CN100334742C - 具有一分开井结构的隔离的高电压ldmos晶体管 - Google Patents

具有一分开井结构的隔离的高电压ldmos晶体管 Download PDF

Info

Publication number
CN100334742C
CN100334742C CNB2004100551829A CN200410055182A CN100334742C CN 100334742 C CN100334742 C CN 100334742C CN B2004100551829 A CNB2004100551829 A CN B2004100551829A CN 200410055182 A CN200410055182 A CN 200410055182A CN 100334742 C CN100334742 C CN 100334742C
Authority
CN
China
Prior art keywords
type
diffusion region
drain
source
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100551829A
Other languages
English (en)
Other versions
CN1641886A (zh
Inventor
黄志丰
杨大勇
林振宇
简铎欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairchild Taiwan Corp
Original Assignee
System General Corp Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System General Corp Taiwan filed Critical System General Corp Taiwan
Publication of CN1641886A publication Critical patent/CN1641886A/zh
Application granted granted Critical
Publication of CN100334742C publication Critical patent/CN100334742C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明为一种具有一分开井结构的隔离的高电压LDMOS晶体管,包含在N型井区中的漏极延伸区域内形成的分离的P型井区,在N型井区的漏极延伸区域内的P型井区被分开,以在N型井区形成一分开的接面场效(splitjunction-field),分开的N型井区与P型井区使漂移区空乏,而将电场的极大值转移至N型井区,如此可达到较高的崩溃电压(breakdown voltage),并且容许N型井区具有较高的掺杂浓度。此外,本发明所揭示的LDMOS包含一内嵌于源极(source)扩散区之下的N型井区,使得源极区具有低阻抗的路径,以限制漏极与源极之间的晶体管电流。

Description

具有一分开井结构的隔离的高电压LDMOS晶体管
技术领域
本发明涉及一种半导体组件,尤指一种横向功率金氧半场效应晶体管(lateral power MOSFET)。
背景技术
在功率集成电路的发展中,为了将功率开关以及控制电路整合在一起而开发的单芯片制程,尤其是目前用于制作单石集成电路(monolithic IC)的横向二次扩散金氧半导体(lateral double diffusion MOS,LDMOS)制程,为一主流的趋势,LDMOS制程是于半导体基板的表面进行平面扩散(planar diffusion)以便形成横向的主要电流路径,由于横向MOSFET是以典型的IC制程所制造,因此控制电路与横向功率MOSFET可以整合在一个单石电源IC上,LDMOS制程采用表面电场缩减(reduced surface electric field,RESURF)技术与低厚度磊晶(EPI)或N型井区(N-well),可以达到高电压与低导通阻抗的目标。
近来,业界提出许多整合控制电路与功率开关的LDMOS设计方式,其中有许多与高电压LDMOS有关。
这些公知技术都有一个缺点,那就是晶体管的电场极大值(electric fieldmaximum)发生在靠近硅表面,在高温操作时会造成可靠度问题,这些半导体技术还有一个缺点为其非隔离的源极结构,在单石集成电路设计中,非隔离的晶体管电流可能会在基板中流动,产生噪声干扰控制电路。
为了克服这些缺点,本发明提出一种具有一分离井结构(split wellstructure)的隔离的(isolated)高电压横向二次扩散金氧半导体(LDMOS)晶体管。
发明内容
本发明要解决的技术问题是:提供一种具有一分开井结构的隔离的(isolated)高电压横向二次扩散金氧半导体(LDMOS)晶体管,主要用以控制电流的流动,可提高晶体管的可靠性。
本发明的技术解决方案是:一种具有一分开井结构的隔离的(isolated)高电压横向二次扩散金氧半导体(LDMOS)晶体管包括:
一P型基板(P-Substrate);
一具有N型导电离子(conductivity-type)的第一扩散区(first diffusionregion)与第二扩散区,其中该第一扩散区与该第二扩散区于该P型基板内形成一N型井区(N-well),而其中该第一扩散区形成一漏极延伸区(extended drainregion);
一漏极扩散区(drain diffusion region),用以形成一漏极区,该漏极扩散区具有N+型导电离子,其中该漏极区位于该漏极延伸区内;
一第三扩散区,用以于该N型井区的该漏极延伸区内形成一P型井区,该第三扩散区具有P型导电离子;
一源极扩散区(source diffusion region),用以形成一源极区,该源极扩散区具有N+型导电离子,其中一传导通道穿过该N型井区,而其中该传导通道连接该源极区与该漏极区;
一接点扩散区(contact diffusion region),用以形成一接点区,该接点扩散区具有N+型导电离子;以及
一第四扩散区,用以形成一隔离的P型井区以防止崩溃,该第四扩散区具有P型导电离子,其中该隔离的P型井区位于该第二扩散区以将该源极区与该接点区围起,其中由该第二扩散区形成的N型井区为该源极区提供一低阻抗路径,而其中该第二扩散区形成的N型井区限制该漏极区与该源极区之间的一晶体管电流。
如上所述的具有一分开井结构的隔离的高电压LDMOS晶体管,其中该漏极延伸区与该漏极扩散区形成一漏极电极。
如上所述的具有一分开井结构的隔离的高电压LDMOS晶体管,其中该隔离的P型井区、该源极扩散区、以及该接点扩散区形成一源极电极。
如上所述的具有一分开井结构的隔离的高电压LDMOS晶体管,其中该N型井区由漏极电极延伸至源极电极。
如上所述的具有一分开井结构的隔离的高电压LDMOS晶体管,其中该P型井区将该N型井区分开。
如上所述的具有一分开井结构的隔离的高电压LDMOS晶体管更包括:一薄闸极氧化层(thin gate oxide)与厚场氧化层(thick field oxide),于该P型基板上形成;一多晶硅闸极(polysilicon gate electrode),用以控制该传导信道的该晶体管电流,其中该多晶硅闸极置放在该薄闸极氧化层与该厚场氧化层的区域之上;一漏极间隙(drain-gap),用以在该漏极扩散区与该厚场氧化层之间维持一空间;一源极间隙(source-gap),用以在该厚场氧化层与该隔离的P型井区之间维持一空间,其中该漏极间隙与该源极间隙的适当配置可实质上助于提升该隔离的高电压LDMOS晶体管的崩溃电压;一二氧化硅(silicondioxide)绝缘层,覆盖于该多晶硅闸极与该厚场氧化层之上;一漏极金属接点,具有一金属电极以接触该漏极扩散区;以及一源极金属接点,具有一金属电极以接触该源极扩散区与该接点扩散区。
如上所述的具有一分开井结构的隔离的高电压LDMOS晶体管,其中该P型井区将位于该N型井区中的该漏极延伸区分开,以于该N型井区形成一分开的接面场效(split junction-field),其中该分开的N型井区与该P型井区使一漂移区空乏。
本发明的特点和优点是:本发明的隔离的高电压横向二次扩散金氧半晶体管(LDMOS Transistor)形成于P型基板(P-substrate)之上,具有N型导电离子的第一扩散区与第二扩散区于P型基板内形成一N型井区(N-well),而第一扩散区同样也形成一漏极延伸区(extended drain region);具有N+型导电离子的漏极扩散区在漏极延伸区内形成一漏极区;具有P型导电离子的第三扩散区于漏极延伸区内分别形成一P型井区。
具有N+型导电离子的源极扩散区形成一源极区;具有P+导电离子的接点扩散区形成一接点区;具有P型导电离子的第四扩散区形成一隔离的P型井区以防止崩溃,其中隔离的P型井区位于第二扩散区将源极区与接点区围起,
传导信道穿过N型井区,用以连接源极区与漏极区,一多晶硅闸极内嵌于导电通道之上以控制晶体管电流。
P型井区位于N型井区的漏极延伸区之内,用以于N型井区内形成一分开的接面场效(split junction-field),分开的N型井区与P型井区使漂移区(driftregion)空乏,而该漂移区将电场极大值转移至N型井区的区域内,如此可达到较高的崩溃电压(breakdown voltage),并且容许N型井区具有较高的掺杂浓度。此外,由第二扩散区形成的N型井区为源极区提供一低阻抗路径,以限制漏极与源极之间的晶体管电流。本发明利用分开井结构,将电场扩展至晶体管的主体,这样可实质地提高晶体管的可靠性。
附图说明
图1为根据本发明的实施例的一高电压LDMOS晶体管的俯视图。
图2为根据本发明的实施例的一高电压LDMOS晶体管的第一剖面图,其中显示一分开的P型井区。
图3为根据本发明的实施例的一高电压LDMOS晶体管的第二剖面图,其中显示一分开的N型井区。
图4为根据本发明的实施例的一高电压LDMOS晶体管的第三剖面图,其中显示分开的N型井区与P型井区。
附图标号说明:
100、高电压LDMOS晶体管  10、漏极      12、焊垫
15、漏极金属接点        20、源极      22、焊垫
25、源极金属接点        30、N型井区   33、第一扩散区
37、第二扩散区      40、多晶硅闸极     42、焊垫
50、漏极延伸区      52、漏极区         53、漏极扩散区
55、源极扩散区      56、源极区         57、接点扩散区
58、接点区          60、P型井区        63、第三扩散区
65、P型井区         67、第四扩散区     71、漏极间隙
72、源极间隙        81、薄闸极氧化层   85、二氧化硅绝缘层
86、二氧化硅绝缘层  87、厚场氧化层     88、厚场氧化层
90、P型基板
具体实施方式
要注意的是,以上的概述与接下来的详细说明皆为示范性质,是为了进一步说明本发明的申请专利范围,而有关本发明的其它特点与优点,将在后续的说明加以阐述。
图1所示为根据本发明的较佳实施例的一高电压LDMOS晶体管100的俯视图,根据本发明,LDMOS晶体管100包含一N型井区30与分开的P型井区60。
LDMOS晶体管100更包含一漏极电极10、一源极电极20、以及一多晶硅闸极(Dolysilicon gate electrode)40,还有漏极电极10所用的焊垫(bonding pad)12、源极电极20所用的焊垫22、以及多晶硅闸极40所用的焊垫42,P型井区60将N型井区30分开,N型井区30由漏极电极10延伸至源极电极20。
图2为根据本发明的较佳实施例的高电压LDMOS晶体管100的第一剖面图,LDMOS晶体管100位于如图1所示的源极电极20与漏极电极10之间,该第一剖面图结构是沿着图1中的W-V虚线线段切开,图3所示则为第二剖面图,第二剖面结构是沿着图1中的X-Y虚线线段切开。
LDMOS晶体管100形成于P型基板90之上,具有N型导电离子的第一扩散区33与具有N型导电离子的第二扩散区37内嵌于P型基板90内形成N型井区30,而第一扩散区33也同样在第一扩散区33的区域内形成漏极延伸区50;具有N+型导电离子的漏极扩散区53于漏极延伸区50内形成漏极区52。
具有P型导电离子的第三扩散区63形成P型井区60,而第三扩散区63分别地位于漏极延伸区50内。
具有N+型导电离子的源极扩散区55形成一源极区56;具有P+型导电离子的接点扩散区57形成一接点区58;具有P型导电离子的第四扩散区67形成一隔离的P型井区65以防止崩溃,其中隔离的P型井区65位于第二扩散区37将源极区56与接点区58围起。
一传导通道穿过N型井区30,用以连接源极区56与漏极区52,一薄闸极氧化层(thin gate oxide)81与厚场氧化层(thick field oxide)87形成于P型基板90之上;多晶硅闸极(polysilicon gate electrode)40位于薄闸极氧化层81与厚场氧化层87的区域之上,以控制传导通道的晶体管电流。一漏极间隙(drain gap)71用以在漏极扩散区53与厚场氧化层87之间维持一空间,源极间隙(source-gap)72用以在厚场氧化层87与隔离的P型井区65之间维持一空间,漏极间隙71与源极间隙72的适当配置可实质上助于提升LDMOS晶体管100的崩溃电压。
二氧化硅(silicon dioxide)绝缘层85与二氧化硅绝缘层86覆盖于多晶硅闸极40、厚场氧化层87与厚场氧化层88之上,漏极金属接点15具有金属电极作用,用以接触漏极扩散区53,源极金属接点25亦具有金属电极的作用,以接触源极扩散区55与接点扩散区57。
参考图1与图2,漏极延伸区50与漏极扩散区53共同形成漏极10,而隔离的P型井区65、源极扩散区55、以及接点扩散区57共同形成源极20,焊垫12连接至漏极金属接点15,焊垫22连接至源极金属接点25,焊垫42连接至多晶硅闸极40。
图4为LDMOS晶体管100的第三剖面图,其中第三剖面图结构是沿着图1的P-Q虚线线段切开,P型井区60位于漏极延伸区50内,以便在N型井区30内形成一分开的接面场效(split junction-field),其中分开的N型井区30与P型井区60使一漂移区空乏,而该漂移区则将电场极大值扩展至N型井区30的区域内。当该漂移区完全空乏时,传导信道实质上就比较不易崩溃,为了要让LDMOS晶体管100具有高崩溃电压,漏极延伸区50必须在崩溃发生前完全空乏,分开的N型井区30与P型井区60使得漏极延伸区50能够在崩溃前被空乏,尽管漂移区为高掺杂浓度亦同。此外,每一个分开的接面场效可进一步分散电场。
LDMOS晶体管100的空乏区会延伸到传导通道之外,空乏区的面积实质上从N型井区30与P型井区60的垂直接面之上一直延伸到N型井区30与P型基板90的界限之下,如此一来可允许漂移区具备高掺杂浓度与低电阻,为了让LDMOS晶体管100可同时具备低阻抗和高崩溃电压的特性,必须适当地选择分开的N型井区30与P型井区60的宽度与掺杂浓度。
此外,由第二扩散区37形成的N型井区30为源极区56提供一低阻抗路径,被以限制漏极区52与源极区56之间的晶体管电流。
虽然本发明已以具体实施例揭示,但其并非用以限定本发明,任何本领域的技术人员,在不脱离本发明的构思和范围的前提下所作出的等同组件的置换,或依本发明专利保护范围所作的等同变化与修饰,皆应仍属本专利涵盖之范畴。

Claims (7)

1.一种具有一分开井结构的隔离的高电压横向二次扩散MOS晶体管,其特征在于,包括:
一P型基板;
一具有N型导电离子的第一扩散区与第二扩散区,其中该第一扩散区与该第二扩散区于该P型基板内形成一N型井区,而其中该第一扩散区形成一漏极延伸区;
一漏极扩散区,用以形成一漏极区,该漏极扩散区具有N+型导电离子,其中该漏极区位于该漏极延伸区内;
一第三扩散区,用以于该N型井区的该漏极延伸区内形成一P型井区,该第三扩散区具有P型导电离子;
一源极扩散区,用以形成一源极区,该源极扩散区具有N+型导电离子,其中一传导通道穿过该N型井区,而其中该传导通道连接该源极区与该漏极区;
一接点扩散区,用以形成一接点区,该接点扩散区具有N+型导电离子;以及
一第四扩散区,用以形成一隔离的P型井区以防止崩溃,该第四扩散区具有P型导电离子,其中该隔离的P型井区位于该第二扩散区以将该源极区与该接点区围起,其中由该第二扩散区形成的N型井区为该源极区提供一低阻抗路径,而其中该第二扩散区形成的N型井区限制该漏极区与该源极区之间的一晶体管电流。
2.如权利要求1所述的具有一分开井结构的隔离的高电压横向二次扩散MOS晶体管,其特征在于,该漏极延伸区与该漏极扩散区形成一漏极电极。
3.如权利要求1所述的具有一分开井结构的隔离的高电压横向二次扩散MOS晶体管,其特征在于,该隔离的P型井区、该源极扩散区、以及该接点扩散区形成一源极电极。
4.如权利要求1所述的具有一分开井结构的隔离的高电压横向二次扩散MOS晶体管,其特征在于,该N型并区由漏极电极延伸至源极电极。
5.如权利要求1所述的具有一分开井结构的隔离的高电压横向二次扩散MOS晶体管,其特征在于,该P型井区将该N型井区分开。
6.如权利要求1所述的具有一分开井结构的隔离的高电压横向二次扩散MOS晶体管,其特征在于,所述晶体管更包括:
一薄闸极氧化层与厚场氧化层,形成于该P型基板上;
一多晶硅闸极,用以控制该传导通道的该晶体管电流,其中该多晶硅闸极置放在该薄闸极氧化层与该厚场氧化层的区域之上;
一漏极间隙,用以在该漏极扩散区与该厚场氧化层之间维持一空间;
一源极间隙,用以在该厚场氧化层与该隔离的P型井区之间维持一空间,其中该漏极间隙与该源极间隙的适当配置有助于提升该隔离的高电压横向二次扩散MOS晶体管的崩溃电压;
一二氧化硅绝缘层,覆盖于该多晶硅闸极与该厚场氧化层之上;
一漏极金属接点,具有一金属电极以接触该漏极扩散区;以及
一源极金属接点,具有一金属电极以接触该源极扩散区与该接点扩散区。
7.如权利要求1所述的具有一分开井结构的隔离的高电压横向二次扩散MOS晶体管,其特征在于,该P型井区将位于该N型井区中的该漏极延伸区分开,以于该N型井区形成一分开的接面场效,其中该分开的N型井区与该P型井区使一漂移区空乏。
CNB2004100551829A 2004-01-16 2004-08-12 具有一分开井结构的隔离的高电压ldmos晶体管 Expired - Fee Related CN100334742C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/758,919 2004-01-16
US10/758,919 US6903421B1 (en) 2004-01-16 2004-01-16 Isolated high-voltage LDMOS transistor having a split well structure

Publications (2)

Publication Number Publication Date
CN1641886A CN1641886A (zh) 2005-07-20
CN100334742C true CN100334742C (zh) 2007-08-29

Family

ID=34620711

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004800397468A Active CN100459152C (zh) 2004-01-16 2004-06-25 具有分割阱结构的隔离高压ldmos晶体管
CNB2004100551829A Expired - Fee Related CN100334742C (zh) 2004-01-16 2004-08-12 具有一分开井结构的隔离的高电压ldmos晶体管

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2004800397468A Active CN100459152C (zh) 2004-01-16 2004-06-25 具有分割阱结构的隔离高压ldmos晶体管

Country Status (4)

Country Link
US (1) US6903421B1 (zh)
CN (2) CN100459152C (zh)
TW (1) TWI288470B (zh)
WO (1) WO2005076364A1 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535057B2 (en) * 2005-05-24 2009-05-19 Robert Kuo-Chang Yang DMOS transistor with a poly-filled deep trench for improved performance
EP1852916A1 (en) * 2006-05-05 2007-11-07 Austriamicrosystems AG High voltage transistor
US8080848B2 (en) 2006-05-11 2011-12-20 Fairchild Semiconductor Corporation High voltage semiconductor device with lateral series capacitive structure
CN100454579C (zh) * 2006-07-03 2009-01-21 崇贸科技股份有限公司 自驱动ldmos晶体管
KR100875159B1 (ko) 2007-05-25 2008-12-22 주식회사 동부하이텍 반도체 소자 및 그의 제조 방법
US20080296636A1 (en) * 2007-05-31 2008-12-04 Darwish Mohamed N Devices and integrated circuits including lateral floating capacitively coupled structures
KR100848245B1 (ko) * 2007-06-25 2008-07-24 주식회사 동부하이텍 반도체 소자 및 그 제조방법
CN101442073B (zh) * 2007-11-23 2011-02-09 三洋电机株式会社 半导体器件及其制造方法
CN101546769B (zh) * 2008-03-28 2010-12-22 盛群半导体股份有限公司 集成电路及其静电放电防护方法
US8193565B2 (en) 2008-04-18 2012-06-05 Fairchild Semiconductor Corporation Multi-level lateral floating coupled capacitor transistor structures
US7960786B2 (en) * 2008-07-09 2011-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Breakdown voltages of ultra-high voltage devices by forming tunnels
US7906810B2 (en) * 2008-08-06 2011-03-15 United Microelectronics Corp. LDMOS device for ESD protection circuit
CN101673762B (zh) * 2008-09-09 2011-08-24 上海华虹Nec电子有限公司 Ldmos晶体管结构和制备方法
KR20100066964A (ko) * 2008-12-10 2010-06-18 주식회사 동부하이텍 Ldmos 소자
US8174070B2 (en) * 2009-12-02 2012-05-08 Alpha And Omega Semiconductor Incorporated Dual channel trench LDMOS transistors and BCD process with deep trench isolation
CN102130162B (zh) * 2010-01-18 2012-11-07 上海华虹Nec电子有限公司 Ldmos及其制造方法
US8120108B2 (en) * 2010-01-27 2012-02-21 Texas Instruments Incorporated High voltage SCRMOS in BiCMOS process technologies
CN101777584B (zh) * 2010-01-29 2011-12-07 四川长虹电器股份有限公司 p沟道横向双扩散金属氧化物半导体器件
US8624302B2 (en) * 2010-02-05 2014-01-07 Fairchild Semiconductor Corporation Structure and method for post oxidation silicon trench bottom shaping
DE102010014370B4 (de) * 2010-04-09 2021-12-02 X-Fab Semiconductor Foundries Ag LDMOS-Transistor und LDMOS - Bauteil
CN101916779B (zh) * 2010-07-20 2012-10-03 中国科学院上海微系统与信息技术研究所 可完全消除衬底辅助耗尽效应的soi超结ldmos结构
CN101916728B (zh) * 2010-07-20 2012-05-30 中国科学院上海微系统与信息技术研究所 可完全消除衬底辅助耗尽效应的soi超结ldmos结构的制作工艺
CN101916761B (zh) * 2010-07-20 2012-07-04 中国科学院上海微系统与信息技术研究所 一种soi埋氧层下的导电层及其制作工艺
CN102386211B (zh) * 2010-08-31 2014-01-08 无锡华润上华半导体有限公司 Ldmos器件及其制造方法
CN102005480B (zh) * 2010-10-28 2012-05-09 电子科技大学 一种高压低导通电阻ldmos器件及其制造方法
CN102130176B (zh) * 2010-12-31 2012-11-14 中国科学院上海微系统与信息技术研究所 一种具有缓冲层的soi超结ldmos器件
CN102610641B (zh) * 2011-01-20 2014-05-21 上海华虹宏力半导体制造有限公司 高压ldmos器件及其制造方法
CN102157557B (zh) * 2011-01-27 2012-07-25 北京大学 一种基于纳米线器件的耐高压横向双向扩散晶体管
US8350338B2 (en) 2011-02-08 2013-01-08 International Business Machines Corporations Semiconductor device including high field regions and related method
CN103094317B (zh) * 2011-11-01 2015-10-14 上海华虹宏力半导体制造有限公司 隔离型高耐压场效应管的版图结构
CN102412126B (zh) * 2011-11-04 2013-12-18 上海华虹Nec电子有限公司 超高压ldmos的工艺制作方法
CN103199109A (zh) * 2012-01-09 2013-07-10 上海华虹Nec电子有限公司 一种nldmos器件及其制造方法
CN103681861B (zh) * 2012-08-31 2016-08-17 新唐科技股份有限公司 半导体元件及其制造方法
TWI511293B (zh) * 2013-06-24 2015-12-01 Chip Integration Tech Co Ltd 雙溝渠式mos電晶體結構及其製造方法
US9059278B2 (en) 2013-08-06 2015-06-16 International Business Machines Corporation High voltage lateral double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) having a deep fully depleted drain drift region
US9245997B2 (en) * 2013-08-09 2016-01-26 Magnachip Semiconductor, Ltd. Method of fabricating a LDMOS device having a first well depth less than a second well depth
KR101941295B1 (ko) 2013-08-09 2019-01-23 매그나칩 반도체 유한회사 반도체 소자
US11088031B2 (en) * 2014-11-19 2021-08-10 Key Foundry Co., Ltd. Semiconductor and method of fabricating the same
KR101885942B1 (ko) 2014-11-19 2018-08-07 매그나칩 반도체 유한회사 반도체 소자 및 제조 방법
CN104617143A (zh) * 2015-01-05 2015-05-13 无锡友达电子有限公司 一种减小导通电阻的p型横向双扩散mos管
US10784372B2 (en) * 2015-04-03 2020-09-22 Magnachip Semiconductor, Ltd. Semiconductor device with high voltage field effect transistor and junction field effect transistor
KR101975630B1 (ko) * 2015-04-03 2019-08-29 매그나칩 반도체 유한회사 접합 트랜지스터와 고전압 트랜지스터 구조를 포함한 반도체 소자 및 그 제조 방법
KR102389294B1 (ko) * 2015-06-16 2022-04-20 삼성전자주식회사 반도체 장치 및 그 제조 방법
CN106952821B (zh) * 2016-01-07 2021-06-08 中芯国际集成电路制造(上海)有限公司 一种晶体管及其形成方法
US9929144B2 (en) 2016-04-15 2018-03-27 International Business Machines Corporation Laterally diffused metal oxide semiconductor device integrated with vertical field effect transistor
US10256340B2 (en) 2016-04-28 2019-04-09 Vanguard International Semiconductor Corporation High-voltage semiconductor device and method for manufacturing the same
TWI658568B (zh) 2017-01-03 2019-05-01 Leadtrend Technology Corporation 高壓半導體元件以及同步整流控制器
EP3404722B1 (en) * 2017-05-17 2021-03-24 Nxp B.V. Method of making a semiconductor switch device
DE102017130213B4 (de) * 2017-12-15 2021-10-21 Infineon Technologies Ag Planarer feldeffekttransistor
TWI641107B (zh) * 2017-12-25 2018-11-11 新唐科技股份有限公司 橫向擴散金屬氧化物半導體場效電晶體
TWI646653B (zh) * 2017-12-28 2019-01-01 新唐科技股份有限公司 橫向擴散金屬氧化物半導體場效電晶體
US11024712B2 (en) * 2018-06-27 2021-06-01 Intel IP Corporation Semiconductor devices and methods for forming semiconductor devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313082A (en) * 1993-02-16 1994-05-17 Power Integrations, Inc. High voltage MOS transistor with a low on-resistance
US20020053695A1 (en) * 2000-11-07 2002-05-09 Chorng-Wei Liaw Split buried layer for high voltage LDMOS transistor
US6475870B1 (en) * 2001-07-23 2002-11-05 Taiwan Semiconductor Manufacturing Company P-type LDMOS device with buried layer to solve punch-through problems and process for its manufacture
US6570219B1 (en) * 1996-11-05 2003-05-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US20030141559A1 (en) * 2001-12-20 2003-07-31 Stmicroelectronics S.R.I. Metal oxide semiconductor field-effect transistor and associated methods
CN1449058A (zh) * 2002-03-29 2003-10-15 株式会社东芝 半导体器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811075A (en) 1987-04-24 1989-03-07 Power Integrations, Inc. High voltage MOS transistors
US5258636A (en) 1991-12-12 1993-11-02 Power Integrations, Inc. Narrow radius tips for high voltage semiconductor devices with interdigitated source and drain electrodes
US6525390B2 (en) 2000-05-18 2003-02-25 Fuji Electric Co., Ltd. MIS semiconductor device with low on resistance and high breakdown voltage
US6617652B2 (en) 2001-03-22 2003-09-09 Matsushita Electric Industrial Co., Ltd. High breakdown voltage semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313082A (en) * 1993-02-16 1994-05-17 Power Integrations, Inc. High voltage MOS transistor with a low on-resistance
US6570219B1 (en) * 1996-11-05 2003-05-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US20020053695A1 (en) * 2000-11-07 2002-05-09 Chorng-Wei Liaw Split buried layer for high voltage LDMOS transistor
US6475870B1 (en) * 2001-07-23 2002-11-05 Taiwan Semiconductor Manufacturing Company P-type LDMOS device with buried layer to solve punch-through problems and process for its manufacture
US20030141559A1 (en) * 2001-12-20 2003-07-31 Stmicroelectronics S.R.I. Metal oxide semiconductor field-effect transistor and associated methods
CN1449058A (zh) * 2002-03-29 2003-10-15 株式会社东芝 半导体器件

Also Published As

Publication number Publication date
CN100459152C (zh) 2009-02-04
CN1641886A (zh) 2005-07-20
TW200525730A (en) 2005-08-01
US6903421B1 (en) 2005-06-07
WO2005076364A1 (en) 2005-08-18
TWI288470B (en) 2007-10-11
CN1926690A (zh) 2007-03-07

Similar Documents

Publication Publication Date Title
CN100334742C (zh) 具有一分开井结构的隔离的高电压ldmos晶体管
CN100388504C (zh) 具有隔离结构的高电压ldmos晶体管
US9595517B2 (en) Semiconductor device employing trenches for active gate and isolation
US8541862B2 (en) Semiconductor device with self-biased isolation
US8722477B2 (en) Cascoded high voltage junction field effect transistor
US6825531B1 (en) Lateral DMOS transistor with a self-aligned drain region
US7605040B2 (en) Method of forming high breakdown voltage low on-resistance lateral DMOS transistor
US6465291B1 (en) High-voltage transistor with buried conduction layer
US6365932B1 (en) Power MOS transistor
US5589405A (en) Method for fabricating VDMOS transistor with improved breakdown characteristics
CN100413089C (zh) 高压金属氧化物半导体元件
EP2860762B1 (en) High voltage junction field effect transistor
US10038082B2 (en) Cascoded high voltage junction field effect transistor
TWI740719B (zh) 高壓半導體裝置
TW201027630A (en) Lateral diffused metal oxide semiconductor transistor and method for increasing break down voltage of lateral diffused metal oxide semiconductor transistor
US8558307B2 (en) Semiconductor device with diffused MOS transistor and manufacturing method of the same
TWI259556B (en) Novel LDMOS IC technology with low threshold voltage
CN114520264A (zh) 高压半导体装置
TWI531064B (zh) 橫向擴散金屬氧化物半導體電晶體結構
CN102569397A (zh) 高电压半导体元件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070829

Termination date: 20210812