CN100342939C - 通过使用高强度超声波生产晶体物质的方法 - Google Patents

通过使用高强度超声波生产晶体物质的方法 Download PDF

Info

Publication number
CN100342939C
CN100342939C CNB038121603A CN03812160A CN100342939C CN 100342939 C CN100342939 C CN 100342939C CN B038121603 A CNB038121603 A CN B038121603A CN 03812160 A CN03812160 A CN 03812160A CN 100342939 C CN100342939 C CN 100342939C
Authority
CN
China
Prior art keywords
solution
transducer
frequency
ultrasonic
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038121603A
Other languages
English (en)
Other versions
CN1655857A (zh
Inventor
L·J·麦考斯兰德
J·P·珀金斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prosonix Ltd
Original Assignee
ASHATS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0212626.6A external-priority patent/GB0212626D0/en
Priority claimed from GB0302555A external-priority patent/GB0302555D0/en
Application filed by ASHATS Co Ltd filed Critical ASHATS Co Ltd
Publication of CN1655857A publication Critical patent/CN1655857A/zh
Application granted granted Critical
Publication of CN100342939C publication Critical patent/CN100342939C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0081Use of vibrations, e.g. ultrasound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06104Dipeptides with the first amino acid being acidic
    • C07K5/06113Asp- or Asn-amino acid
    • C07K5/06121Asp- or Asn-amino acid the second amino acid being aromatic or cycloaliphatic
    • C07K5/0613Aspartame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1028Crucibleless apparatus having means providing movement of discrete droplets or solid particles to thin-film precursor [e.g., Verneuil method]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Peptides Or Proteins (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

一种可用于医药品的足够纯的晶体物质可通过如下方法制得:形成该物质的饱和溶液,改变溶液温度使其达到过饱和,并且使溶液受高强度超声波辐射,超声波频率在一定的频率范围内变化。例如超声波可在19.5和20.5kHz之间变化,并且该变化可以是正弦波式的。优选地,在使得溶液逐渐冷却而没有进一步的辐射之前,仅短暂地提供超声波,例如少于5秒。可通过一个容器施加超声波,超声波换能器阵列附着于该容器的壁上,使得每个换能器的辐射不超过3W/cm2,而容器中的功率消耗在25与150瓦/升之间。该方法能将亚稳态带的宽度缩小至少于10K。该方法尤其适用于天冬甜素。

Description

通过使用高强度超声波生产晶体物质的方法
本发明涉及一种结晶可适用于医药品的物质的方法。
在过饱和溶液中使用高强度超声波来引发晶核形成,从而发生结晶,这一技术是已知的,例如,在GB 2 276 567A中描述了一种用于上述目的的装置。当要在一个无菌环境中形成很纯的结晶产品时,以这样的方式来引发晶核形成是尤其恰当的,因为如果没有足够的溶液纯度和容器表面的清洁度,就不会出现晶核。某些化合物用于医药品可能是很理想的,但是结晶特别困难;特别是例如D-葡萄糖或D-木糖这样的二糖。其它有机化合物例如天门冬氨酸和α-L-天门冬氨酰-L-苯丙氨酸甲酯(天冬甜素)也会出现类似问题。经常发现需要向这些化合物的饱和溶液中加入结晶改良剂来促进晶体形成,因为在结晶过程发生之前饱和溶液可能不得不冷却到远低于饱和温度;对于一些有机物质而言,这种过冷可能达到100℃之多。换言之,过饱和溶液可能长时期处于亚稳态,该时期可能是好几个月。通常采用浸入式超声探针或喇叭来使得饱和溶液受到超声波作用,但是发现在喇叭表面出现了气穴现象,如此便引起喇叭的轻微腐蚀,结果产生了一些很小的金属颗粒(直径大约0.1mm);因此对于产生用作医药成分的晶体物质而言,这一过程是不能接受的。
因此本发明提供了一种制备晶体物质的方法,该方法包括形成该物质的饱和溶液,改变溶液温度使其过饱和,并且使该溶液受高强度超声波辐射,超声波频率在一定的频率范围内变化。
例如,可通过被激活而产生信号的换能器来产生超声波,信号频率在19.5和20.5kHz之间变化,并且来自不同换能器的信号可以彼此独立地变化。该频率可以在所述界限之间呈正弦波(随时间)变化,或呈锯齿波方式变化。这种调制频率可以处于例如2至50Hz之间,典型的处于5至15Hz之间。已经发现改变超声波频率可以改善结晶过程。
优选地,超声波仅在溶液过饱和之时施加,和在晶体形成之前施加,使得此后溶液中的晶体在没有辐射的情况下生长。优选的,施加超声波的时间不超过10s,例如2s或3s。最优选地,使用超声波的时间为例如少于5s的短暂时间间隔,而后检测溶液中是否形成结晶体;若没有晶体形成则再次施加短暂时间间隔的超声波,并且再次检测溶液。该过程可反复进行直到晶体出现,此后不再施加超声波。在施用超声波之后,进一步逐渐冷却溶液,如此将使在超声波作用下形成的结晶体生长。因此该方法能够生长大晶体。
在一个备选的方法中,可在溶液的整个冷却过程中不时的施加这种超声短脉冲;如果结晶体有聚结的倾向,则这种做法是有益的,因为超声短脉冲可将结块打碎。另一选择是,可在冷却过程中持续施加超声波;这将易于引起晶核形成,因此导致极小晶体的形成。
可使用附着于容器壁的多个超声波换能器向容器中的过饱和溶液施加超声波;这些超声波换能器在器壁上以在周向和纵向上延伸的方式排成阵列,每一个换能器均与一个单独的信号发生器连接,使得换能器的辐射不超过3W/cm2,换能器离得足够近并且换能器的数目足够多,以使得容器中的功率消耗处于25和150W/升之间。在此给出的功率值是指输送至换能器的电功率,因为该值相对容易确定。在WO00/35579中记载了这种辐射容器。已经令人惊奇地发现,使用这样的容器,器壁表面没有气穴现象,因此器壁没有腐蚀,从而不会形成金属小颗粒。通过这种方法能够制备出很纯的晶体物质,由于不需要添加剂并且结晶过程中不引入污染物,因此该物质可适于食品用途和药物用途。
保证超声波不发生聚焦是有利的,这可以通过接连地激发相邻换能器组来实现。在圆柱形的容器中,特别优选避免同时激发径向上相对的换能器。不聚焦也可以通过以不同频率激发相邻换能器,或相邻换能器组来实现;特别是在能够激发每个换能器或换能器组的一个有限的频率范围内,例如19.5kHz至20.5kHz之间,改变频率即可实现这一效果。
现将仅通过举例子,并参考附图进一步并更详尽的描述本发明,该附图展示了一个间歇式结晶辐射器的剖面图。
参考该附图,一个间歇式结晶辐射器10包括一个内径0.31m,壁厚2mm的不锈钢容器12。以正方阵列形式紧密排列的六十个换能器组件14附着于器壁外侧。每一个换能器组件14包括一个在20kHz共振的50W的压电式换能器16,它通过附着于呈圆锥形向外展开的钛耦合块18连接至器壁,每一个耦合块的较宽端的直径为63mm。换能器组件限定了五个圆周环,每一环有十二个组件14,耦合块18的中心位于边长为82mm的矩形端点上。辐射器10也包括三个信号发生器20(只示出一个),每一个信号发生器驱动纵向相邻的两列换能器16以及与其相隔三分之一圆周处的另外两列这样的换能器。
在使用辐射器10的过程中,将容器12装满溶液并且用一个冷却夹套22使容器温度逐渐降低(假设其溶解度随温度降低而降低),同时搅动容器12中的内容物。结果溶液将达到饱和,而后达到过饱和。当溶液温度比发生饱和时的温度低约10度时,短暂地激发换能器,依次激发每一个发生器20,时间为0.8秒。每一个换能器在直径为63mm的圆内辐射50W的能量,也即强度为1.6W/cm2,超声波能量分散在容器12大约31升的圆柱形体积内。因此若同时激发所有的换能器16,则能量密度将是大约100W/升。为避免聚焦,在任何一段时间内只激发一个信号发生器20,因此能量沉积约33W/升。0.8秒之后,激发另一个发生器20,依此类推。2.4秒之后,每一个换能器均被激发过了,施加超声波结束。然后检测容器12的内容物,观察是否形成结晶体。若没有形成结晶体则重复该激发过程。一旦观测到结晶体则停止使用超声波,并且逐渐降低容器12的温度。
信号发生器20被激活时,产生频率在19.5和20.5kHz之间变化的信号,来自不同信号发生器20的信号彼此独立地变化。每一个信号发生器20的频率在所述频率界限之间以10Hz的频率随时间呈正弦波形变化。
对于辐射器10而言,这样的能量强度使得在器壁表面不会发生气穴现象,因此容器12不会产生腐蚀。尽管如此,这样的能量密度也足够保证在饱和溶液中形成晶核。
为研究超声波对结晶过程的影响,做了如下试验。配制一种每10ml水含25g D-木糖的D-木糖水溶液,该溶液将会在50℃时饱和。然后以0.2K/min的速率冷却至20℃,分离并析出产生的固体产品。作为对照,在一种情况下没有激发换能器14;在这种情况下,直到温度下降到36℃时才出现晶体。若在46℃开始激发换能器14,激发时间为2分钟,则在43℃时出现晶体。若在50℃开始持续激发换能器14,则产生的晶体很小,没有得到其尺寸信息。表1给出了固体第一次出现时的温度T,也通过显示不同累积百分点(质量)的晶体尺寸(以微米表示)来描述了对结晶体尺寸分布的影响。
表1
条件           T/℃     10%     50%    90%
无超声波       36       27       67      149
2分钟的超声波  43       43       106     211
超声波         46       -        -       -
由于溶液在50℃达到饱和,则理想情况下当温度一旦降低至50℃以下时,结晶作用即应当开始。通过短暂的施加超声波,将亚稳态带的宽度显著缩小至仅为约7K(相应地,在没有超声波情况下为约14K)。也显著增大了所形成晶体的尺寸。持续的施加超声波将亚稳态带的宽度缩小得更多,至大约4K。
需要认识到的是在这一具体的试验中所采用的条件与本发明的方法并不完全一致,但是结果表明在使溶液处于短暂辐射之前将其冷却至大约43℃应该是合适的。
在实施本发明时,在短暂施加超声波之前需要将溶液冷却到的温度是不同的,这取决于待结晶物质,溶剂和浓度,因此必须通过试验来发现。可以通过与上述试验相似的试验来确定该温度。当溶液冷却时,首先使其受持续的超声波辐射,并且观察晶体形成的温度(T,在上例中为46℃)。然后做进一步的测试,将溶液冷却至温度T上下几度范围内的不同温度,找出在施加超声波短脉冲的情况下形成晶体的最高温度。典型的温度处于在持续的超声波情况下观测到的温度T上下5K范围之内。
天冬甜素是α-二肽酯L-天门冬氨酰-L-苯丙氨酸甲酯,它是一种重要的低卡路里合成甜味剂。它比食糖甜200倍并且不会留下苦的余味,因此在许多产品中都有应用。然而在不使用结晶改良剂的情况下它很难结晶,尤其是从水溶液中结晶。令人惊奇的是,发现通过本方法可以直接从水溶液中生产出令人满意的天冬甜素晶体。制备天冬甜素在温热的纯水中的饱和溶液,并且将其引入容器12。将溶液逐渐冷却至低于其发生饱和的温度约10K,并且如上所述使其短时间内,例如2.4秒,受超声波辐射。然后检测溶液,若超声波辐射使得结晶体形成,则在数小时内将容器温度逐渐降至室温。
发现该过程产生了尺寸在100和250um之间的天冬甜素晶体,该晶体可轻易的从残余液体中分离出来,例如通过过滤。通过避免使用添加剂从而保证了产品纯度。
将光线照射入该溶液,由于小结晶体会闪光,所以可通过肉眼观察来检测确定超声波辐射是否形成了结晶体。
需要认识到的是,本方法可使用不同的设备来进行,并且可以以连续而非间歇的方式使用。例如可使一种饱和溶液沿着一个管道流动,在管道中溶液的温度逐渐降低,在溶液达到合适温度的位置,该管道包括一个穿流式超声波辐射组件,因此,当溶液流经该组件时,受到短暂的辐射。在这种情况下可以以连续或脉冲方式激发超声波辐射组件的换能器。
作为另一种应用,饱和溶液受到声波作用而产生结晶体,然后将其加入更大体积的溶液,于是,该结晶体就成为整个体积的晶种。例如在结晶罐中有4000升的饱和溶液,将其逐渐冷却或加入反溶剂。当其充分过饱和时,将少量(例如40升)溶液转移到与罐温度相同的辐射室中(例如通过管道吸取);在此该溶液受到超声波作用从而形成结晶体;随后将该溶液返还入罐。若没有晶体形成,可重复该操作。因此给整个体积的溶液提供了晶种。

Claims (9)

1.一种生产晶体物质的方法,该方法包括形成一种该物质的饱和溶液,改变溶液温度使其达到过饱和,并使该溶液受到高强度超声波辐射,超声波频率在一定频率范围内变化,该频率随时间呈正弦波或呈锯齿波方式变化。
2.如权利要求1所述的方法,其中超声波频率在所述范围内呈正弦变化。
3.如权利要求1所述的方法,其中所述范围的最高和最低频率之间的差值小于平均超声波频率的10%。
4.如权利要求1-3中任一项所述的方法,其中通过许多信号发生器激发的许多换能器来产生超声波,并且来自不同信号发生器的超声波信号的频率彼此独立地变化。
5.如权利要求1-3中任一项所述的方法,其中仅在溶液达到过饱和时施加超声波,和在结晶体形成之前才施加超声波,随后使得溶液中的晶体在没有辐射的情况下生长。
6.如权利要求5所述的方法,其中使溶液受超声波作用的时间少于10秒。
7.如权利要求1-3中任一项所述的方法,其中通过使用大量附着于容器壁的超声波换能器来向容器中的过饱和溶液提供超声波,这些换能器以在周向和纵向上延伸的排成阵列,每一个换能器均与信号发生器连接,使得换能器的辐射不超过3W/cm2,换能器离得足够近并且换能器的数目足够多,以使得容器中的功率消耗在25和150W/升之间。
8.如权利要求7所述的方法,其中依次激发相邻换能器组。
9.如权利要求7所述的方法,其中以不同的平均频率激发相邻换能器或相邻换能器组。
CNB038121603A 2002-05-31 2003-05-13 通过使用高强度超声波生产晶体物质的方法 Expired - Fee Related CN100342939C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0212626.6 2002-05-31
GBGB0212626.6A GB0212626D0 (en) 2002-05-31 2002-05-31 Production of crystalline ingredients
GB0302555A GB0302555D0 (en) 2003-02-05 2003-02-05 Production of Crystalline materials
GB0302555.8 2003-02-05

Publications (2)

Publication Number Publication Date
CN1655857A CN1655857A (zh) 2005-08-17
CN100342939C true CN100342939C (zh) 2007-10-17

Family

ID=29713390

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038121603A Expired - Fee Related CN100342939C (zh) 2002-05-31 2003-05-13 通过使用高强度超声波生产晶体物质的方法

Country Status (18)

Country Link
US (1) US7357835B2 (zh)
EP (1) EP1509301B1 (zh)
JP (1) JP4329936B2 (zh)
CN (1) CN100342939C (zh)
AT (1) ATE350121T1 (zh)
AU (1) AU2003230006B2 (zh)
BR (1) BR0311332A (zh)
CA (1) CA2485941C (zh)
DE (1) DE60310923T2 (zh)
DK (1) DK1509301T3 (zh)
ES (1) ES2279109T3 (zh)
IL (1) IL165135A (zh)
MX (1) MXPA04011508A (zh)
NO (1) NO20045574L (zh)
NZ (1) NZ536716A (zh)
OA (1) OA12826A (zh)
PT (1) PT1509301E (zh)
WO (1) WO2003101578A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244307B2 (en) * 2002-05-31 2007-07-17 Accentus Plc Production of crystalline materials by using high intensity ultrasound
GB0405108D0 (en) * 2004-03-06 2004-04-07 Accentus Plc Removal of sodium oxalate from a bayer liquor
GB0413511D0 (en) * 2004-06-17 2004-07-21 Accentus Plc Precipitation of gibbsite from a bayer liquor
GB0415227D0 (en) * 2004-07-07 2004-08-11 Accentus Plc Precipitation of silica in a Bayer process
GB0415237D0 (en) * 2004-07-07 2004-08-11 Accentus Plc Formation of sugar coatings
GB0503193D0 (en) * 2005-02-16 2005-03-23 Accentus Plc Ultrasonic treatment plant
US7597148B2 (en) * 2005-05-13 2009-10-06 Baker Hughes Incorporated Formation and control of gas hydrates
EP1782797A1 (en) * 2005-11-02 2007-05-09 Pharmatex Italia Srl Process for the preparation of sterile powdered pharmaceutical compounds.
GB0524823D0 (en) * 2005-12-06 2006-01-11 Accentus Plc Removal of contaminants from a bayer liquor
GB0821419D0 (en) * 2008-11-24 2008-12-31 Bio Sep Ltd Processing of biomass
US9005686B2 (en) * 2009-05-14 2015-04-14 Cavitus Pty Ltd Density modification
US7999135B2 (en) 2009-07-21 2011-08-16 Ge Healthcare As Crystallization of iodixanol using ultrasound
EP2399658A1 (en) 2010-06-24 2011-12-28 Biosyn Arzneimittel GmbH Method for producing pharmacologically pure crystals
EP2500072A1 (en) 2011-03-15 2012-09-19 LEK Pharmaceuticals d.d. A novel process of residual solvent removal
EP2700632A4 (en) * 2011-04-18 2014-09-03 Hefei Beini Medical Technology Company Ltd METHOD FOR CLEANING DIHYDROPYRIDINE CALCIUM CHANNEL BLOCKERS AND PRODUCING NANOPARTICLES THEREFOR
ES2780394T3 (es) 2013-07-03 2020-08-25 Andrea Cardoni Sistema ultrasónico para mezclar líquidos y medios multifásicos, y método
US10604730B2 (en) * 2015-10-16 2020-03-31 Terressentia Corporation Alcoholic beverage maturing device
CN107008028B (zh) * 2017-05-22 2023-09-08 天津晶润锐拓科技发展有限公司 一种通过超声波控制结晶成核过程的结晶器
MY195987A (en) * 2017-11-22 2023-02-27 Aak Ab Publ Process for Dry Fractionation of a Palm Oil Olein
CN107963929A (zh) * 2017-12-05 2018-04-27 上海永通化工有限公司 一种植物营养元素结晶体及其制备方法
CN110354528B (zh) * 2019-08-21 2021-11-19 贺剑 溶液结晶系统及促进溶液结晶的方法
EP3925932A1 (en) 2020-06-17 2021-12-22 Biosyn Arzneimittel GmbH Contained production of pharmaceutically pure crystals
CN113521791A (zh) * 2021-06-23 2021-10-22 福建江夏学院 一种光电半导体薄膜的超声波振荡制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135186A (zh) * 1994-09-07 1996-11-06 桑特拉德有限公司 应用超声波对受料传送带上或受料滚筒上的熔体或过饱和溶液进行固化处理
WO2000033366A1 (de) * 1998-11-30 2000-06-08 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur herstellung von multikristallinem halbleitermaterial
WO2000035579A1 (en) * 1998-12-12 2000-06-22 Aea Technology Plc Process and apparatus for irradiating fluids
WO2002005921A1 (en) * 2000-07-18 2002-01-24 Unilever N.V. Crystallisation process using ultrasound

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1347350A (en) * 1918-02-26 1920-07-20 Gen Electric Crystal production
US2876083A (en) * 1953-06-29 1959-03-03 Prietl Franz Process of producing crystals from particles of crystallizable substance distributedin a liquid
US3892539A (en) * 1969-09-26 1975-07-01 Merck & Co Inc Process for production of crystals in fluidized bed crystallizers
DE3882011T2 (de) * 1987-10-27 1993-09-30 Fujitsu Ltd Verfahren und Vorrichtung zur Herstellung von Biopolymer-Einkristall.
US5362455A (en) 1990-05-03 1994-11-08 Praxair Technology, Inc. Draft tube, direct contact cryogenic crystallizer
GB2276567B (en) 1993-04-03 1996-11-27 Atomic Energy Authority Uk Processing vessel
FI122018B (fi) * 2000-01-31 2011-07-29 Danisco Menetelmä betaiinin kiteyttämiseksi
JP5008215B2 (ja) * 2000-09-29 2012-08-22 三菱瓦斯化学株式会社 晶析方法および装置
DE60127861T2 (de) * 2000-11-22 2007-12-20 Otsuka Pharmaceutical Co., Ltd. Öl-in-wasser-emulsionszusammensetzung und verfahren zu ihrer herstellung
EP1378224B8 (en) * 2001-04-13 2013-06-26 Otsuka Pharmaceutical Co., Ltd. Sugar intake promoters
WO2002089942A1 (en) * 2001-05-05 2002-11-14 Accentus Plc Formation of small crystals
DE10123073A1 (de) 2001-05-11 2003-03-27 Fraunhofer Ges Forschung Verfahren zur Herstellung von Kristallen aus in einem Lösungsmittel gelösten Feststoffen
US6958040B2 (en) * 2001-12-28 2005-10-25 Ekos Corporation Multi-resonant ultrasonic catheter
JP2005515221A (ja) * 2002-01-07 2005-05-26 アボット ゲーエムベーハー ウント カンパニー カーゲー 超音波振盪を使用するアミノ酸の結晶化
US7063741B2 (en) * 2002-03-27 2006-06-20 General Electric Company High pressure high temperature growth of crystalline group III metal nitrides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135186A (zh) * 1994-09-07 1996-11-06 桑特拉德有限公司 应用超声波对受料传送带上或受料滚筒上的熔体或过饱和溶液进行固化处理
WO2000033366A1 (de) * 1998-11-30 2000-06-08 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur herstellung von multikristallinem halbleitermaterial
WO2000035579A1 (en) * 1998-12-12 2000-06-22 Aea Technology Plc Process and apparatus for irradiating fluids
WO2002005921A1 (en) * 2000-07-18 2002-01-24 Unilever N.V. Crystallisation process using ultrasound
US20020031577A1 (en) * 2000-07-18 2002-03-14 Lipton, Division Of Conopco, Inc. Crystallisation process using ultrasound

Also Published As

Publication number Publication date
ATE350121T1 (de) 2007-01-15
CA2485941C (en) 2011-02-01
JP2005527368A (ja) 2005-09-15
OA12826A (en) 2006-07-11
IL165135A0 (en) 2005-12-18
AU2003230006B2 (en) 2008-06-19
PT1509301E (pt) 2007-01-31
WO2003101578A1 (en) 2003-12-11
BR0311332A (pt) 2005-03-15
US7357835B2 (en) 2008-04-15
DE60310923T2 (de) 2007-07-05
EP1509301B1 (en) 2007-01-03
EP1509301A1 (en) 2005-03-02
AU2003230006A1 (en) 2003-12-19
MXPA04011508A (es) 2005-08-15
NO20045574L (no) 2004-12-21
JP4329936B2 (ja) 2009-09-09
NZ536716A (en) 2006-08-31
CN1655857A (zh) 2005-08-17
IL165135A (en) 2008-11-03
DE60310923D1 (de) 2007-02-15
ES2279109T3 (es) 2007-08-16
DK1509301T3 (da) 2007-03-19
CA2485941A1 (en) 2003-12-11
US20050188913A1 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
CN100342939C (zh) 通过使用高强度超声波生产晶体物质的方法
DE69218194T2 (de) Verfahren und vorrichtung zum regeln der erstarrung von flüssigkeiten
CN100354019C (zh) 利用高强度超声波制备晶体物质
US5471001A (en) Crystallization of adipic acid
US5626767A (en) Acoustic filter for separating and recycling suspended particles
DE69911774T2 (de) Paroxetinmethansulfonat-acetonitrilsolvat 1:1
US7128784B2 (en) Small particle-adjustment crystallization process
KR101532412B1 (ko) 1-(β-D-글루코피라노실)-4-메틸-3-(5-(4-플루오로페닐)-2-티에닐메틸) 벤젠의 결정화 방법
JPS63294953A (ja) 結晶質物質の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: PURO SONIX CO., LTD.

Free format text: FORMER OWNER: ASHANTES CO. LTD.

Effective date: 20090508

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090508

Address after: London, England

Patentee after: Prosonix Ltd.

Address before: London, England

Patentee before: Ashats Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071017

Termination date: 20170513

CF01 Termination of patent right due to non-payment of annual fee