CA2447728A1 - Nanoscale wires and related devices - Google Patents
Nanoscale wires and related devices Download PDFInfo
- Publication number
- CA2447728A1 CA2447728A1 CA002447728A CA2447728A CA2447728A1 CA 2447728 A1 CA2447728 A1 CA 2447728A1 CA 002447728 A CA002447728 A CA 002447728A CA 2447728 A CA2447728 A CA 2447728A CA 2447728 A1 CA2447728 A1 CA 2447728A1
- Authority
- CA
- Canada
- Prior art keywords
- semiconductor
- article
- doped
- wire
- nanoscopic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/005—Growth of whiskers or needles
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/605—Products containing multiple oriented crystallites, e.g. columnar crystallites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4146—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0009—RRAM elements whose operation depends upon chemical change
- G11C13/0014—RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0009—RRAM elements whose operation depends upon chemical change
- G11C13/0014—RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
- G11C13/0019—RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising bio-molecules
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/02—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
- G11C13/025—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53276—Conductive materials containing carbon, e.g. fullerenes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
- H10D62/121—Nanowire, nanosheet or nanotube semiconductor bodies oriented parallel to substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
- H10D62/123—Nanowire, nanosheet or nanotube semiconductor bodies comprising junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/854—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs further characterised by the dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/881—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being a two-dimensional material
- H10D62/882—Graphene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/04—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/77—Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/81—Array wherein the array conductors, e.g. word lines, bit lines, are made of nanowires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12044—OLED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Metallurgy (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Biomedical Technology (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Power Engineering (AREA)
- Microbiology (AREA)
- Computer Hardware Design (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Led Devices (AREA)
- Semiconductor Memories (AREA)
- Bipolar Transistors (AREA)
- Semiconductor Integrated Circuits (AREA)
- Junction Field-Effect Transistors (AREA)
Applications Claiming Priority (17)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US29212101P | 2001-05-18 | 2001-05-18 | |
| US29189601P | 2001-05-18 | 2001-05-18 | |
| US29204501P | 2001-05-18 | 2001-05-18 | |
| US29203501P | 2001-05-18 | 2001-05-18 | |
| US60/292,121 | 2001-05-18 | ||
| US60/291,896 | 2001-05-18 | ||
| US60/292,035 | 2001-05-18 | ||
| US60/292,045 | 2001-05-18 | ||
| US09/935,776 US20020130311A1 (en) | 2000-08-22 | 2001-08-22 | Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices |
| US09/935,776 | 2001-08-22 | ||
| US34831301P | 2001-11-09 | 2001-11-09 | |
| US60/348,313 | 2001-11-09 | ||
| US10/020,004 US7129554B2 (en) | 2000-12-11 | 2001-12-11 | Nanosensors |
| US10/020,004 | 2001-12-11 | ||
| US35464202P | 2002-02-06 | 2002-02-06 | |
| US60/354,642 | 2002-02-06 | ||
| PCT/US2002/016133 WO2003005450A2 (en) | 2001-05-18 | 2002-05-20 | Nanoscale wires and related devices |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA2447728A1 true CA2447728A1 (en) | 2003-01-16 |
Family
ID=27574044
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA002447728A Abandoned CA2447728A1 (en) | 2001-05-18 | 2002-05-20 | Nanoscale wires and related devices |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP1436841A1 (enExample) |
| JP (2) | JP2004535066A (enExample) |
| CA (1) | CA2447728A1 (enExample) |
| WO (1) | WO2003005450A2 (enExample) |
Families Citing this family (70)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002017362A2 (en) | 2000-08-22 | 2002-02-28 | President And Fellows Of Harvard College | Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices |
| US7301199B2 (en) | 2000-08-22 | 2007-11-27 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
| EP1342075B1 (en) | 2000-12-11 | 2008-09-10 | President And Fellows Of Harvard College | Device contaning nanosensors for detecting an analyte and its method of manufacture |
| US7335908B2 (en) | 2002-07-08 | 2008-02-26 | Qunano Ab | Nanostructures and methods for manufacturing the same |
| WO2004010552A1 (en) * | 2002-07-19 | 2004-01-29 | President And Fellows Of Harvard College | Nanoscale coherent optical components |
| WO2004027822A2 (en) | 2002-09-05 | 2004-04-01 | Nanosys, Inc. | Oriented nanostructures and methods of preparing |
| US7491428B2 (en) | 2002-12-04 | 2009-02-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Controlled deposition and alignment of carbon nanotubes |
| WO2004065926A1 (en) | 2003-01-23 | 2004-08-05 | William Marsh Rice University | Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices |
| CA2522358A1 (en) | 2003-04-04 | 2004-10-14 | Startskottet 22286 Ab | Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them |
| US7432522B2 (en) | 2003-04-04 | 2008-10-07 | Qunano Ab | Nanowhiskers with pn junctions, doped nanowhiskers, and methods for preparing them |
| US7910064B2 (en) | 2003-06-03 | 2011-03-22 | Nanosys, Inc. | Nanowire-based sensor configurations |
| US7026432B2 (en) | 2003-08-12 | 2006-04-11 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
| US7354988B2 (en) | 2003-08-12 | 2008-04-08 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
| US7309727B2 (en) | 2003-09-29 | 2007-12-18 | General Electric Company | Conductive thermoplastic compositions, methods of manufacture and articles derived from such compositions |
| US20070272653A1 (en) * | 2003-11-10 | 2007-11-29 | Naohide Wakita | Method for Orientation Treatment of Electronic Functional Material and Thin Film Transistor |
| KR20050055456A (ko) * | 2003-12-08 | 2005-06-13 | 학교법인 포항공과대학교 | 산화아연계 나노막대를 이용한 바이오센서 및 이의 제조방법 |
| US7354850B2 (en) | 2004-02-06 | 2008-04-08 | Qunano Ab | Directionally controlled growth of nanowhiskers |
| ATE478358T1 (de) * | 2004-03-02 | 2010-09-15 | Univ Melbourne | Photonenquelle |
| KR100584188B1 (ko) * | 2004-03-08 | 2006-05-29 | 한국과학기술연구원 | 나노선 광센서 및 이를 포함하는 키트 |
| EP1738378A4 (en) * | 2004-03-18 | 2010-05-05 | Nanosys Inc | NANOFIBRE SURFACE BASED CAPACITORS |
| JP2007535413A (ja) * | 2004-04-30 | 2007-12-06 | ナノシス・インコーポレイテッド | ナノワイヤ成長および採取のための系および方法 |
| WO2006000790A1 (en) | 2004-06-25 | 2006-01-05 | Btg International Limited | Formation of nanowhiskers on a substrate of dissimilar material |
| US7194912B2 (en) | 2004-07-13 | 2007-03-27 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon nanotube-based sensor and method for continually sensing changes in a structure |
| JP2008523590A (ja) | 2004-12-06 | 2008-07-03 | プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ | ナノスケールワイヤベースのデータ格納装置 |
| US7462656B2 (en) | 2005-02-15 | 2008-12-09 | Sabic Innovative Plastics Ip B.V. | Electrically conductive compositions and method of manufacture thereof |
| US20100227382A1 (en) | 2005-05-25 | 2010-09-09 | President And Fellows Of Harvard College | Nanoscale sensors |
| WO2006132659A2 (en) | 2005-06-06 | 2006-12-14 | President And Fellows Of Harvard College | Nanowire heterostructures |
| US7278324B2 (en) | 2005-06-15 | 2007-10-09 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon nanotube-based sensor and method for detection of crack growth in a structure |
| JP4831659B2 (ja) * | 2005-09-02 | 2011-12-07 | 独立行政法人産業技術総合研究所 | 情報記録素子 |
| US7826336B2 (en) | 2006-02-23 | 2010-11-02 | Qunano Ab | Data storage nanostructures |
| AU2007309660A1 (en) | 2006-06-12 | 2008-05-02 | President And Fellows Of Harvard College | Nanosensors and related technologies |
| US7718995B2 (en) | 2006-06-20 | 2010-05-18 | Panasonic Corporation | Nanowire, method for fabricating the same, and device having nanowires |
| JP5312938B2 (ja) | 2006-06-21 | 2013-10-09 | パナソニック株式会社 | 電界効果トランジスタ |
| WO2008033303A2 (en) | 2006-09-11 | 2008-03-20 | President And Fellows Of Harvard College | Branched nanoscale wires |
| EP2095100B1 (en) | 2006-11-22 | 2016-09-21 | President and Fellows of Harvard College | Method of operating a nanowire field effect transistor sensor |
| JP4167718B2 (ja) | 2006-12-13 | 2008-10-22 | 松下電器産業株式会社 | ナノワイヤ及びナノワイヤを備える装置並びにそれらの製造方法 |
| US8183587B2 (en) | 2006-12-22 | 2012-05-22 | Qunano Ab | LED with upstanding nanowire structure and method of producing such |
| JP5453105B2 (ja) | 2006-12-22 | 2014-03-26 | クナノ アーベー | ナノ構造のled及びデバイス |
| US8049203B2 (en) | 2006-12-22 | 2011-11-01 | Qunano Ab | Nanoelectronic structure and method of producing such |
| EP2091862B1 (en) | 2006-12-22 | 2019-12-11 | QuNano AB | Elevated led and method of producing such |
| JP2008209249A (ja) * | 2007-02-27 | 2008-09-11 | National Institutes Of Natural Sciences | 酸素ガス検出素子、及び酸素ガス検出素子用ナノワイヤ |
| US8143144B2 (en) | 2007-06-06 | 2012-03-27 | Panasonic Corporation | Semiconductor nanowire and its manufacturing method |
| JP2010538464A (ja) | 2007-08-28 | 2010-12-09 | カリフォルニア インスティテュート オブ テクノロジー | ポリマ埋め込み型半導体ロッドアレイ |
| JP2008120674A (ja) * | 2007-10-18 | 2008-05-29 | National Institute For Materials Science | 硫化亜鉛ナノケーブル |
| US7915146B2 (en) | 2007-10-23 | 2011-03-29 | International Business Machines Corporation | Controlled doping of semiconductor nanowires |
| US8390005B2 (en) | 2008-06-30 | 2013-03-05 | Hewlett-Packard Development Company, L.P. | Apparatus and method for nanowire optical emission |
| JP4923003B2 (ja) * | 2008-07-17 | 2012-04-25 | 日本電信電話株式会社 | ナノワイヤ作製方法、ナノワイヤ素子及びナノワイヤ構造物 |
| WO2010138506A1 (en) | 2009-05-26 | 2010-12-02 | Nanosys, Inc. | Methods and systems for electric field deposition of nanowires and other devices |
| WO2011038228A1 (en) | 2009-09-24 | 2011-03-31 | President And Fellows Of Harvard College | Bent nanowires and related probing of species |
| WO2011066570A2 (en) | 2009-11-30 | 2011-06-03 | California Institute Of Technology | Semiconductor wire array structures, and solar cells and photodetectors based on such structures |
| JP5127856B2 (ja) * | 2010-03-15 | 2013-01-23 | 株式会社東芝 | 半導体記憶装置 |
| WO2011156042A2 (en) | 2010-03-23 | 2011-12-15 | California Institute Of Technology | Heterojunction wire array solar cells |
| KR101176400B1 (ko) * | 2010-05-28 | 2012-08-23 | 세키스이가가쿠 고교가부시키가이샤 | 편광성 재료 및 그것을 포함하는 편광막 제조용 도료 그리고 편광막 |
| KR101927116B1 (ko) * | 2011-10-31 | 2018-12-11 | 엘지디스플레이 주식회사 | 퀀텀 로드 발광 표시장치 |
| KR101927115B1 (ko) * | 2011-10-31 | 2018-12-11 | 엘지디스플레이 주식회사 | 퀀텀 로드 발광 표시장치 |
| KR102011900B1 (ko) * | 2011-11-28 | 2019-08-20 | 엘지디스플레이 주식회사 | 가전제품의 외면에 부착되는 장식부재 |
| KR101927206B1 (ko) * | 2011-11-28 | 2019-03-12 | 엘지디스플레이 주식회사 | 퀀텀 로드 발광 표시소자 |
| KR101957270B1 (ko) * | 2011-11-30 | 2019-03-13 | 엘지디스플레이 주식회사 | 퀀텀 로드 발광 표시장치 |
| US8687978B2 (en) * | 2011-12-13 | 2014-04-01 | The Boeing Company | Optical nanowire antenna with directional transmission |
| US8774636B2 (en) * | 2011-12-13 | 2014-07-08 | The Boeing Company | Nanowire antenna |
| US8744272B1 (en) | 2011-12-13 | 2014-06-03 | The Boeing Company | Scanning optical nanowire antenna |
| US10026560B2 (en) | 2012-01-13 | 2018-07-17 | The California Institute Of Technology | Solar fuels generator |
| US9545612B2 (en) | 2012-01-13 | 2017-01-17 | California Institute Of Technology | Solar fuel generator |
| WO2013126432A1 (en) | 2012-02-21 | 2013-08-29 | California Institute Of Technology | Axially-integrated epitaxially-grown tandem wire arrays |
| WO2013152043A1 (en) | 2012-04-02 | 2013-10-10 | California Institute Of Technology | Solar fuels generator |
| WO2013152132A1 (en) | 2012-04-03 | 2013-10-10 | The California Institute Of Technology | Semiconductor structures for fuel generation |
| US9195787B2 (en) | 2012-11-20 | 2015-11-24 | Intel Corporation | Methods and apparatus for modeling and simulating spintronic integrated circuits |
| US9553223B2 (en) | 2013-01-24 | 2017-01-24 | California Institute Of Technology | Method for alignment of microwires |
| KR101989414B1 (ko) * | 2018-01-02 | 2019-06-14 | 울산과학기술원 | 블록공중합체를 이용한 마이크로패턴 내부에 정렬된 금속 나노선 및 이의 제조방법 |
| CN113782674B (zh) * | 2020-06-09 | 2024-02-27 | 北京元芯碳基集成电路研究院 | 碳纳米管射频器件、制造方法及集成电路系统 |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3243303B2 (ja) * | 1991-10-28 | 2002-01-07 | ゼロックス・コーポレーション | 量子閉じ込め半導体発光素子及びその製造方法 |
| JP2904090B2 (ja) * | 1996-01-10 | 1999-06-14 | 日本電気株式会社 | 単一電子素子 |
| GB2338592A (en) * | 1998-06-19 | 1999-12-22 | Secr Defence | Single electron transistor |
| JP3754568B2 (ja) * | 1999-01-29 | 2006-03-15 | シャープ株式会社 | 量子細線の製造方法 |
| KR100679547B1 (ko) * | 1999-02-22 | 2007-02-07 | 조셉 이. 쥬니어 클로손 | 극미세구조 소자 및 장치 |
| US6128214A (en) * | 1999-03-29 | 2000-10-03 | Hewlett-Packard | Molecular wire crossbar memory |
| US6322713B1 (en) * | 1999-07-15 | 2001-11-27 | Agere Systems Guardian Corp. | Nanoscale conductive connectors and method for making same |
| US6286226B1 (en) * | 1999-09-24 | 2001-09-11 | Agere Systems Guardian Corp. | Tactile sensor comprising nanowires and method for making the same |
| DE60131281T2 (de) | 2000-06-30 | 2008-08-28 | Alfresa Pharma Corp. | Verfahren zum messen von gesamt-homocystein |
| WO2002017362A2 (en) | 2000-08-22 | 2002-02-28 | President And Fellows Of Harvard College | Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices |
| US6512119B2 (en) * | 2001-01-12 | 2003-01-28 | Hewlett-Packard Company | Bistable molecular mechanical devices with an appended rotor activated by an electric field for electronic switching, gating and memory applications |
| KR101008294B1 (ko) * | 2001-03-30 | 2011-01-13 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | 나노구조체 및 나노와이어의 제조 방법 및 그로부터 제조되는 디바이스 |
-
2002
- 2002-05-20 CA CA002447728A patent/CA2447728A1/en not_active Abandoned
- 2002-05-20 WO PCT/US2002/016133 patent/WO2003005450A2/en not_active Ceased
- 2002-05-20 JP JP2003511316A patent/JP2004535066A/ja active Pending
- 2002-05-20 EP EP02759070A patent/EP1436841A1/en not_active Withdrawn
-
2008
- 2008-06-16 JP JP2008156094A patent/JP2008300848A/ja active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| EP1436841A1 (en) | 2004-07-14 |
| WO2003005450A2 (en) | 2003-01-16 |
| WO2003005450A9 (en) | 2003-10-16 |
| JP2004535066A (ja) | 2004-11-18 |
| JP2008300848A (ja) | 2008-12-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7301199B2 (en) | Nanoscale wires and related devices | |
| US20100155698A1 (en) | Nanoscale wires and related devices | |
| CA2447728A1 (en) | Nanoscale wires and related devices | |
| AU2001286649C1 (en) | Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices | |
| CA2430888C (en) | Nanosensors | |
| AU2007211919B2 (en) | Nanoscale wires and related devices | |
| AU2002324426B2 (en) | Nanoscale wires and related devices | |
| AU2002324426A1 (en) | Nanoscale wires and related devices | |
| AU2007202897B2 (en) | Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EEER | Examination request | ||
| FZDE | Discontinued |
Effective date: 20130128 |