AT520709A1 - Elektromagnetisches Messsystem für die Erfassung von Länge und Winkel basierend auf dem Magnetoimpedanzeffekt - Google Patents

Elektromagnetisches Messsystem für die Erfassung von Länge und Winkel basierend auf dem Magnetoimpedanzeffekt Download PDF

Info

Publication number
AT520709A1
AT520709A1 ATA50783/2018A AT507832018A AT520709A1 AT 520709 A1 AT520709 A1 AT 520709A1 AT 507832018 A AT507832018 A AT 507832018A AT 520709 A1 AT520709 A1 AT 520709A1
Authority
AT
Austria
Prior art keywords
scale
measuring
film
sensor
magnetic field
Prior art date
Application number
ATA50783/2018A
Other languages
English (en)
Other versions
AT520709B1 (de
Inventor
Vasiloiu Victor
Tutzu Paul
Original Assignee
Vasiloiu Victor
Tutzu Paul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65909967&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AT520709(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vasiloiu Victor, Tutzu Paul filed Critical Vasiloiu Victor
Priority to JP2020521313A priority Critical patent/JP7311500B2/ja
Priority to PCT/AT2018/060240 priority patent/WO2019071284A1/de
Priority to EP18792358.6A priority patent/EP3695194B1/de
Priority to CN201880080182.4A priority patent/CN111492206B/zh
Priority to DE112018004533.1T priority patent/DE112018004533A5/de
Priority to US16/755,202 priority patent/US11512982B2/en
Publication of AT520709A1 publication Critical patent/AT520709A1/de
Application granted granted Critical
Publication of AT520709B1 publication Critical patent/AT520709B1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2033Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils controlling the saturation of a magnetic circuit by means of a movable element, e.g. a magnet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
    • G01D5/2241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by controlling the saturation of a magnetic circuit by means of a movable element, e.g. a magnet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/04Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving

Abstract

Es wird eine Messanordnung zur Weg- oder Winkelmessung sowie ein korrespondierendes Messverfahren beschrieben. Gemäß einem Beispiel weist die Messanordnung einen Maßstab mit entlang einer Messrichtung variierender Magnetisierung auf, die ein entsprechend variierendes Magnetfeld bewirkt. Die Messeinrichtung weist weiter mindestens einen Abtastkopf auf, der abhängig von der relativen Lage zum Maßstab in Messrichtung von dem variierenden Magnetfeld durchsetzt wird. Der Abtastkopf umfasst folgendes: mindestens eine ferromagnetische Folie, die aufgrund des Magnetoimpedanz-Effektes eine von dem Magnetfeld anhängige und entlang der Messrichtung variierende lokale elektrische Impedanz aufweist, und mindestens eine Sensoreinheit, die dazu ausgebildet ist, mindestens zwei phasenverschobene Sensorsignale zu erzeugen, die von der lokalen elektrischen Impedanz der Folie abhängen.

Description

ZUSAMMENFASSUNG / ABSTRACT
Es wird eine Messanordnung zur Weg- oder Winkelmessung sowie ein korrespondierendes Messverfahren beschrieben. Gemäß einem Beispiel weist die Messanordnung einen Maßstab mit entlang einer Messrichtung variierender Magnetisierung auf, die ein entsprechend variierendes Magnetfeld bewirkt. Die Messeinrichtung weist weiter mindestens einen Abtastkopf auf, der abhängig von der relativen Lage zum Maßstab in Messrichtung von dem variierenden Magnetfeld durchsetzt wird. Der Abtastkopf umfasst folgendes: mindestens eine ferromagnetische Folie, die aufgrund des Magnetoimpedanz-Effektes eine von dem Magnetfeld anhängige und entlang der Messrichtung variierende lokale elektrische Impedanz aufweist, und mindestens eine Sensoreinheit, die dazu ausgebildet ist, mindestens zwei phasenverschobene Sensorsignale zu erzeugen, die von der lokalen elektrischen Impedanz der Folie abhängen.
/ 30
OMX001AT
1/25
Elektromagnetisches Messsystem für die Erfassung von Länge und Winkel basierend auf dem Magnetoimpedanzeffekt
TECHNISCHES GEBIET
Die hier beschriebenen Ausführungsbeispiele betreffen eine neuartige elektromagnetische Messeinrichtung zur Positionserfassung, die auf dem physikalischen Effekt der „Giant Magneto Impedance“ - GMI - basieren.
HINTERGRUND
Messeinrichtungen für die Länge- und Winkelerfassung sind bekannt und arbeiten nach unterschiedlichen physikalischen Prinzipien. Weiter wird eine vergleichende Gegenüberstellung der Hauptmerkmale dieser Messsysteme gemacht:
Optoelektronische Messsysteme haben eine sehr kleine Messperiode (Periode der Teilung des Encoders) und sind dadurch sehr genau, weisen jedoch eine sehr hohe Empfindlichkeit gegenüber mechanischer Belastung (Schock, Vibrationen) und Verschmutzung auf.
Magnetische Messsysteme haben größere Messperiode, sind robust gegenüber Umwelteinflüsse, haben große Abtastabstände (Luftspalt zwischen Abtastkopf und Maßstab), weisen aber - aufgrund vergleichsweise großer Interpolationsfehler verursacht durch die geringe Abtastfläche der Magnetsensoren und Einzelperiodenabtastung gepaart mit der Inhomogenität der Magnetstärken von Periode zu Periode und haben einen signifikanten Umkehrfehler (Hysterese, bei Änderung der Bewegungsrichtung entsteht ein Signalsprung) eine geringere Genauigkeit auf.
Induktive Messsysteme haben ähnlich große Messperiode wie die magnetischen Messsysteme, weisen eine höhere Genauigkeit auf und haben keine Hysterese. Der Abtastabstand ist in Verhältnis zu den magnetischen Messsystemen sehr gering und begrenzt dadurch die jeweilige Anwendung.
Der physikalische Magnetoimpedanzeffekt ist an sich bekannt und findet Anwendungen bei Sensoren unterschiedlicher Art. Der Magnetoimpedanzeffekt bewirkt, dass eine ferromagnetische oder weichmagnetische Folie (Draht), die (der) von einem hochfrequenten Strom durchflossen wird, ihre (seine) Impedanz in Abhängigkeit von einem externen / 30
OMX001AT
2/25 elektromagnetischen Feld ändert. Dieses Verhalten kann mit dem an sich bekannten SkinEffekt wie folgt erklärt werden:
δ = mit:
Figure AT520709A1_D0001
- 6“ - Skin-Eindringstiefe,
- f - Arbeitsfrequenz,
- μ“ - magnetische Permeabilität,
- σ - elektrische Leitfähigkeit,
Die Skin-Eindringstiefe δ der durch das Material fließenden Ströme kann sich für ein bestimmtes Material entweder mit der Frequenz dieser Ströme oder/und mit der magnetischen Permeabilität des Materials ändern. Die Fig. 1 zeigt symbolisch diese Abhängigkeiten, wobei B die magnetische Induktion (Flussdichte), H die magnetische Feldstärke und Z die Impedanz bezeichnet.
Ein äußeres Magnetfeld kann die magnetische Permeabilität einer ferromagnetischen Metallfolie mit einem Faktor 10w (wobei N>2) ändern. Das heißt, dass der
ΔΧ
Magnetoimpedanzeffekt eine sehr hohe Impedanz-/Reluktanzänderung (—) x 100% %0 aufweist.
Vergleicht man die Eindringstiefe δ für ein Material, das in zwei unterschiedlichen Bereichen unter dem Einfluss von zwei elektromagnetischen Feldern der Feldstärke Hi und H2 steht, so erhält man für das Verhältnis ό12 der jeweiligen Eindringtiefen:
£ = = T >ion/2, wobei N > 2.
Da die Impedanz Z grundsätzlich umgekehrt proportional zu der Eindringstiefe δ steht, ergibt sich für das Verhältnis 12/11 der Impedanzen:
Z ~ > iow/2, wobei N > 2.
o Zi
Diese hohe Empfindlichkeit zeichnet den Magnetoimpedanzeffekt aus und führt in ihren Anwendungen zu hohen Signalkontrast und weiterführend zu sehr guten Wirkungsgraden.
/ 30
OMX001AT
3/25
Im Folgenden werden einige Beispiele von Messgeräten, die sich den GMI-Effekt zunutze machen diskutiert. Aus der Patentschrift US7791331-B2 ist ein Längenmessgerät bekannt das zwei Mäander förmige Windungen aus einer ferromagnetischen Legierung und einem beweglichen einzelnen Magnet aufweist. Durch die dreieckförmige Geometrie diesen Windungen die von einem hochfrequenten Strom durchflossen sind, entsteht eine Variation Ihrer Impedanz abhängig von der relativen Lage des Magnetes. Diese Einrichtung ist begrenzt in ihrem Messbereich gegenüber der Positionsauflösung und Genauigkeit die erreicht werden kann.
Aus der Patentschrift DE19953190-C2 ist ein Winkelencoder bekannt. Es besteht aus einem Sternförmigen Leiter mit planarer Geometrie erzeugt aus einer ferromagnetischen Legierung und aus einem permanent Magnet der sich relativ zu diesem Leiter um ihre Achse drehen kann. Diese Encoderart kann nicht die Rotationsrichtung erfassen (nur die Drehgeschwindigkeit) und hat eine sehr geringe Anzahl von Impulsen pro Umdrehung (Auflösung).
Ein manuell zu handeln Lesekopf basierend auf dem GMI-Effekt für das Ablesen von magnetisch kodierten Bänder ist in der Patentschrift AT406715-B bekannt. Dieses Gerät kann nur das magnetische Pattern aus dem Band ablesen und ist nicht ausgelegt für die Längenbestimmung.
Das induktive Längen- und Winkelmesssystem beschrieben in der Patentschrift EP1164358B1, bekannt am Markt unter den Namen AMOSIN® erreicht höhere Genauigkeiten und Auflösung in unter Mikrometer Bereich und weist auch keine Hysterese auf. Es hat aber den Nachteil, dass der Abtastabstand zwischen Maßstab und Abtastkopf in etwa zweimal geringer ist als für die hier vorgestellte Messeinrichtung bei gleicher Länge der Teilungsperiode. Darüber hinaus ist der Sensor der hier in der neu vorgestellten Messeinrichtung sehr einfach aufgebaut, hat eine wesentlich höhere Empfindlichkeit und weist höhere Signalamplituden auf.
Die Erfinder haben es sich zur Aufgabe gemacht, eine Messeinrichtung für Längen oder Winkel bereitzustellen, welche sich den Magnetoimpedanzeffekt zu Nutze macht und eine hohe Genauigkeit sowie verhältnismäßig große Abtastabstände ermöglicht, ohne von dem unerwünschten Phänomen der Hysterese betroffen zu sein. Des Weiteren sind geringe Herstellkosten der Sensorik wünschensweist sowie ein flexibler Sensorträger. Weiter / 30
OMX001AT
4/25 wünschenswert ist eine große Abtastfläche über mehrere Perioden des magnetischen Maßstabes hinweg, um dadurch eine gute Signalmittelung und hohe Lagegenauigkeit zu erreichen.
ZUSAMMENFAS SUNG
Die erwähnte Aufgabe wird durch eine Messeinrichtung gemäß Anspruch 1 sowie durch ein Verfahren gemäß Anspruch 10 gelöst. Verschiedene Ausführungsbeispiele und Weiterentwicklungen sind Gegenstand der abhängigen Ansprüche.
KURZE BESCHREIBUNG DER ABBILDUNGEN
Verschiedene Ausführungsbeispiele werden nachfolgend anhand von Abbildungen näher erläutert. Die Darstellungen sind nicht zwangsläufig maßstabsgetreu und die Erfindung beschränkt sich nicht nur auf die dargestellten Aspekte. Vielmehr wird Wert daraufgelegt, die zugrundeliegenden Prinzipien darzustellen.:
Figur 1 zeigt ein B/H Diagramm.
Figur 2 illustriert die Hauptkomponenten der hier beschriebenen Ausführungsbeispiele.
Figur 3 illustriert ein erstes Ausführungsbeispiel eines Messsystems zur Messung von Weg oder Winkel.
Figur 4 illustriert ein exemplarisches Beispiel einer elektronischen Schaltung für die Signalauswertung.
Figur 5 illustriert ein zweites Ausführungsbeispiel eines Messsystems zur Messung von Weg oder Winkel.
Figur 6 illustriert ein drittes Ausführungsbeispiel eines Messsystems zur Messung von Weg oder Winkel.
Figur 7 illustriert ein viertes Ausführungsbeispiel eines Messsystems, das für die Winkelmessung geeignet ist.
Figur 8 illustriert ein Beispiel eines magnetischen Maßstabs für ein Messsystem zur Messung der Absolutposition.
/ 30
OMX001AT
5/25
DETAILIERTE BESCHREIBUNG
Die hier beschriebenen Ausführungsbeispiele (siehe Fig. 2) umfassen einen magnetischen Maßstab 1 mit hartmagnetischer Teilung mit alternierenden Nord- und Süd-Polen mit gleichen oder unterschiedlichen Pollängen sowie einem Abtastkopf 2, der eine planare Sensoreinheit 3 sowie eine Auswertelektronik 4 aufweist. Die Sensoreinheit 3 beinhaltet eine ferromagnetische Folie 6 (vgl. Fig. 3, Fig. 5 und Fig.6).
Diese zwei Hauptkomponenten der Messeinrichtung (Maßstab 1 und Abtastkopf 2) sind mit einem Luftspalt „d“ zueinander angeordnet und mechanisch mit zwei Maschinenelementen gekoppelt, die sich relativ zueinander linear oder rotatorisch bewegen können und deren Relativ- oder Absolutposition (lineare Position bzw. Winkelposition) erfasst wird.
Die Teilung des Maßstabes bewirkt durch die von ihm erzeugten Magnetfelder in der im Abtastkopf 2 angeordneten ferromagnetischen Folie die Entstehung korrespondierender Bereiche höherer und niedrigerer Permeabilität und folglich auch höherer bzw. niedrigerer Impedanz. Diese positionsabhängige Impedanzvariation wird mittels eines oder mehrerer Sensorelemente erfasst und nach der elektronischen Verarbeitung der von den Sensorelementen generierten Sensorsignale in der Auswertelektronik als Positionsinformation ausgegeben. Im Vergleich zu anderen Sensoren (AMR, GMR, etc.) können die hier beschriebenen Messanordnungen gültige Positionsinformationen liefern auch wenn die ferromagnetische Folie, oder lokale Bereiche von ihr, magnetisch gesättigt sind. Das heißt, die Funktionsfähigkeit der ferromagnetischen Folie bleibt erhalten, unabhängig davon, ob die Folie in einem magnetisch linearen, im magnetisch nichtlinearen Bereich oder bei magnetischer Sättigung betrieben wird.
Fig. 2 illustriert ein Ausführungsbeispiel eines Messsystems, welches dazu geeignet ist, unter Verwendung des GMI-Effekts Positionen (Weg oder Winkel) zu messen. Das dargestellte Messsystem umfasst einen als dünnen Streifen realisierten Maßstab 1, der durch das Aufmagnetisieren einer hartmagnetischen Schicht alternierende Polaritäten (Nord N, Süd S) aufweist, die der Einfachheit halber im Folgenden periodisch dargestellt sind (was nicht notwendigerweise der Fall sein muss). Im Wesentlichen ist der Maßstab ein Permanentmagnet mit abwechselnder Polarisierung. Das von dem Permanentmagnet erzeugte Magnetfeld ist positionsabhängig und variiert beispielsweise periodisch mit der Teilung des Maßstabes 1.
/ 30
OMX001AT
6/25
Das Messsystem umfasst weiter einen Abtastkopf 2, der einen auf einem dünnen, flexiblen Substrat aufgebauten Magnetimpedanz-Sensor (weiter als Sensoreinheit 3 bezeichnet) sowie eine Auswertelektronik 4 aufweist, welche dazu ausgebildet ist, die Sensorsignale der Sensoreinheit 3 zu verarbeiten und diese in eine relative Positionsinformation des Abtastkopfes (relativ zu dem Maßstab 1 in Messrichtung „x“) zu konvertieren. Die Abtastung erfolgt kontaktlos mit einer Distanz „d“ (Luftspalt) zwischen Maßstab 1 und Abtastkopf 2.
Die Funktionsweise der Messeinrichtung gemäß dem Beispiel aus Fig. 2 wird anhand des Diagramms in Fig. 3 näher erläutert. Gemäß dem in Fig. 3 dargestellten Ausführungsbeispiel umfasst die Sensoreinheit 3 ein flexibles, nichtmagnetisches Substrat 5, auf dem einzelne dünne Folien 6 (im dargestellten Beispiel vier Stück) aus einem ferromagnetischen Material in einer bestimmten Anordnung und elektrisch von ein andern getrennt aufgebracht sind. Die Folien 6 werden im Folgenden auch als Sensorelemente bezeichnet.
In dem dargestellten Beispiel weisen die ferromagnetischen Folien 6 (Sensorelemente) innerhalb eines Paares von zwei Sensorelementen einen Abstand von etwa λ/2 auf, wobei 2·λ die (magnetische) Teilungsperiode des Maßstabes 1 ist. Die Länge eines Sensorelementes entspricht ungefähr der magnetischen Breite des Maßstabes 1 quer zu Messrichtung. Ein erstes Paar der Folien 6, die mit S+ und S- beschriftet sind, sind einem Sinus-Kanal zugeordnet, wohingegen ein zweites Paar der Folien 6, die mit C+ und C- beschriftet sind, einem Cosinus-Kanal zugeordnet sind. Die beiden Paare von Folien (S+, S- und C+, C-) sind in einem Abstand von etwa n· λ + λ/4 auf dem Substrat 5 angeordnet, wobei n eine ganze Zahl ist.
In einer speziellen Ausführung können auch mehrere erste Folienpaare dem Sinus-Kanal und mehrere zweite Folienpaare dem Cosinus-Kanal zugeordnet sein. Zwei dem Sinus-Kanal (oder dem Cosinus-Kanal) zugeordnete Folienpaare sind in einem Abstand von n· λ angeordnet, wohingegen zwei Folienpaare wie erwähnt einen Abstand von etwa n· λ + λ/4 aufweisen, wenn sie unterschiedlichen Kanälen zugeordnet sind.
Die Foliendicke der Folien 6 kann im Bereich zwischen ungefähr 5 μm und 30 μm liegen, je nachdem wie die das Messsystem ausgelegt wird und abhängig von Materialeigenschaften, Arbeitsfrequenz, Teilungsperiode, etc.
/ 30
OMX001AT
7/25
Der Einfachheit halber ist in Fig. 3 nur eine Mindestzahl von Sensorelementen dargestellt. Es kann für die Signalgewinnung und Mittelung der technologisch bedingten (z.B. geometrischen) Fehler im Sensor und im Maßstab von Vorteil sein, dass - wie bereits erwähnt - mehrere Paare von Sensorelementen entlang der Messrichtung „x“ in Abstand von n-λ zu ein andern wiederholt angeordnet werden, und die Sensorsignale der Sensorelemente 6 für jeden der zwei Messkanäle (Sinus und Cosinus) summiert werden.
Gemäß dem Beispiel in Fig. 4 weist die im Abtastkopf 3 angeordnete Auswerteelektronik 4 einen Signalgenerator 41 auf, der dazu ausgebildet ist, hochfrequente (in Bereich von 1 MHz bis etwa 100 MHz) Trägerströme konstanter Amplitude zu generieren. Jede der vier dargestellten Sensorelemente 6 (beschriftet mit S+, S-, C+, C-) ist elektrisch so mit dem Signalgenerator verbunden, dass sie von dem Trägerstrom i durchflossen werden. In den hier dargestellten Beispielen sind die Sensorelemente 6 in Reihe geschaltet, so dass derselbe Trägerstrom i durch die Sensorelemente 6 fließt.
Die in der Sensoreinheit 2 angeordneten Sensorelemente 6 (Folien) werden von dem von dem Maßstab 1 erzeugten Magnetfeld (magnetische Flussdichte B) durchsetzt. Wie erwähnt variiert das Magnetfeld entsprechend der Teilung des Maßstabs entlang der Messrichtung (xRichtung), und folglich hängt die lokale magnetische Feldstärke/Flussdichte in den Sensorelementen 6 von der Relativposition zwischen Sensoreinheit 2 und Maßstab 1 ab. Bei einer Verschiebung des Maßstabs relativ zur Sensoreinheit, verschiebt sich das Magnetfeld entsprechend.
Wie bereits erläutert bewirkt der Magnetoimpedanzeffekt (GMI-Effekt), dass - je nach Größe der magnetischen Flussdichte B - die relative Permeabilität sich in jeder der Sensorelemente/Folien 6 ändert und folglich auch die Stromeindringtiefe (Skin-Effekt) der hochfrequenten Erregerströme und damit auch die Impedanz der Sensorelemente/Folien 6. Die Messung der Impedanzen der vier Sensorelemente /Folien 6 unter Verwendung der Auswertelektronik 4 spiegelt die Abhängigkeit dieser Impedanzen von der relativen Lage des Abtastkopfes 2 zum Maßstab 1 wider. Wie erwähnt können die Sensorelemente/Folien 6 mit einem konstanten Strom i gespeist und die resultierenden Spannungen Us+, Us- und Uc+, Uc(Spannungsabfälle über den Sensorelementen 6) ausgewertet werden.
Um eine hohe Störfestigkeit zu erreichen und um einen unerwünschten Signaloffset und Rauschen zu unterdrücken, kann die Erfassung der Signale (z.B. Spannungen Us+, Us- und / 30
OMX001AT
8/25
Uc+, Uc-) der Sensorelemente 6 in einer differentiellen Weise erfolgen, sodass ein Sinussignal (Us) durch die Bildung der Spannungsdifferenz Us+ - Us- und ein Cosinussignal (Uc) durch die Bildung der Spannungsdifferenz Uc+ - Uc- ermittelt wird (z.B. mittels Differenzverstärker 42 und 43). Die Differenzsignale Us und Uc (Sinus- und Cosinussignal) weisen dieselbe Frequenz auf wie der hochfrequente Trägerstrom i. Die Signale Us und Uc werden in dem Beispiel aus Fig. 4 demoduliert (Demodulator 44). Das Ergebnis der Demodulation ist eine Gleichspannung deren Pegel bei gleichförmiger Bewegung des Maßstabes 1 relativ zum Abtastkopf 2 annähernd sinus- bzw. cosinusförmig variiert. Im Hinblick auf eine einfache Darstellung werden in den in Fig. 3 und 4 dargestellten Beispielen und in den folgenden Beispielen die zwei um etwa 90° in Phase verschobenen Signale sin α und cosa nach der Demodulation 44 der hochfrequenten Trägerwelle repräsentiert.
Die Auslegung eines elektronischen Schaltkreises, der die Sensorsignale verstärkt, wandelt und in den bekannten normierten Schnittstellen am Ausgang des Abtastkopfs 2 der nachgeschalteten Elektronik für Positionsanzeigen oder Antriebsregelung zu Verfügung stellt, ist an sich bekannt und wird daher nicht weiter erläutert; von Bedeutung ist aber die Tatsache, dass durch die Erzeugung zwei phasenverschobenen sinusförmigen Signale die eindeutige Bewegungsrichtung und den elektrischen Winkel innerhalb einer Periode eindeutig bestimmt werden kann.
Wie bereits erwähnt können sich die vier ferromagnetischen Folien (Sensorelemente 6) in den Sensoreinheit 3 relativ zu dem magnetischen Maßstab 1 bewegen. Diese Sensorelemente 6 werden von einem in Frequenz und Amplitude konstanten Strom (Trägerstrom i) durchflossen, der von der in der Auswertelektronik 4 befindlichen Stromquelle 41 erzeugt wird. Der Spannungsabfall (siehe Fig. 4, Spannungen Us+, Us- und Uc+, Uc-) über jedem den vier Sensorelemente 6 kann als Maß für die Impedanz der jeweiligen Folie betrachtet werden. Diese Spannungen Us+, Us- und Uc+, Uc- werden von den Differenzverstärkern 42 bereitgestellt mit den Parametern:
- l0 - konstante Stromamplitude,
- i - Trägerstrom,
- ω = 2nf, f - konstante Frequenz,
- x - relative Lage Maßstab 1 zur Sensoreinheit 3,
- λ - Hälfte der magnetischenTeilungsperiode,
- k - natürliche Zahl, / 30
OMX001AT
9/25
- Us+, Us-, Uc+, Uc- - Teilspannungen,
- Uk - konstante Übertragungsspannung,
- Uos, Uoc - konstante Offsetspannungen,
- a = —x - elektrischer Winkel,
Λ und i = l0si,nci)L ergibt sich:
Us+ = Uk ^Uos + sin + 2kn^ sincoL, und
Us- = Uk ^Uos + sin (2^x + π + 2kn^j εϊηωΐ, und in ähnlicher Weise:
Uc+ = Uk yU0C + sin \~~x + 7 + 2knjj sinott, und
Uc_ = Uk (uoc + sin(j^x + + π + 2kn^ sinMt, und nach der Differenzbildung (Operationsverstärker 43) für jeden der zwei Messkanäle (Sinus- und Cosinuskanal):
Us = Us+ — Us_ = Uk sina sinMt
Uc = Uc+ — Uc- = Uk cosa sinMt
Mit Hilfe dieser zweier „Quadratur“-Spannungen kann in bekannter Weise der elektrische Winkel und die Bewegungsrichtung mit Hilfe der Demodulatoren 44, des Analog-Digital Wandlers 45 und weitere digitale Verarbeitung ermittelt und als Positionsinformation „x“ ausgeben werde.
Es sei hier festgehalten, dass im Unterschied zu induktiven Messsystemen und aufgrund der Tatsache, dass die Impedanzänderungen nur von dem Betrag der Flussdichte B, jedoch nicht von deren Richtungsvektor abhängig sind, die Sensorsignalperiode λ die Hälfte der Teilungsperiode (2λ) des Maßstabs beträgt. Das kann von großem Vorteil in der Auslegung eines Messsystems sein und erlaub höhere Genauigkeit und Auflösung.
/ 30
OMX001AT
10/25
Des Weiteren sei angemerkt, dass der hohe Wirkungsgrad des Magnetoimpedanzeffekts in den hier beschriebenen Ausführungsbeispielen zu höheren Sinus- und CosinusSignalamplituden führt und dadurch sich vergleichsweise größere Luftspalte d realisieren lassen, weshalb die hier dargestellten Ausführungsbeispiele vielfältiger anwendbar sind als bekannte Messsysteme.
Figur 5 illustriert ein zweites Ausführungsbeispiel der Messeinrichtung, wobei in dem dargestellten Beispiel die Sensoreinheit 3 folgendermaßen realisiert ist: Eine ferromagnetische Folie 6 wird so an die Signalquelle 41 (vgl. Fig. 4) angeschlossen, dass sie in Querrichtung (quer zur Messrichtung x) von dem hochfrequenten Trägerstrom (Erregerstrom) i durchflossen wird (i = Io-sin(ot)). Die Folie 6 weist dabei mindestens zwei Aussparungen 8 mit einer Breite von etwa λ/2 bei einem Abstand von etwa n-λ + λ/4 auf. Die lokale Stromdichte in der Folie 6 hängt von dem beschriebenen Magnetoimpedanzffekt ab. In Abhängigkeit der vom Maßstab 1 erzeugten magnetischen Flussdichte B entstehen in der Folie 6 lokale Bereiche unterschiedlicher Impedanz und demensprechend wird die lokale Stromdichte in der Folie 6 im Wesentlichen die lokale Flussdichte B und damit die Teilung des Maßstabes 1 widerspiegeln. Dieses „Strombild“ kann von planaren, parallel zur Folie 6 angeordneten Empfängerspulen 10 differentiell erfasst werden, sodass in ähnlicher Weise wie in dem Ausführungsbeispiel gemäß Fig. 3 und 4 die zwei phasenverschobenen Signale US und UC gewonnen werden können.
In diesem Ausführungsbeispiel kann auf die Folienaussparungen 8 möglicherweise auch verzichtet werden, wenn die Systemdimensionierung dies zulässt. Die Empfängerspulen 10 können beispielweise als mehrlagige gedruckte Schaltung (multilayerprinted circuit board) realisiert werden. In allgemein bekannter Weise lassen sich Magnetfelder die von den Empfängerspulen 10 erfasst werden auch von anderen Art von Sensoren wie HalbleiterSensoren wie zum Beispiel Hallsensoren oder magnetischen Dünnfilm-Sensoren wie zum Beispiel Magnetwiderstände (MR), Riesenmagnetwiderstände (GMR) oder anisotrope Magnetwiderstände (AMR) erfassen.
Figur 6 illustriert ein drittes Ausführungsbeispiel der Messeinrichtung. In diesem Fall wird der hochfrequente Trägerstrom i nicht mehr wie in den vorhergehenden Beispielen direkt in die ferromagnetische Folie 6 eingespeist, sondern in Emitterspulen 11, die zusammen mit den Empfängerspulen 10 eine planare Spulenstruktur 9 bilden.
/ 30
OMX001AT
11/25
Die Emitterspulenll induzieren in bekannter Weise Wirbelströme in der ferromagnetischen Folie 6. Die Stärke und die räumliche Lage (entlang der Messrichtung „x“) dieser Wirbelströme hängt von der variablen Magnetoimpedanz in bestimmten Bereichen der Folie 6 ab und ist umgekehrt proportional zu der lokalen magnetischen Flussdichte B des von dem Maßstab 1 erzeugten Magnetfeldes. Die Empfängerspulen 10 haben im Wesentlichen die gleiche Funktion wie in dem vorherigen Beispiel aus Fig. 5 und erfassen in differentieller Weise die lokal variablen Wirbelströmen in den unmittelbar gegenüberliegenden Bereichen der Folie 6. Dieses Ausführungsbeispiel bietet den Vorteil, dass die ferromagnetische Folie als passives Element realisiert werden kann und das Spulensystem als flexible mehrlagige gedruckte Schaltung implementiert und somit leicht an die Auswertungselektronik angeschlossen werden kann.
Wie bereits angegeben, ist es vorteilhaft für die Positionsmesseinrichtung, dass die Sensorfläche mehrere Perioden des Maßstabs erfasst. Durch die hier beschriebenen Ausführungsbeispiele einer solchen Messeinrichtung mit flexiblen folienartigen Sensoreinheiten 3 lässt sich bei gleichbleibendem Luftspalt d auch eine Messeinrichtung zur Winkelmessung realisieren. Eine exemplarische Implementierung ist in Fig. 7 dargestellt. Die Funktionsweise ist im Wesentlicheren gleich wie bei den bereits beschriebenen linearen Messanordnungen, wobei der Maßstab 1 als Messtrommel (Encoder-Rad, Multipolrad) ausgebildet ist und relativ zu der Abtastkopf 2 rotieren kann.
Die Oberfläche des Abtastkopfes 2 bzw. der Sensoreinheit 3 lässt sich beliebig an jedem Außendurchmesser Encoder-Rades anpassen. Bei anderen Messeinrichtungen, welche ebene, starrte Sensorelemente aufweisen, ist dies nicht ohne weiteres möglich.
Im Allgemeinen können die Länge- und Winkelmesssysteme nach ihrer Arbeitsweise als inkrementelle und absolute Messsysteme klassifiziert werden. Dabei weisen inkrementelle Messeinrichtungen einen lediglich periodisch strukturierten Maßstab 1 auf, und die Positionsinformation kann als Auf- oder Abwärtszählung von Messimpulsen nach einem elektrischen „Reset“ ausgegeben. Im Gegensatz dazu steht bei einer absolut messenden Messeinrichtung zu jedem Zeitpunkt der Messung und unabhängig vor dem vorhergehenden Signalverlauf die Absolutposition des Maßstabs 1 relativ zur Abtastkopf 2 zur Verfügung.
Bei inkrementell arbeitenden Messsystemen kann für die Gewinnung eines oder mehrerer „Referenzpulse“ eine zusätzliche, zu der periodischen Hauptmessspur parallel verlaufende, / 30
OMX001AT
12/25 zweite Spur auf dem Maßstab 1 vorgesehen sein. In allen beschriebenen Ausführungsbeispielen lässt sich diese „Referenzspur“ als beliebige Folge von einzelnen Nord-Süd-Polpaaren umsetzten. Ein in der Sensoreinheit befindlicher Sensor kann in der gleichen Technik realisiert sein wie die Sensorelemente aus den oben beschriebenen Ausführungsbeispielen und kann bei Detektion der Nord-Süd-Polpaare ein entsprechendes Referenzsignal erfassen und ausgeben.
Des Weiteren lässt sich für jedes der hier beschriebenen exemplarischen Messsystemausführungen auch eine die absolute (laterale oder Winkel-) Position erfassende Einrichtung realisieren (siehe Fig. 8).
Für eine Absolutpositionsmessung weist der Maßstab eine Kodierung auf, die eine Absolutposition eindeutig definiert und nach verschiedenen Prinzipien realisiert werden kann. Als Beispiel wurde in Fig. 8 eine sogenannte „Random Code“-Absolutspurausführung dargestellt, wobei der Maßstab 1 eine Reihenfolge von Magnetpolen Nord-Süd mit gleichen oder unterschiedlichen Längen aufweist, sodass im ganzen Messbereich eine bestimmte Kombination (Code) der Länge „L“ nur ein einziges Mal vorkommt. Eine solche Absolutspur kann von jeder der hier beschriebenen Ausführungsbeispiele erfasst werden. Eine gleichmäßige angeordnete Sensorfläche besteht aus differentiell arbeitenden einzelnen Sensorelementen und liefert nach der Signalaufbereitung einen bestimmten Code, z.B. „1101001“, der die Absolutposition an einer einzigen Stelle definiert.
Für das Erreichen einer höheren Positionsauflösung kann selbstverständlich eine Absolutspur in parallel zu einer hochauflösenden Inkrementalspur auf dem Maßstab aufgebracht werden und in bekannter Weise in Kombination ausgewertet werden.
Im Folgenden werden einige Aspekte der hier beschriebenen Ausführungsbeispiele zusammengefasst. Die folgende Aufzählung ist nicht abschließend zu verstehen, sondern lediglich exemplarisch.
Beispiel 1: Eine Messanordnung zur Weg- oder Winkelmessung mit einem Maßstab 1 mit entlang einer Messrichtung x variierenden Magnetisierung, die ein entsprechend variierendes Magnetfeld B bewirkt, und mit mindestens einer Sensoreinheit 2, die von dem Magnetfeld B durchsetzt wird und die folgendes aufweist: mindestens eine ferromagnetische Folie 6, die aufgrund des Magnetoimpedanz-Effektes eine von dem Magnetfeld B anhängige und entlang der Messrichtung x variierende lokale elektrische Impedanz aufweist; und mindestens ein / 30
OMX001AT
13/25
Sensorelement (vgl. z.B. Fig. 3, 5, 6, Ziffern 6, 7, 10), das dazu ausgebildet ist, ein Sensorsignal (z.B. Us+, Us-, Uc+, Uc-) zu erzeugen, das von der lokalen elektrische Impedanz in einem Bereich der Folie 6 abhängt.
Beispiel 2: Die Messeinrichtung gemäß Beispiel 1, die weiter eine Signalquelle 41 (vgl. Fig. 4) aufweist , welche dazu ausgebildet ist, einen Wechselstrom i bereitzustellen, wobei die mindestens eine ferromagnetische Folie 6 mit der Signalquelle verbunden ist, und der Wechselstrom i quer zur Messrichtung x durch die mindestens eine ferromagnetische Folie 6 fließt und im Betrieb eine im konstante Frequenz und eine konstante Amplitude aufweist, und wobei eine resultierende Stromdichte (Verteilung des Wechselstroms i) in der mindestens einen ferromagnetischen Folie 6 aufgrund der variierenden lokalen elektrischen Impedanz entlang der Messrichtung x unterschiedlich hoch ist.
Beispiel 3: Die Messeinrichtung gemäß Beispiel 1, die weiter eine Signalquelle 41 (vgl. Fig. 4) aufweist, welche dazu ausgebildet ist, einen Wechselstrom i bereitzustellen, der in die mindestens eine Folie 6 eingespeist wird, wobei die mindestens eine Folie 6 mindestens zwei Folien umfasst, die entlang der Messrichtung x nebeneinander angeordnet sind, und wobei das mindestens eine Sensorelement (vgl. Fig. 3, Ziffer 6) mindestens zwei Sensorelemente S+, S-, C+, C- umfasst, die durch die Folien selbst gebildet werden, an denen als Sensorsignale Us+, Us-, Uc+, Uc- jeweils eine Spannung quer zur Messrichtung x abgegriffen wird.
Beispiel 4: Die Messeinrichtung gemäß Beispiel 1, die weiter eine Signalquelle 41 (vgl. Fig. 4) aufweist, welche dazu ausgebildet ist, einen Wechselstrom i bereitzustellen, der in die mindestens eine Folie 6 eingespeist wird, wobei das mindestens eine Sensorelement ein magnetfeldempfindliches Halbleitersensorelement oder ein magnetfeldempfindliches Dünnschichtsensorelement ist, welches als Sensorsignal ein Signal erzeugt, das eine magnetische Feldstärke repräsentiert, welche von dem durch die mindestens eine Folie 6 fließenden Wechselstrom bewirkt wird.
Beispiel 5: Die Messeinrichtung gemäß einem der Beispiele 1 bis 4, wobei das mindestens eine Sensorelement eine planare Spule (vgl. Fig. 5, Spulen 10) aufweist.
Beispiel 6: Die Messeinrichtung gemäß einem der Beispiele 1 bis 5, wobei das mindestens eine Sensorelement ein erstes Sensorelement S+ und ein zweites Sensorelement S- umfasst, die entlang der Messrichtung nebeneinander angeordnet sind, und wobei die Sensorsignale / 30
OMX001AT
14/25
Us+, Us- des ersten Sensorelements S+ und des zweiten Sensorelements S- zu einem Differenzsignal verknüpft sind (vgl. Fig. 3 bis 6).
Beispiel 7: Die Messeinrichtung gemäß Beispiel 1, wobei das mindestens eine Sensorelement mindestens eine planare Spule 10 aufweist, wobei die Sensoreinheit 3 weiter mindestens eine Emitterspule 11 aufweist, die mit der Signalquelle 41 verbunden und mit der mindestens einen planaren Spule 10 transformatorisch gekoppelt ist (vgl. Fig. 6) und wobei die mindestens einen Folie 6 als Eisenkern fungiert, in dem Wirbelströme induziert werden, die von der lokalen Impedanz der mindestens einen Folie 6 abhängen.
Beispiel 8: Die Messeinrichtung gemäß einem der Beispiele 1 bis 7, wobei der Maßstab 1 eine regelmäßige Teilung 2·λ aufweist, und wobei das mindestens eine Sensorelement mindestens zwei Sensorelemente aus einer ersten Gruppe und mindestens zwei Sensorelemente aus einer zweiten Gruppe umfasst, wobei die Sensorelemente der ersten Gruppe zueinander einen Abstand aufweisen, der einem Vielfachen der halben Teilung λ entspricht, und wobei die Sensorelemente der zweiten Gruppe relativ zu den Sensorelementen der ersten Gruppe einen Abstand aufweisen der einem Vielfachen der halben Teilung plus einem Viertel der Teilung (d.h. n·λ+λ/4) entspricht.
Beispiel 9: Die Messeinrichtung gemäß einem der Beispiele 1 bis 8, wobei der Maßstab 1 mehrere nebeneinander liegende Spuren aufweist.
Beispiel 10: Die Messeinrichtung gemäß einem der Beispiele 1 bis 9, wobei der Maßstab eine Absolutkodierung aufweist, die eindeutig die Lage des Maßstabes relativ zur Sensoreinheit 2 definiert.
Beispiel 11. Die Messeinrichtung gemäß einem der Beipsiel 1 bis 10, wobei der Maßstab eine Zylinderform aufweist und die Teilung des Maßstabs eine Winkelteilung ist.
Beispiel 12: Ein Verfahren zur Messung der relativen Lage zwischen einem Maßstab 1 und einer vom Maßstab 1 beabstandeten Sensoreinheit 2. Gemäß diesem Beispiel umfasst das Verfahren das Erzeugen eines entlang einer Messrichtung x variierenden Magnetfeldes B mittels des Maßstabes 1, der eine entlang der Messrichtung variierende Magnetisierung aufweist, und weiter das Beeinflussen der lokalen elektrischen Impedanz mindestens einer Folie 6, die in der Sensoreinheit 2 angeordnet ist, wobei die lokale elektrische Impedanz aufgrund des Magnetoimpedanz-Effektes von dem lokalen Magnetfeld und damit von der / 30
OMX001AT
15/25
Lage des Maßstabes 1 relativ zur Sensoreinheit 2 abhängt. Das Verfahren umfasst weiter das Erfassen eines Signals mittels mindestens eines Sensorelementes, welches die lokale elektrische Impedanz in einem Bereich der mindestens einen Folie 6 repräsentiert.
Beispiel 13: Das Verfahren gemäß Beispiel 11, das weiter aufweist: das Einspeisen eines hochfrequenten Wechselstromes in die mindestens eine Folie 6, wobei die Stromdichte entlang der Messrichtung x von der lokalen elektrischen Impedanz der mindestens einen Folie 6 abhängt, und das Demodulieren des mittels des Sensorelementes erfassten Signals.
Beispiel 14: Das Verfahren gemäß Beispiel 13, wobei das Erfassen eines Signals mittels eines Sensorelementes folgendes umfasst: das Abgreifen einer Spannung an der mindestens einer Folie 6, wobei die Spannung von der lokalen Impedanz abhängt oder das Erfassen mittels einer planaren Spule oder eines magnetfeldempfindlichen Halbleiterelementes oder Dünnschichtsensorelements - eines Sensorsignals, das eine magnetische Feldstärke repräsentiert, welche von dem durch die mindestens eine Folie 6 fließenden Wechselstrom bewirkt wird.
Beispiel 15. Das Verfahren gemäß Beispiel 13, wobei die lokale elektrischen Impedanz der mindestens einen Folie 6 durch den durch mindestens eine Emitterspule 11 fließenden Wechselstrom beeinflusst wird, wobei als Sensorelement eine planare Spule verwendet wird, welche mit der Emitterspule 11 transformatorisch gekoppelt ist und die mindestens einen Folie 6 als Eisenkern fungiert.
Sämtliche Beispiele können sowohl in Systemen zur Wegmessung Messung von Verschiebungen oder Position) als auch zur Winkelmessung (bei rotierendem Encoder) eingesetzt werden. Auch ist mit allen Beispielen, je nach Codierung des Maßstabes eine inkrementelle (relative) Messung von (Winkel-) Positionen als auch die Messung einer absoluten (Winkel-) Position möglich.
/ 30
OMX001AT
16/25

Claims (14)

  1. PATENTANSPRÜCHE:
    1. Eine Messanordnung zur Weg- oder Winkelmessung mit einem Maßstab (1) mit entlang einer Messrichtung (x) variierenden Magnetisierung, die ein entsprechend variierendes Magnetfeld (B) bewirkt, und mindestens einem Abtastkopf (2), der abhängig von der relativen Lage zum Maßstab (1) in Messrichtung (x) von dem variierenden Magnetfeld (B) durchsetzt wird und der folgendes aufweist:
    mindestens eine ferromagnetische Folie (6), die aufgrund des Magnetoimpedanz-Effektes eine von dem Magnetfeld (B) anhängige und entlang der Messrichtung (x) variierende lokale elektrische Impedanz aufweist; und mindestens eine Sensoreinheit (3), die dazu ausgebildet ist, mindestens zwei phasenverschobene Sensorsignale (Us, Uc) zu erzeugen, die von der lokalen elektrischen Impedanz der Folie (6) abhängen.
  2. 2. Die Messanordnung gemäß Anspruch 1, die weiter aufweist:
    eine Signalquelle, welche dazu ausgebildet ist, einen Wechselstrom (i) mit konstanter Amplitude und konstanter Frequenz bereitzustellen, der in die mindestens zwei entlang der Messrichtung beanstandet angeordneten Folien (6) eingespeist wird, wobei die Folien (6) selbst als Sensorelemente der Sensoreinheit (3) ausgebildet sind und wobei das entlang der Messrichtung (x) variierende Magnetfeld (B), welches von der Position des Maßstabs (1) relativ zum Abtastkopf (2) abhängt, die Impedanz der Folien (6) beeinflusst, die als Messinformation (Us+, Us-, Uc+, Uc-) ausgewertet wird.
  3. 3. Die Messanordnung gemäß einem der Ansprüche 1 und 2, wobei die lokalen Stromstärken in der ferromagnetischen Folie (6), die aufgrund des Magnetfeldes (B) lokal variieren, von planaren Spulen (10) erfasst werden.
  4. 4. Die Messanordnung gemäß Anspruch 1, die weiter eine Signalquelle aufweist, welche dazu ausgebildet ist, einen Wechselstrom (i) mit konstanter Amplitude und konstanter Frequenz bereitzustellen,
    17 / 30
    OMX001AT
    17/25 wobei die Sensoreinheit (3) mindestens eine Emitterspule (11) aufweist, die mit der Signalquelle verbunden und mit der mindestens einer planaren Empfängerspule (10) transformatorisch gekoppelt ist, und wobei die mindestens eine Folie (6) als Eisenkern fungiert, in der die Emitterspule (11) Wirbelströme induziert, die von der lokalen Impedanz der mindestens einen Folie (6) abhängen.
  5. 5. Die Messanordnung gemäß einem der Ansprüche 1 bis 4 wobei die Bildung jeder der Sensorsignale (Us) und Uc) durch die Differenzbildung von jeweils zwei Messinformationen (Us+, Us-; Uc+, Uc-) erfolgt;
    wobei die zwei Messinformationen (Us+, Us-; Uc+, Uc-) jeweils von mindestens einem Paar einzelner Sensorelemente (S+, S-; C+, C-) generiert werden, die entlang der Messrichtung (x) beabstandet in der Sensoreinheit (3) angeordnet sind.
  6. 6. Die Messanordnung gemäß einem der Ansprüche 1 bis 5, wobei der Maßstab (1) eine regelmäßige Teilung mit einer doppelten Periode (2· λ) aufweist, und wobei die Sensoreinheit (3) mindestens zwei Sensorelemente aus einer ersten Gruppe und mindestens zwei Sensorelemente aus einer zweiten Gruppe umfasst, wobei die Sensorelemente der ersten Gruppe zueinander einen Abstand aufweisen, der etwa einem ungerade Vielfachen der halben Periode ((2n+1)^2) entspricht und wobei die Sensorelemente der zweiten Gruppe relativ zu den Sensorelementen der ersten Gruppe einen Abstand aufweisen der etwa einem Vielfachen der halben Periode plus einem Viertel der Periode (n· λ+λ/4) entspricht.
  7. 7. Die Messanordnung gemäß einem der Ansprüche 1 bis 6, wobei der Maßstab (1) mehrere nebeneinanderliegende magnetische Spuren aufweist.
  8. 8. Die Messanordnung gemäß einem der Ansprüche 1 bis 7, wobei der Maßstab eine Absolutkodierung aufweist, die eindeutig die Lage des Maßstabes relativ zum Abtastkopf (2) definiert.
    18 / 30
    OMX001AT
    18/25
  9. 9. Die Messanordnung gemäß einem der Ansprüche 1 bis 8, wobei der Maßstab eine Zylinderform aufweist und die Teilung des Maßstabs eine Winkelteilung ist.
  10. 10. Die Messanordnung gemäß einem der Ansprüche 1 bis 8, wobei die Funktionsfähigkeit der ferromagnetischen Folie in linear und nichtlinearen Bereich sowie auch in magnetischer Sättigung gegeben ist.
  11. 11. Ein Verfahren zur Messung der relativen Lage zwischen einem Maßstab (1) und einem vom Maßstab (1) beabstandeten Abtastkopf (2); das Verfahren umfasst:
    Erzeugen eines entlang einer Messrichtung (x) variierenden Magnetfeldes (B) mittels des Maßstabes (1), der eine entlang der Messrichtung variierende Magnetisierung aufweist;
    Beeinflussen der lokalen elektrischen Impedanz mindestens einer Folie (6), die in der Sensoreinheit (3) angeordnet ist, wobei die lokale elektrische Impedanz aufgrund des Magnetoimpedanz-Effektes von dem lokalen Magnetfeld und damit von der Lage des Maßstabes (1) relativ zur Sensoreinheit (2) abhängt, sodass mindestens zwei in Phase verschobene Messsignale erzeugt werden;
    Erfassen eines Signals mittels eines Sensorelementes, welches die lokale elektrische Impedanz in einem Bereich der mindestens einer Folie (6) repräsentiert.
  12. 12. Das Verfahren gemäß Anspruch 11, das weiter aufweist:
    Einspeisen eines hochfrequenten Wechselstromes in die mindestens eine Folie (6), wobei die Stromdistribution entlang der Messrichtung (x) von der lokalen elektrischen Impedanz der mindestens einer Folie (6) abhängt, und
    Auswertung, insbesondere Demodulieren, des mittels des Sensorelementes erfassten Signals.
  13. 13. Das Verfahren gemäß Anspruch 12, wobei das Erfassen eines Signals mittels eines Sensorelementes umfasst:
    Abgreifen einer Spannung an der mindestens einer Folie (6), wobei die Spannung von der lokalen Impedanz abhängt oder
    Erfassen - mittels einer planaren Spule oder eines magnetfeldempfindlichen Halbleiterelementes oder Dünnschichtsensorelements - eines Sensorsignals, das eine
    19 / 30
    OMX001AT
    19/25 magnetische Feldstärke repräsentiert, welche von dem durch die mindestens eine Folie (6) lokal fließenden Wechselstrom bewirkt wird.
  14. 14. Das Verfahren gemäß Anspruch 13, wobei die lokale elektrische Impedanz der mindestens einen Folie (6) die den durch mindestens eine Emitterspule (11) induzierten Wirbelströme beeinflusst, wobei als Sensorelement eine planare Empfängerspule (10) verwendet wird, welche mit der Emitterspule (11) transformatorisch gekoppelt ist und die mindestens eine ferromagnetische Folie (6) als Eisenkern fungiert.
    20 / 30
    21/25
    ΟΜΧΟΟΙΑΤ
    Fig. 1
    21/30
    OMX001AT
    22/25
    Fig. 3
    Fig.4
    22 / 30
    OMX001AT
    23/25
    Fig. 5
    23 / 30
    OMX001AT
    24/25
    Fig. 6
    24 / 30
    25/25
    ΟΜΧΟΟΙΑΤ
    Fig. 7
    Fig. 8
    25/30 österreichisches
    Patentamt
ATA50783/2018A 2017-10-12 2018-09-13 Elektromagnetisches Messsystem für die Erfassung von Länge und Winkel basierend auf dem Magnetoimpedanzeffekt AT520709B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020521313A JP7311500B2 (ja) 2017-10-12 2018-10-09 磁気インピーダンス効果を利用した距離及び角度を測定するための電磁計測システム
PCT/AT2018/060240 WO2019071284A1 (de) 2017-10-12 2018-10-09 Elektromagnetisches messsystem für die erfassung von länge und winkel basierend auf dem magnetoimpedanzeffekt
EP18792358.6A EP3695194B1 (de) 2017-10-12 2018-10-09 Elektromagnetisches messsystem für die erfassung von länge und winkel basierend auf dem magnetoimpedanzeffekt
CN201880080182.4A CN111492206B (zh) 2017-10-12 2018-10-09 基于磁阻效应的用于距离或角度测量的电磁测量系统
DE112018004533.1T DE112018004533A5 (de) 2017-10-12 2018-10-09 Elektromagnetisches Messsystem für die Erfassung von Länge und Winkel basierend auf dem Magnetoimpedanzeffekt
US16/755,202 US11512982B2 (en) 2017-10-12 2018-10-09 Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017123772.0A DE102017123772B4 (de) 2017-10-12 2017-10-12 Elektromagnetisches Messsystem für die Erfassung von Länge und Winkel basierend auf dem Magnetoimpedanzeffekt

Publications (2)

Publication Number Publication Date
AT520709A1 true AT520709A1 (de) 2019-06-15
AT520709B1 AT520709B1 (de) 2020-11-15

Family

ID=65909967

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA50783/2018A AT520709B1 (de) 2017-10-12 2018-09-13 Elektromagnetisches Messsystem für die Erfassung von Länge und Winkel basierend auf dem Magnetoimpedanzeffekt

Country Status (4)

Country Link
JP (1) JP7311500B2 (de)
CN (1) CN111492206B (de)
AT (1) AT520709B1 (de)
DE (2) DE102017123772B4 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747664B (zh) * 2020-12-30 2022-06-17 苏州博古特智造有限公司 一种线性磁阻位置传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743508A2 (de) * 1995-05-16 1996-11-20 Mitutoyo Corporation Positionssensor unter Anwendung des Strominduktionsprinzips
DE19953190A1 (de) * 1999-11-05 2001-05-23 Bosch Gmbh Robert Sensoranordnung zur Erfassung eines Drehwinkels
EP1164358A1 (de) * 2000-06-16 2001-12-19 AMO Automatisierung Messtechnik Optik GmbH Induktives Längenmesssystem
US7791331B2 (en) * 2005-02-08 2010-09-07 Continental Automotive France Use of magneto-impedance on a contactless position sensor and corresponding sensor
EP2515086A2 (de) * 2011-04-20 2012-10-24 Dr. Johannes Heidenhain GmbH Positionsmesseinrichtung sowie Maßstab und Verfahren zur Herstellung eines Maßstabs

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323379A (ja) * 1986-03-18 1988-01-30 Victor Co Of Japan Ltd 磁気検出回路
ATE164219T1 (de) * 1994-04-05 1998-04-15 Heidenhain Gmbh Dr Johannes Magnetische positionsmesseinrichtung
JPH08285509A (ja) * 1995-04-19 1996-11-01 Hitachi Metals Ltd リニア式磁気センサ
CH690933A5 (fr) * 1996-01-24 2001-02-28 Hans Ulrich Meyer Capteur inductif de déplacement.
JP3004924B2 (ja) * 1996-11-01 2000-01-31 株式会社ミツトヨ 磁気エンコーダ
AT406715B (de) 1997-09-15 2000-08-25 Newald Herbert Dipl Ing Einrichtung zum erfassen der daten eines magnetisch codierten datenträgers mit einem sensor
EP0989411A3 (de) * 1998-09-25 2004-10-06 Alps Electric Co., Ltd. Magnetoimpedanzeffekt-Element
JP4000056B2 (ja) * 2000-06-27 2007-10-31 テーザ エスエイ 磁気抵抗電極式寸法測定装置
EP1499901A2 (de) * 2002-04-18 2005-01-26 Continental Teves AG & Co. oHG Verfahren und vorrichtung zur erfassung von ortsverschiebungen und drehbewegungen
JP4211278B2 (ja) * 2002-04-25 2009-01-21 神鋼電機株式会社 エンコーダ
DE10308030B4 (de) * 2003-02-24 2011-02-03 Meas Deutschland Gmbh Magnetoresistiver Sensor zur Bestimmung eines Winkels oder einer Position
DE102004017191B4 (de) * 2004-04-07 2007-07-12 Infineon Technologies Ag Vorrichtung und Verfahren zur Ermittlung einer Richtung eines Objekts
JP2006086439A (ja) * 2004-09-17 2006-03-30 Nidec Sankyo Corp 磁気抵抗素子
CN100375890C (zh) * 2005-09-09 2008-03-19 清华大学 含有可调零的gmr芯片的磁位移传感器
DE102007007764A1 (de) * 2007-02-16 2008-08-21 Dr. Johannes Heidenhain Gmbh Drehgeber und Verfahren zu dessen Betrieb
JP4950713B2 (ja) * 2007-03-20 2012-06-13 オークマ株式会社 アブソリュートエンコーダ
DE102009061032A1 (de) * 2009-05-15 2010-11-18 Tyco Electronics Belgium Ec Bvba Magnetoelektronischer Winkelsensor, insbesondere Reluktanzresolver
JP5077717B2 (ja) * 2010-04-12 2012-11-21 村田機械株式会社 磁極検出システム
JP2012083280A (ja) * 2010-10-14 2012-04-26 Minebea Co Ltd 移動体の絶対位置検出装置
JP2012159495A (ja) * 2011-01-10 2012-08-23 Aisan Ind Co Ltd 位置センサ
JP5904811B2 (ja) * 2012-02-08 2016-04-20 愛三工業株式会社 位置センサ
DE102014201975A1 (de) * 2013-08-28 2015-03-05 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor mit einem Sensorelement und Verfahren zur Herstellung des Sensorelements
JP6472175B2 (ja) * 2014-06-09 2019-02-20 Dmg森精機株式会社 位置検出装置
US9562954B2 (en) * 2014-08-06 2017-02-07 Infineon Technologies Ag Maximization of target signal and elimination of backbias component for a differential upright position sensor
CN204203260U (zh) * 2014-11-29 2015-03-11 浙江师范大学 一种基于巨磁阻抗效应的转速传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743508A2 (de) * 1995-05-16 1996-11-20 Mitutoyo Corporation Positionssensor unter Anwendung des Strominduktionsprinzips
DE19953190A1 (de) * 1999-11-05 2001-05-23 Bosch Gmbh Robert Sensoranordnung zur Erfassung eines Drehwinkels
EP1164358A1 (de) * 2000-06-16 2001-12-19 AMO Automatisierung Messtechnik Optik GmbH Induktives Längenmesssystem
US7791331B2 (en) * 2005-02-08 2010-09-07 Continental Automotive France Use of magneto-impedance on a contactless position sensor and corresponding sensor
EP2515086A2 (de) * 2011-04-20 2012-10-24 Dr. Johannes Heidenhain GmbH Positionsmesseinrichtung sowie Maßstab und Verfahren zur Herstellung eines Maßstabs

Also Published As

Publication number Publication date
AT520709B1 (de) 2020-11-15
DE112018004533A5 (de) 2020-05-28
JP7311500B2 (ja) 2023-07-19
DE102017123772A1 (de) 2019-04-18
DE102017123772B4 (de) 2019-06-19
JP2020537152A (ja) 2020-12-17
CN111492206A (zh) 2020-08-04
CN111492206B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
DE102017106322B4 (de) Magnetfelddetektor
DE112012006270B4 (de) Magnetpositions-Erfassungsvorrichtung
DE102012202404B4 (de) Drehwinkelsensor zur absoluten Drehwinkelbestimmung auch bei mehrfachen Umdrehungen
EP0740776B1 (de) Anordnung zur berührungslosen drehwinkelerfassung eines drehbaren elements
DE69938221T2 (de) Positionssensor
EP2221587B1 (de) Absoluter magnetischer Positionsgeber
DE102004017191B4 (de) Vorrichtung und Verfahren zur Ermittlung einer Richtung eines Objekts
EP0852700B1 (de) Vorrichtung zur berührungslosen positionserfassung eines objektes und verwendung der vorrichtung
EP2515084B1 (de) Verfahren für das Erfassen von Bewegungen eines Körpers mittels eines Segmentzählers und eines Feinpositionssensors
DE102018103341A1 (de) Winkelsensor mit störfeldunterdrückung
DE102012223037A1 (de) Induktive Positionsmesseinrichtung
DE19634282A1 (de) Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels
DE102014103588A1 (de) Magnetsensorsystem
DE102007029819A1 (de) Sensor und Sensoranordnung
EP3695194B1 (de) Elektromagnetisches messsystem für die erfassung von länge und winkel basierend auf dem magnetoimpedanzeffekt
DE102019111674A1 (de) Magnetsensor mit einer asymmetrischen Wheatstone-Brücke
DE102014113374B4 (de) Magnetpositionssensor und Erfassungsverfahren
EP1527324B1 (de) Magnetoresistiver sensor
EP3803278B1 (de) Absolutwertgeber
EP2834601B1 (de) Verfahren und anordnung zur positionsbestimmung eines bauteils
DE10012202C2 (de) Einrichtung zur Erfassung von Geschwindigkeit, Bewegungsrichtung und/oder Position eines zu bewegenden Geräteteils
EP2869029A1 (de) Positionsmesseinrichtung
DE10340065A1 (de) Verfahren und Winkelgeber zur Messung der absoluten Winkelposition
DE102004063245B4 (de) Magnetischer Detektor
AT520709B1 (de) Elektromagnetisches Messsystem für die Erfassung von Länge und Winkel basierend auf dem Magnetoimpedanzeffekt