ATE467905T1 - Integrierte anitfuse-struktur für finfet- und cmos-vorrichtungen - Google Patents
Integrierte anitfuse-struktur für finfet- und cmos-vorrichtungenInfo
- Publication number
- ATE467905T1 ATE467905T1 AT02808339T AT02808339T ATE467905T1 AT E467905 T1 ATE467905 T1 AT E467905T1 AT 02808339 T AT02808339 T AT 02808339T AT 02808339 T AT02808339 T AT 02808339T AT E467905 T1 ATE467905 T1 AT E467905T1
- Authority
- AT
- Austria
- Prior art keywords
- corners
- layer
- finfet
- semiconducting material
- integrated
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 abstract 5
- 230000015556 catabolic process Effects 0.000 abstract 2
- 239000004020 conductor Substances 0.000 abstract 2
- 238000000034 method Methods 0.000 abstract 2
- 238000005530 etching Methods 0.000 abstract 1
- 239000012212 insulator Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
- H01L23/5252—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0629—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/10—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
- H01L27/118—Masterslice integrated circuits
- H01L27/11803—Masterslice integrated circuits using field effect technology
- H01L27/11807—CMOS gate arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L29/7853—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
- H01L29/7854—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
- Formation Of Insulating Films (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2002/041182 WO2004059726A1 (en) | 2002-12-20 | 2002-12-20 | Integrated antifuse structure for finfet and cmos devices |
Publications (1)
Publication Number | Publication Date |
---|---|
ATE467905T1 true ATE467905T1 (de) | 2010-05-15 |
Family
ID=32679942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT02808339T ATE467905T1 (de) | 2002-12-20 | 2002-12-20 | Integrierte anitfuse-struktur für finfet- und cmos-vorrichtungen |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1581968B1 (de) |
JP (1) | JP4418760B2 (de) |
CN (1) | CN1314124C (de) |
AT (1) | ATE467905T1 (de) |
AU (1) | AU2002368525A1 (de) |
DE (1) | DE60236375D1 (de) |
WO (1) | WO2004059726A1 (de) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7358121B2 (en) | 2002-08-23 | 2008-04-15 | Intel Corporation | Tri-gate devices and methods of fabrication |
US6909151B2 (en) | 2003-06-27 | 2005-06-21 | Intel Corporation | Nonplanar device with stress incorporation layer and method of fabrication |
US7624192B2 (en) | 2003-12-30 | 2009-11-24 | Microsoft Corporation | Framework for user interaction with multiple network devices |
US7105390B2 (en) | 2003-12-30 | 2006-09-12 | Intel Corporation | Nonplanar transistors with metal gate electrodes |
US7268058B2 (en) | 2004-01-16 | 2007-09-11 | Intel Corporation | Tri-gate transistors and methods to fabricate same |
US7154118B2 (en) | 2004-03-31 | 2006-12-26 | Intel Corporation | Bulk non-planar transistor having strained enhanced mobility and methods of fabrication |
US7042009B2 (en) | 2004-06-30 | 2006-05-09 | Intel Corporation | High mobility tri-gate devices and methods of fabrication |
US7332439B2 (en) | 2004-09-29 | 2008-02-19 | Intel Corporation | Metal gate transistors with epitaxial source and drain regions |
US7422946B2 (en) * | 2004-09-29 | 2008-09-09 | Intel Corporation | Independently accessed double-gate and tri-gate transistors in same process flow |
US7361958B2 (en) | 2004-09-30 | 2008-04-22 | Intel Corporation | Nonplanar transistors with metal gate electrodes |
US20060086977A1 (en) | 2004-10-25 | 2006-04-27 | Uday Shah | Nonplanar device with thinned lower body portion and method of fabrication |
US7193279B2 (en) | 2005-01-18 | 2007-03-20 | Intel Corporation | Non-planar MOS structure with a strained channel region |
US7518196B2 (en) | 2005-02-23 | 2009-04-14 | Intel Corporation | Field effect transistor with narrow bandgap source and drain regions and method of fabrication |
US20060202266A1 (en) | 2005-03-14 | 2006-09-14 | Marko Radosavljevic | Field effect transistor with metal source/drain regions |
US7858481B2 (en) | 2005-06-15 | 2010-12-28 | Intel Corporation | Method for fabricating transistor with thinned channel |
US7547637B2 (en) | 2005-06-21 | 2009-06-16 | Intel Corporation | Methods for patterning a semiconductor film |
US7279375B2 (en) | 2005-06-30 | 2007-10-09 | Intel Corporation | Block contact architectures for nanoscale channel transistors |
US7402875B2 (en) | 2005-08-17 | 2008-07-22 | Intel Corporation | Lateral undercut of metal gate in SOI device |
US20070090416A1 (en) | 2005-09-28 | 2007-04-26 | Doyle Brian S | CMOS devices with a single work function gate electrode and method of fabrication |
US7479421B2 (en) | 2005-09-28 | 2009-01-20 | Intel Corporation | Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby |
US7485503B2 (en) | 2005-11-30 | 2009-02-03 | Intel Corporation | Dielectric interface for group III-V semiconductor device |
US8143646B2 (en) | 2006-08-02 | 2012-03-27 | Intel Corporation | Stacking fault and twin blocking barrier for integrating III-V on Si |
US8362566B2 (en) | 2008-06-23 | 2013-01-29 | Intel Corporation | Stress in trigate devices using complimentary gate fill materials |
US8030736B2 (en) * | 2009-08-10 | 2011-10-04 | International Business Machines Corporation | Fin anti-fuse with reduced programming voltage |
WO2013058746A1 (en) * | 2011-10-18 | 2013-04-25 | Intel Corporation | Antifuse element utilizing non-planar topology |
US9536883B2 (en) * | 2012-07-12 | 2017-01-03 | Broadcom Corporation | Dual anti-fuse |
CN103730367B (zh) * | 2012-10-16 | 2017-05-03 | 中国科学院微电子研究所 | 半导体器件制造方法 |
US11515251B2 (en) * | 2018-04-02 | 2022-11-29 | Intel Corporation | FinFET transistors as antifuse elements |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5322812A (en) | 1991-03-20 | 1994-06-21 | Crosspoint Solutions, Inc. | Improved method of fabricating antifuses in an integrated circuit device and resulting structure |
US5557136A (en) * | 1991-04-26 | 1996-09-17 | Quicklogic Corporation | Programmable interconnect structures and programmable integrated circuits |
US5475253A (en) | 1992-08-21 | 1995-12-12 | Xilinx, Inc. | Antifuse structure with increased breakdown at edges |
US5572062A (en) * | 1994-03-31 | 1996-11-05 | Crosspoint Solutions, Inc. | Antifuse with silicon spacers |
TW347587B (en) * | 1997-10-20 | 1998-12-11 | United Semiconductor Corp | Antifuse structure and process for producing the same |
US6130469A (en) * | 1998-04-24 | 2000-10-10 | International Business Machines Corporation | Electrically alterable antifuse using FET |
US6096580A (en) | 1999-09-24 | 2000-08-01 | International Business Machines Corporation | Low programming voltage anti-fuse |
US6150234A (en) | 1999-12-16 | 2000-11-21 | Vlsi Technology, Inc. | Trench-diffusion corner rounding in a shallow-trench (STI) process |
US6774439B2 (en) | 2000-02-17 | 2004-08-10 | Kabushiki Kaisha Toshiba | Semiconductor device using fuse/anti-fuse system |
US6413802B1 (en) * | 2000-10-23 | 2002-07-02 | The Regents Of The University Of California | Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture |
-
2002
- 2002-12-20 AT AT02808339T patent/ATE467905T1/de not_active IP Right Cessation
- 2002-12-20 EP EP02808339A patent/EP1581968B1/de not_active Expired - Lifetime
- 2002-12-20 WO PCT/US2002/041182 patent/WO2004059726A1/en active Application Filing
- 2002-12-20 JP JP2004563149A patent/JP4418760B2/ja not_active Expired - Fee Related
- 2002-12-20 DE DE60236375T patent/DE60236375D1/de not_active Expired - Lifetime
- 2002-12-20 AU AU2002368525A patent/AU2002368525A1/en not_active Abandoned
- 2002-12-20 CN CNB028300467A patent/CN1314124C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP1581968B1 (de) | 2010-05-12 |
DE60236375D1 (de) | 2010-06-24 |
WO2004059726A1 (en) | 2004-07-15 |
CN1714439A (zh) | 2005-12-28 |
JP2006511093A (ja) | 2006-03-30 |
EP1581968A4 (de) | 2007-04-18 |
JP4418760B2 (ja) | 2010-02-24 |
EP1581968A1 (de) | 2005-10-05 |
AU2002368525A1 (en) | 2004-07-22 |
CN1314124C (zh) | 2007-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ATE467905T1 (de) | Integrierte anitfuse-struktur für finfet- und cmos-vorrichtungen | |
JP5031809B2 (ja) | 半導体装置 | |
CN104272461B (zh) | 用于增加金属氧化物半导体层的电导率的方法 | |
JP4985477B2 (ja) | トランジスタ回路形成基板及びトランジスタ製造方法 | |
ATE377841T1 (de) | Verspannte cmos finfet bauelementestrukturen | |
KR20120068390A (ko) | 그래핀 전자 소자 및 제조방법 | |
SG132641A1 (en) | Method of manufacturing a semiconductor structure | |
US20150008525A1 (en) | Semiconductor device | |
CN1979807A (zh) | 互补式金属氧化物半导体元件及其形成方法 | |
Khan et al. | Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers | |
US20090179316A1 (en) | Flexible semiconductor device and fabrication method thereof | |
JP2006526273A (ja) | チャネル材料として絶縁体−半導体相転移物質膜を利用した電界効果トランジスタ及びその製造方法 | |
US6911354B2 (en) | Polymer thin-film transistor with contact etch stops | |
JP2006245589A (ja) | 物性変換層を利用したトランジスタと、その動作及び製造方法 | |
CN106816369A (zh) | 间隔件结构及其制造方法 | |
KR100643681B1 (ko) | 단일 기판에 형성된 실리콘-온-인슐레이터 전계효과 트랜지스터와 벌크 전계효과 트랜지스터 및 그 제조 방법 | |
US20120025196A1 (en) | Organic thin film transistor and semiconductor integrated circuit | |
JP4144248B2 (ja) | 半導体装置 | |
KR100781615B1 (ko) | Finfet 및 cmos 디바이스들을 위한 집적안티퓨즈 구조 | |
JPS60154671A (ja) | 半導体装置 | |
Sevilla | High Performance Electronics on Flexible Silicon | |
TW201324728A (zh) | 應用於半導體製程中之測試元件 | |
JPH0251266A (ja) | Mis型半導体装置 | |
KR20090026657A (ko) | 반도체 소자의 테스트 패턴 | |
JP2005032979A (ja) | 有機薄膜トランジスタおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RER | Ceased as to paragraph 5 lit. 3 law introducing patent treaties |