H2S,SO2等有毒气体。目前严重制约TiO2光催化应用的一个原因就是激发波长的限制,由于TiO2的禁带宽度为3.0到3.2eV,对应的激发波长在387nm,属于紫外光区,而紫外光在太阳能中占不到5%,从利用太阳能的角度出发,经济实用的光催化剂应该是能利用太阳光中丰富的可见光部分。
为了克服氧化钛光催化对太阳能利用低的问题,人们使用很多手段对TiO2进行表面修饰,最近,TiO2光催化降解有机物的研究通过非金属S元素(T.Umebayashi,T.Yamaki,H.Itoh,and K.Asai,Appl.Phys.Lett.,81,2002,454)和N元素(H.Irie,S.Washizuka,N.Yoshino,and K.Hashimoto,Chem.Commun.,2003,1298)等阴离子掺杂取得了关键性进展,激发光由UV移到了可见光区。
发明内容
本发明的目的在于提供一种能够用可见光催化的高比表面积的氧化钛光催化剂及合成制备方法,更确切地说是利用原位合成的方法合成了颗粒α-Fe2O3改性的氧化钛纳米片可见光催化剂。污染物的治理以太阳光为最终要求的辐射能源,把太阳能转化为化学能加以利用,是一种节能技术。
本发明的特点是:制备了α-Fe2O3敏化改性的氧化钛纳米片,使得吸附和可见光降解有机工业染料亚甲基兰的效率得到提高。
具体步骤是:
(1)以TiCl4分析纯作为Ti源在冰水浴下用蒸馏水稀释到0.8mol/L,加入表面活性剂聚乙二醇,质量含量为1%-2%(以Ti元素为基准),磁力搅拌均匀,然后放入高压釜中180℃水热处理2小时;所得的金红石TiO2粉体用蒸馏水洗涤,直至AgNO3检验无氯离子存在为止,然后用酒精洗涤3次后真空60℃干燥6~8小时,采用以上方法和配方制得的氧化钛粉体为金红石相,形貌为短棒状。
(2)将步骤(1)制得的TiO2在10M的NaOH溶液中120℃水热10-12小时,然后水洗和0.1M的稀盐酸洗,醇洗;。
(3)将步骤(2)所制得的TiO2纳米片加入蒸馏水和巯基乙酸,超声分散后加入硝酸铁,用氨水调节pH为8-10,室温下搅拌8-10小时。然后将悬浮液放入高压釜中150℃水热2-4小时进一步晶化,所得粉体水洗4-5次和醇洗3次后250℃煅烧4小时。硝酸铁的加入量以TiO2表面黏附的α-Fe2O3含量为8-12mol%为准。
将上述方法制得的α-Fe2O3改性金红石纳米TiO2粉体进行可见光催化性能测试,光催化反应在自制反应器中。
在磁力搅拌下将催化剂粉体和20-50mg/L亚甲基兰溶液,采用强力搅拌保持粒子分散均匀,紫外灯经预热后计时反应,从反应器底部气管以一定流量通入氧气,用反应一段时间后亚甲基兰的剩余百分率,即反应后亚甲基兰浓度C与初始浓度C0之比来衡量粒子光催化活性。离心滤去TiO2粒子,分析亚甲基兰溶液浓度变化。
用上述原位合成方法制备的氧化铁敏化改性的片状氧化钛可见光催化剂,其特征在于TiO2粉体呈片状,α-Fe2O3颗粒黏附于纳米TiO2片的表面,α-Fe2O3的含量为8-10mol%,其形成机理如图3所示,首先TiO2纳米片表面经NaOH水热处理后,表面带OH-键(3a),加入疏基乙酸后表面吸附疏基乙酸(3b),再经硝酸铁处理,表面原位合成α-Fe2O3纳米颗粒(3c),并对敏化改性后的复合纳米催化剂用水热法进一步晶化(3d)。
本方法合成的可见光催化剂不但可应用于环境中污染物的处理,还在太阳能转化及光电设备中有很大的应用潜力。本发明提供的α-Fe2O3改性的氧化钛纳米片催化剂及制备方法的特点是:
(1)利用巯基乙酸原位合成方法,使得α-Fe2O3黏附于TiO2纳米片表面,制得的α-Fe2O3敏化改性的TiO2催化剂吸附能力强,可以可见光激发。黏附的α-Fe2O3颗粒呈球形。
(2)实现了可见光照射下对工业染料亚甲基兰的降解,且在太阳能转换、环境保护、光催化中有较好应用潜力。
附图说明
图1 金红石粉体,氧化钛纳米薄片,α-Fe2O3敏化的TiO2纳米片的X射线衍射图谱,图中显示纯氧化钛为金红石相。片状TiO2具有取向性。(a),金红石(b)TiO2纳米片(b),α-Fe2O3敏化的TiO2纳米片图2金红石,片状TiO2及α-Fe2O3敏化后的片状TiO2催化剂TEM形貌及α-Fe2O3敏化后的片状TiO2的能谱。碱处理后的TiO2呈片状,α-Fe2O3为颗粒状。
(a)金红石TiO2,(b)纯TiO2纳米片(c),α-Fe2O3敏化的TiO2片,(d),α-Fe2O3敏化的TiO2EDS图谱。
图3α-Fe2O3颗粒附着于片状TiO2上的形成机理图。
图4亚甲基兰降解率随降解时间的变化。
图5所制光催化剂降解亚甲基兰后的吸光度变化。
(a)纯TiO2片,(b)降解亚甲基兰后的纯TiO2片(c)降解亚甲基兰后α-Fe2O3敏化的TiO2纳米片,(d)α-Fe2O3敏化TiO2的纳米片,(e)αα-Fe2O3,(f)为降解的20mg/L亚甲基兰吸光度。
图6催化剂对催化亚甲基兰前后的红外光谱。
(a)纯TiO2纳米片,(b)α-Fe2O3敏化TiO2的纳米片,(c)降解亚甲基兰后的纯TiO2纳米片,(d)降解亚甲基兰后的α-Fe2O3敏化TiO2的纳米片。
具体实施方式
用下列非限定性实施例进一步说明实施方式及效果:
通过下面的实施例,进一步阐述本发明的实质性特点和显著的进步,但本发明决非仅局限于实施例。
实施例1
纳米金红石TiO2是利用TiCl4在180℃下进行水热2小时制得。对金红石TiO2粉体用10mol%NaOH溶液120水热10小时,得到片状的TiO2,水洗后对其用0.1mol%的稀硝酸洗涤,然后水洗;将制得的片状TiO2超声分散于蒸馏水中,加入巯基乙酸,超声,然后加入硝酸铁,氨水调pH值8-10左右,搅拌,然后将悬浮液放入高压釜中150℃水热3小时。所得催化剂水洗,乙醇洗后250℃4小时煅烧而成。所制得氧化铁敏化的片状TiO2催化剂,表面黏附有10mol%α-Fe2O3。
所制得的催化剂的光催化性能能测试在三层同心圆筒形玻璃反应器中进行,中间300W中压汞灯,内套管内部通循环冷却水,外部贴一层400nm的滤波片,使得只有波长大于400nm的可见光能够透过滤波片,内外套中间为反应器。在磁力搅拌下将催化剂加入到450ml起始浓度C0=20mg/L的亚甲基兰溶液,催化剂粉体浓度1.5g/L,采用强力搅拌保持粒子分散均匀,紫外灯经预热后计时反应,从反应器底部布气管以一定流量通入氧气,氧气流量为10mL/min,用反应一段时间后亚甲基兰的剩余百分率,即反应后亚甲基兰浓度C与初始浓度C0之比来衡量粒子光催化活性。具体方法为每隔一定时间取4ml溶液,为便于测试亚甲基兰的浓度,稀释5倍,离心滤去TiO2粒子,分析亚甲基兰溶液浓度随时间的变化率。所测得的结果如图4-6所示,由图可见本实施例所提供的α-Fe2O3敏化TiO2纳米片吸收范围移到了可见光区,并且吸收特征显示为TiO2和α-Fe2O3的共有吸收特征。
实施例2
先制备出纳米TiO2片,然后在片状TiO2表面黏附α-Fe2O3,其制备过程与实施例1相同,仅黏附的α-Fe2O3含量为8mol%,其性能与图4-6相似。
实施例3
α-Fe2O3黏附于纳米TiO2片的表面量为11.5mol%,其工艺步骤与实施例1相同,性能与图4-6相雷同。
Claims (5)
1.一种氧化铁敏化的片状氧化钛可见光催化剂,其特征在于氧化钛呈片状,α-Fe2O3颗粒黏附于纳米TiO2片的表面;α-Fe2O3的含量为8-12mol%。
2.按权利要求1所述的氧化铁敏化的片状氧化钛可见光催化剂,其特征在于黏附于TiO2片表面的α-Fe2O3颗粒为球形。
3.制备如权利要求1所述的氧化铁敏化的片状氧化钛可见光催化剂的方法,其特征在于先制备纳米氧化钛片,然后在片状氧化钛表面原位合成α-Fe2O3纳米颗粒,并对敏化改性后的复合纳米催化剂应用水热方法进一步晶化,具体合成过程是:
(1)以TiCl4分析纯作为Ti源在冰水浴下用蒸馏水稀释到0.8mol/L,加入表面活性剂聚乙二醇,磁力搅拌均匀,然后放入高压釜中180℃水热处理2小时;所得的金红石TiO2用蒸馏水洗涤,直至AgNO3检验无氯离子存在为止,然后用酒精洗涤后真空干燥;
(2)将步骤(1)制得的TiO2在10mol/L的NaOH溶液中120℃水热10-12小时,然后水洗和0.1M的稀盐酸洗,醇洗;
(3)将步骤(2)制得的片状TiO2和巯基乙酸超声分散于蒸馏水中,加入氨水和硝酸铁,室温下搅拌8~10小时后于高压釜中,再在150℃水热2-4小时,得到α-Fe2O3敏化改性的片状TiO2粉体;
(4)将步骤(3)所制得的粉体用蒸馏水洗涤后用酒精洗涤,250℃煅烧4小时;步骤(3)中加入的硝酸铁量为TiO2表面黏附8-12mol%的α-Fe2O3为准;氨水加入量使pH在8-10之间。
4.按权利要求3所述的方法,其特征在于表面活性剂聚乙二醇的质量加入量以Ti元素为基准的1-2%。
5.按权利要求3所述的方法,其特征在于步骤(4)的中粉体先用蒸馏水洗涤4-5次,再用酒精洗涤3次。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100239615A CN100346875C (zh) | 2005-02-18 | 2005-02-18 | 氧化铁敏化的片状氧化钛可见光催化剂及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100239615A CN100346875C (zh) | 2005-02-18 | 2005-02-18 | 氧化铁敏化的片状氧化钛可见光催化剂及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1686609A CN1686609A (zh) | 2005-10-26 |
CN100346875C true CN100346875C (zh) | 2007-11-07 |
Family
ID=35304651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100239615A Expired - Fee Related CN100346875C (zh) | 2005-02-18 | 2005-02-18 | 氧化铁敏化的片状氧化钛可见光催化剂及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100346875C (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101214441B (zh) * | 2007-12-28 | 2011-10-05 | 中国科学院上海硅酸盐研究所 | 一种钛铋铁系光催化剂的制备方法 |
CN101362092B (zh) * | 2008-09-11 | 2010-06-09 | 浙江理工大学 | 磁性铁担载二氧化钛纳米棒光催化剂的制备方法 |
CN102179216B (zh) * | 2011-01-20 | 2013-08-21 | 青岛科技大学 | 一种仿生型α-Fe2O3/TiO2纳米复合材料的制备方法 |
CN102258992B (zh) * | 2011-06-23 | 2013-03-27 | 浙江大学 | 一种表面铁修饰的二氧化钛光催化剂及其制备方法和用途 |
CN102794164A (zh) * | 2012-07-19 | 2012-11-28 | 湖南先科环保有限公司 | 磁性掺杂纳米二氧化钛制备方法 |
CN103508485B (zh) * | 2013-09-24 | 2015-04-22 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种纳米氧化锡负载偏钛酸气敏传感材料的制备方法 |
CN104037398B (zh) * | 2014-03-12 | 2016-06-01 | 华中师范大学 | 一种TiO2Fe2O3分层多级复合纳米阵列材料及其制备方法、应用 |
CN104785280B (zh) * | 2015-04-14 | 2017-09-26 | 济南大学 | 一种片状二氧化钛/溴氧化铋复合光催化剂及其制备方法 |
CN109894116B (zh) * | 2018-09-30 | 2021-12-21 | 福建省农业科学院农业工程技术研究所 | 一种磁性氧化铁改性的氧化钛可见光催化剂及其制备方法 |
CN109589959B (zh) * | 2019-01-23 | 2021-09-28 | 西北师范大学 | α-三氧化二铁/二氧化钛纳米复合材料的制备及在光催化还原二氧化碳中的应用 |
CN111659412B (zh) * | 2020-07-08 | 2023-03-14 | 中北大学 | 一种钙钛矿型复合氧化物La0.7Sr0.3MnO3/α-Fe2O3的制备方法 |
CN112371117A (zh) * | 2020-11-13 | 2021-02-19 | 吉林大学 | 一种高分散钌负载表面修饰的层状钛酸盐纳米片光催化剂、制备方法及其应用 |
CN112892523B (zh) * | 2021-01-28 | 2022-02-08 | 南京大学 | 一种具有高催化活性的异质结光催化剂及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003138146A (ja) * | 2001-08-20 | 2003-05-14 | Otsuka Chem Co Ltd | 樹脂組成物 |
CN1472004A (zh) * | 2002-08-01 | 2004-02-04 | 中国科学院广州能源研究所 | 铁沉积二氧化钛复合光催化剂及其制备方法 |
CN1493394A (zh) * | 2002-10-31 | 2004-05-05 | 中国科学院广州能源研究所 | 铁氧化物包裹二氧化钛光催化剂及其制法和用途 |
EP1491498A1 (en) * | 2002-02-28 | 2004-12-29 | Japan Science and Technology Agency | Titania nanosheet alignment thin film, process for producing the same and article including the titania nanosheet alignment thin film |
-
2005
- 2005-02-18 CN CNB2005100239615A patent/CN100346875C/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003138146A (ja) * | 2001-08-20 | 2003-05-14 | Otsuka Chem Co Ltd | 樹脂組成物 |
EP1491498A1 (en) * | 2002-02-28 | 2004-12-29 | Japan Science and Technology Agency | Titania nanosheet alignment thin film, process for producing the same and article including the titania nanosheet alignment thin film |
CN1472004A (zh) * | 2002-08-01 | 2004-02-04 | 中国科学院广州能源研究所 | 铁沉积二氧化钛复合光催化剂及其制备方法 |
CN1493394A (zh) * | 2002-10-31 | 2004-05-05 | 中国科学院广州能源研究所 | 铁氧化物包裹二氧化钛光催化剂及其制法和用途 |
Non-Patent Citations (1)
Title |
---|
Enhancing the UV inducing hydrophilicity of TiO2 thin film bydoping Fe ions. Hongbo Jiang,et al.Materials Chemistry and Physics,Vol.77 . 2002 * |
Also Published As
Publication number | Publication date |
---|---|
CN1686609A (zh) | 2005-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100346875C (zh) | 氧化铁敏化的片状氧化钛可见光催化剂及制备方法 | |
Zhou et al. | Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films | |
Heidari et al. | Sono-photodeposition of Ag over sono-fabricated mesoporous Bi2Sn2O7-two dimensional carbon nitride: Type-II plasmonic nano-heterojunction with simulated sunlight-driven elimination of drug | |
Xie et al. | Characterization and photocatalysis of Eu3+–TiO2 sol in the hydrosol reaction system | |
Guo et al. | Highly stable and efficient Ag/AgCl@ TiO2 photocatalyst: preparation, characterization, and application in the treatment of aqueous hazardous pollutants | |
Xu et al. | Synthesis of Bi2O3–TiO2 composite film with high-photocatalytic activity under sunlight irradiation | |
Saeed et al. | Co3O4-Bi2O3 heterojunction: An effective photocatalyst for photodegradation of rhodamine B dye | |
Ravishankar et al. | Ionic liquid assisted hydrothermal syntheses of Au doped TiO 2 NPs for efficient visible-light photocatalytic hydrogen production from water, electrochemical detection and photochemical detoxification of hexavalent chromium (Cr 6+) | |
Shen et al. | Remarkably enhanced piezo-photocatalytic performance of Z-scheme Bi2WO6/Black TiO2 heterojunction via piezoelectric effect | |
Huo et al. | H2O2 modified surface of TiO2/fly-ash cenospheres and enhanced photocatalytic activity on methylene blue | |
Liu et al. | Preparation of α-Fe2O3–TiO2/fly ash cenospheres photocatalyst and its mechanism of photocatalytic degradation | |
Zhang et al. | Synthesis of SnO2/ZnO flowerlike composites photocatalyst for enhanced photocatalytic degradation of malachite green | |
Tang et al. | Degradation mechanism and pathway of tetracycline in milk by heterojunction N-TiO2-Bi2WO6 film under visible light | |
CN1583255A (zh) | 含铋复合氧化物BiMO4和Bi2NO6型半导体光催化剂及制备和应用 | |
CN106111126A (zh) | 高可见光活性的金属改性二氧化钛水溶胶及合成与应用 | |
Sokhansanj et al. | Macroporous flowerlike Bi2O2CO3-CuBi2O4 nanoheterojunction photocatalyst for high concentrated malachite green degradation: influence of nanocomposite composition and sonication approach | |
Keerthana et al. | Investigation on (Zn) doping and anionic surfactant (SDS) effect on SnO2 nanostructures for enhanced photocatalytic RhB dye degradation | |
Wang et al. | Preparation of heterojunction C3N4/WO3 photocatalyst for degradation of microplastics in water | |
CN1327953C (zh) | 硒化镉改性的纳米氧化钛光催化剂及制备方法 | |
Shi et al. | Synthesis and photocatalytic properties of lanthanum doped anatase TiO 2 coated Fe 3 O 4 composites | |
CN108339574A (zh) | 一种可见光催化降解罗丹明b的钛基复合材料及其制备 | |
CN1806916A (zh) | 氧化镍负载的钒酸铋复合光催化剂及其制备方法 | |
Gui et al. | The effective strategies of preparing black F-TiIII-codoping TiO2 anchored on sepiolite for enhanced photodegradation | |
CN102274719A (zh) | 一种可见光响应型纳米复合物粉体光触媒及其制备方法 | |
Zhang et al. | Preparation and performance study of ZnWO4/TiO2/MoS2 ternary composite photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071107 Termination date: 20120218 |