ATE536634T1 - Verfahren zur herstellung eines halbleiterbauelements - Google Patents

Verfahren zur herstellung eines halbleiterbauelements

Info

Publication number
ATE536634T1
ATE536634T1 AT03813688T AT03813688T ATE536634T1 AT E536634 T1 ATE536634 T1 AT E536634T1 AT 03813688 T AT03813688 T AT 03813688T AT 03813688 T AT03813688 T AT 03813688T AT E536634 T1 ATE536634 T1 AT E536634T1
Authority
AT
Austria
Prior art keywords
region
gate
semiconductor
source
drain
Prior art date
Application number
AT03813688T
Other languages
English (en)
Inventor
Vincent Venezia
Charles Dachs
Jacob Hooker
Dal Marcus Van
Original Assignee
Nxp Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nxp Bv filed Critical Nxp Bv
Application granted granted Critical
Publication of ATE536634T1 publication Critical patent/ATE536634T1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28097Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a metallic silicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823835Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Die Bonding (AREA)
AT03813688T 2002-12-20 2003-12-15 Verfahren zur herstellung eines halbleiterbauelements ATE536634T1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02080508 2002-12-20
PCT/IB2003/006009 WO2004057659A1 (en) 2002-12-20 2003-12-15 Method of manufacturing a semiconductor device and semiconductor device obtained with such a method

Publications (1)

Publication Number Publication Date
ATE536634T1 true ATE536634T1 (de) 2011-12-15

Family

ID=32668807

Family Applications (1)

Application Number Title Priority Date Filing Date
AT03813688T ATE536634T1 (de) 2002-12-20 2003-12-15 Verfahren zur herstellung eines halbleiterbauelements

Country Status (8)

Country Link
US (1) US20060152086A1 (de)
EP (1) EP1579488B1 (de)
JP (1) JP2006511083A (de)
KR (1) KR20050084382A (de)
CN (1) CN100390939C (de)
AT (1) ATE536634T1 (de)
AU (1) AU2003303273A1 (de)
WO (1) WO2004057659A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481185B1 (ko) 2003-07-10 2005-04-07 삼성전자주식회사 완전 게이트 실리사이드화 공정을 사용하여 모스트랜지스터를 제조하는 방법
US7235472B2 (en) 2004-11-12 2007-06-26 Infineon Technologies Ag Method of making fully silicided gate electrode
JP4473741B2 (ja) * 2005-01-27 2010-06-02 株式会社東芝 半導体装置および半導体装置の製造方法
US7399702B2 (en) * 2005-02-01 2008-07-15 Infineon Technologies Ag Methods of forming silicide
US7183169B1 (en) * 2005-03-07 2007-02-27 Advanced Micro Devices, Inc. Method and arrangement for reducing source/drain resistance with epitaxial growth
US7737019B1 (en) * 2005-03-08 2010-06-15 Spansion Llc Method for containing a silicided gate within a sidewall spacer in integrated circuit technology
US7544553B2 (en) 2005-03-30 2009-06-09 Infineon Technologies Ag Integration scheme for fully silicided gate
JP2007027727A (ja) * 2005-07-11 2007-02-01 Interuniv Micro Electronica Centrum Vzw フルシリサイド化ゲートmosfetの形成方法及び該方法により得られるデバイス
EP1744351A3 (de) * 2005-07-11 2008-11-26 Interuniversitair Microelektronica Centrum ( Imec) Verfahren zur Herstellung von einem MOSFET mit vollsilizidiertem Gatter und dadurch hergestelle Bauelemente
WO2007026677A1 (ja) * 2005-09-01 2007-03-08 Nec Corporation 半導体装置の製造方法
US7297618B1 (en) * 2006-07-28 2007-11-20 International Business Machines Corporation Fully silicided gate electrodes and method of making the same
KR20140131671A (ko) * 2013-05-06 2014-11-14 에스케이하이닉스 주식회사 병렬 구조의 가변 저항 소자
CN105244276B (zh) * 2014-06-12 2018-08-21 中芯国际集成电路制造(上海)有限公司 一种FinFET及其制造方法、电子装置
CN113690134A (zh) * 2020-05-19 2021-11-23 中国科学院微电子研究所 一种金属硅化物的制备方法、半导体器件、电子设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897368A (en) * 1987-05-21 1990-01-30 Matsushita Electric Industrial Co., Ltd. Method of fabricating a polycidegate employing nitrogen/oxygen implantation
US5352631A (en) * 1992-12-16 1994-10-04 Motorola, Inc. Method for forming a transistor having silicided regions
JP2848757B2 (ja) * 1993-03-19 1999-01-20 シャープ株式会社 電界効果トランジスタおよびその製造方法
JPH07135317A (ja) * 1993-04-22 1995-05-23 Texas Instr Inc <Ti> 自己整合型シリサイドゲート
KR100206878B1 (ko) * 1995-12-29 1999-07-01 구본준 반도체소자 제조방법
US5753557A (en) * 1996-10-07 1998-05-19 Vanguard International Semiconductor Company Bridge-free self aligned silicide process
JP3827839B2 (ja) * 1997-11-27 2006-09-27 富士通株式会社 半導体装置の製造方法
TW418448B (en) * 1998-02-03 2001-01-11 United Microelectronics Corp A method of preventing side metal silicide growth to avoid short-circuit device and its gate structure
US6348390B1 (en) * 1998-02-19 2002-02-19 Acer Semiconductor Manufacturing Corp. Method for fabricating MOSFETS with a recessed self-aligned silicide contact and extended source/drain junctions
US6074922A (en) * 1998-03-13 2000-06-13 Taiwan Semiconductor Manufacturing Company Enhanced structure for salicide MOSFET
US6284612B1 (en) * 1998-03-25 2001-09-04 Texas Instruments - Acer Incorporated Process to fabricate ultra-short channel MOSFETs with self-aligned silicide contact
US6069044A (en) * 1998-03-30 2000-05-30 Texas Instruments-Acer Incorporated Process to fabricate ultra-short channel nMOSFETS with self-aligned silicide contact
JPH11284179A (ja) * 1998-03-30 1999-10-15 Sony Corp 半導体装置およびその製造方法
US6204103B1 (en) * 1998-09-18 2001-03-20 Intel Corporation Process to make complementary silicide metal gates for CMOS technology
US6211000B1 (en) * 1999-01-04 2001-04-03 Advanced Micro Devices Method of making high performance mosfets having high conductivity gate conductors
JP2000252462A (ja) * 1999-03-01 2000-09-14 Toshiba Corp Mis型半導体装置及びその製造方法
US6271133B1 (en) * 1999-04-12 2001-08-07 Chartered Semiconductor Manufacturing Ltd. Optimized Co/Ti-salicide scheme for shallow junction deep sub-micron device fabrication
JP3554514B2 (ja) * 1999-12-03 2004-08-18 松下電器産業株式会社 半導体装置及びその製造方法
JP2001189284A (ja) * 1999-12-27 2001-07-10 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6620718B1 (en) * 2000-04-25 2003-09-16 Advanced Micro Devices, Inc. Method of forming metal silicide regions on a gate electrode and on the source/drain regions of a semiconductor device
US6423634B1 (en) * 2000-04-25 2002-07-23 Advanced Micro Devices, Inc. Method of forming low resistance metal silicide region on a gate electrode of a transistor
US20020031909A1 (en) * 2000-05-11 2002-03-14 Cyril Cabral Self-aligned silicone process for low resistivity contacts to thin film silicon-on-insulator mosfets
US6365468B1 (en) * 2000-06-21 2002-04-02 United Microelectronics Corp. Method for forming doped p-type gate with anti-reflection layer
DE10033367C2 (de) * 2000-07-08 2002-04-25 Porsche Ag Brennkraftmaschine, insbesondere für Motorräder
US7067379B2 (en) * 2004-01-08 2006-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Silicide gate transistors and method of manufacture

Also Published As

Publication number Publication date
EP1579488A1 (de) 2005-09-28
WO2004057659A1 (en) 2004-07-08
AU2003303273A1 (en) 2004-07-14
US20060152086A1 (en) 2006-07-13
CN1726582A (zh) 2006-01-25
KR20050084382A (ko) 2005-08-26
CN100390939C (zh) 2008-05-28
JP2006511083A (ja) 2006-03-30
EP1579488B1 (de) 2011-12-07

Similar Documents

Publication Publication Date Title
ATE536634T1 (de) Verfahren zur herstellung eines halbleiterbauelements
TWI246180B (en) Field effect transistor with stressed channel and method for making same
WO2003050849A3 (en) High power-low noise microwave gan heterojunction field effet transistor
TW200509229A (en) Method for fabricating dual-metal gate device
US9508795B2 (en) Methods of fabricating nanowire structures
CN105023840B (zh) 具有凹陷沟道的应变半导体装置以及形成该装置的方法
EP1531496A3 (de) Halbleiterbauelemente mit Transistoren und Herstellungsverfahren dazu
TW200625468A (en) A method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode
EP1227514A3 (de) Verfahren zur Herstellung von einem Gatter-Dielektrikum mit Gebieten hoher und niedriger Dielektrizitätskonstante
DE602004029060D1 (de) Verfahren zur herstellung eines halbleiterbauelements mit ultraschmalem kanal
SG137760A1 (en) Method of fabricating a transistor structure
WO2006014783A3 (en) Method for manufacturing a semiconductor device having silicided regions
TW200636873A (en) Semiconductor fabrication process including recessed source/drain regions in an SOI wafer
TW200509244A (en) A selective etch process for making a semiconductor device having a high-k gate dielectric
KR20090100375A (ko) 자기 정렬 듀얼 스트레스된 필름들을 사용하여 nmosfet와 pmosfet 모두의 성능을 향상시킨 반도체 구조 및 제조 방법
TW200710946A (en) Method for manufacturing semiconductor apparatus and the semiconductor apparatus
WO2006107414A3 (en) Method of forming an electronic device
US10290503B2 (en) Spacer enabled poly gate
TW200616097A (en) Method of manufacturing a semiconductor device and semiconductor device obtained with such a method
SG126911A1 (en) Semiconductor device and fabrication method
EP1091414A3 (de) MOSFET mit abgeschränktem Gatter und Verfahren zur deren Herstellung
TW200503175A (en) Transistor device and forming method thereof and CMOS device manufacturing method
ATE443926T1 (de) Verfahren zur herstellung eines halbleiterbauelementes
US7687338B2 (en) Method of reducing embedded SiGe loss in semiconductor device manufacturing
KR940022917A (ko) 채널로부터 분리된 드레인을 구비한 모스에프이티(mosfet) 소자의 제조 방법