ATE467905T1 - Integrierte anitfuse-struktur für finfet- und cmos-vorrichtungen - Google Patents

Integrierte anitfuse-struktur für finfet- und cmos-vorrichtungen

Info

Publication number
ATE467905T1
ATE467905T1 AT02808339T AT02808339T ATE467905T1 AT E467905 T1 ATE467905 T1 AT E467905T1 AT 02808339 T AT02808339 T AT 02808339T AT 02808339 T AT02808339 T AT 02808339T AT E467905 T1 ATE467905 T1 AT E467905T1
Authority
AT
Austria
Prior art keywords
corners
layer
finfet
semiconducting material
integrated
Prior art date
Application number
AT02808339T
Other languages
English (en)
Inventor
Jed Rankin
Wagdi Abadeer
Jeffrey Brown
Kiran Chatty
William Tonti
Robert Gauthier
David Fried
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Application granted granted Critical
Publication of ATE467905T1 publication Critical patent/ATE467905T1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5252Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
    • H01L29/7854Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
AT02808339T 2002-12-20 2002-12-20 Integrierte anitfuse-struktur für finfet- und cmos-vorrichtungen ATE467905T1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2002/041182 WO2004059726A1 (en) 2002-12-20 2002-12-20 Integrated antifuse structure for finfet and cmos devices

Publications (1)

Publication Number Publication Date
ATE467905T1 true ATE467905T1 (de) 2010-05-15

Family

ID=32679942

Family Applications (1)

Application Number Title Priority Date Filing Date
AT02808339T ATE467905T1 (de) 2002-12-20 2002-12-20 Integrierte anitfuse-struktur für finfet- und cmos-vorrichtungen

Country Status (7)

Country Link
EP (1) EP1581968B1 (de)
JP (1) JP4418760B2 (de)
CN (1) CN1314124C (de)
AT (1) ATE467905T1 (de)
AU (1) AU2002368525A1 (de)
DE (1) DE60236375D1 (de)
WO (1) WO2004059726A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358121B2 (en) 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US6909151B2 (en) 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US7624192B2 (en) 2003-12-30 2009-11-24 Microsoft Corporation Framework for user interaction with multiple network devices
US7105390B2 (en) 2003-12-30 2006-09-12 Intel Corporation Nonplanar transistors with metal gate electrodes
US7268058B2 (en) 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7332439B2 (en) 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7422946B2 (en) * 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7361958B2 (en) 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US7193279B2 (en) 2005-01-18 2007-03-20 Intel Corporation Non-planar MOS structure with a strained channel region
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US8030736B2 (en) * 2009-08-10 2011-10-04 International Business Machines Corporation Fin anti-fuse with reduced programming voltage
WO2013058746A1 (en) * 2011-10-18 2013-04-25 Intel Corporation Antifuse element utilizing non-planar topology
US9536883B2 (en) * 2012-07-12 2017-01-03 Broadcom Corporation Dual anti-fuse
CN103730367B (zh) * 2012-10-16 2017-05-03 中国科学院微电子研究所 半导体器件制造方法
US11515251B2 (en) * 2018-04-02 2022-11-29 Intel Corporation FinFET transistors as antifuse elements

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322812A (en) 1991-03-20 1994-06-21 Crosspoint Solutions, Inc. Improved method of fabricating antifuses in an integrated circuit device and resulting structure
US5557136A (en) * 1991-04-26 1996-09-17 Quicklogic Corporation Programmable interconnect structures and programmable integrated circuits
US5475253A (en) 1992-08-21 1995-12-12 Xilinx, Inc. Antifuse structure with increased breakdown at edges
US5572062A (en) * 1994-03-31 1996-11-05 Crosspoint Solutions, Inc. Antifuse with silicon spacers
TW347587B (en) * 1997-10-20 1998-12-11 United Semiconductor Corp Antifuse structure and process for producing the same
US6130469A (en) * 1998-04-24 2000-10-10 International Business Machines Corporation Electrically alterable antifuse using FET
US6096580A (en) 1999-09-24 2000-08-01 International Business Machines Corporation Low programming voltage anti-fuse
US6150234A (en) 1999-12-16 2000-11-21 Vlsi Technology, Inc. Trench-diffusion corner rounding in a shallow-trench (STI) process
US6774439B2 (en) 2000-02-17 2004-08-10 Kabushiki Kaisha Toshiba Semiconductor device using fuse/anti-fuse system
US6413802B1 (en) * 2000-10-23 2002-07-02 The Regents Of The University Of California Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture

Also Published As

Publication number Publication date
EP1581968B1 (de) 2010-05-12
DE60236375D1 (de) 2010-06-24
WO2004059726A1 (en) 2004-07-15
CN1714439A (zh) 2005-12-28
JP2006511093A (ja) 2006-03-30
EP1581968A4 (de) 2007-04-18
JP4418760B2 (ja) 2010-02-24
EP1581968A1 (de) 2005-10-05
AU2002368525A1 (en) 2004-07-22
CN1314124C (zh) 2007-05-02

Similar Documents

Publication Publication Date Title
ATE467905T1 (de) Integrierte anitfuse-struktur für finfet- und cmos-vorrichtungen
JP5031809B2 (ja) 半導体装置
CN104272461B (zh) 用于增加金属氧化物半导体层的电导率的方法
JP4985477B2 (ja) トランジスタ回路形成基板及びトランジスタ製造方法
ATE377841T1 (de) Verspannte cmos finfet bauelementestrukturen
KR20120068390A (ko) 그래핀 전자 소자 및 제조방법
SG132641A1 (en) Method of manufacturing a semiconductor structure
US20150008525A1 (en) Semiconductor device
CN1979807A (zh) 互补式金属氧化物半导体元件及其形成方法
Khan et al. Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers
US20090179316A1 (en) Flexible semiconductor device and fabrication method thereof
JP2006526273A (ja) チャネル材料として絶縁体−半導体相転移物質膜を利用した電界効果トランジスタ及びその製造方法
US6911354B2 (en) Polymer thin-film transistor with contact etch stops
JP2006245589A (ja) 物性変換層を利用したトランジスタと、その動作及び製造方法
CN106816369A (zh) 间隔件结构及其制造方法
KR100643681B1 (ko) 단일 기판에 형성된 실리콘-온-인슐레이터 전계효과 트랜지스터와 벌크 전계효과 트랜지스터 및 그 제조 방법
US20120025196A1 (en) Organic thin film transistor and semiconductor integrated circuit
JP4144248B2 (ja) 半導体装置
KR100781615B1 (ko) Finfet 및 cmos 디바이스들을 위한 집적안티퓨즈 구조
JPS60154671A (ja) 半導体装置
Sevilla High Performance Electronics on Flexible Silicon
TW201324728A (zh) 應用於半導體製程中之測試元件
JPH0251266A (ja) Mis型半導体装置
KR20090026657A (ko) 반도체 소자의 테스트 패턴
JP2005032979A (ja) 有機薄膜トランジスタおよびその製造方法

Legal Events

Date Code Title Description
RER Ceased as to paragraph 5 lit. 3 law introducing patent treaties