WO2018159764A1 - 抵抗スポット溶接方法 - Google Patents

抵抗スポット溶接方法 Download PDF

Info

Publication number
WO2018159764A1
WO2018159764A1 PCT/JP2018/007809 JP2018007809W WO2018159764A1 WO 2018159764 A1 WO2018159764 A1 WO 2018159764A1 JP 2018007809 W JP2018007809 W JP 2018007809W WO 2018159764 A1 WO2018159764 A1 WO 2018159764A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
spot welding
resistance spot
welding method
steel plates
Prior art date
Application number
PCT/JP2018/007809
Other languages
English (en)
French (fr)
Inventor
公一 谷口
央海 澤西
克利 ▲高▼島
松田 広志
池田 倫正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201880014171.6A priority Critical patent/CN110325313B/zh
Priority to EP18760585.2A priority patent/EP3590645A4/en
Priority to MX2019010321A priority patent/MX2019010321A/es
Priority to JP2018524852A priority patent/JP6372639B1/ja
Priority to KR1020197024833A priority patent/KR102197434B1/ko
Priority to US16/488,703 priority patent/US11298773B2/en
Publication of WO2018159764A1 publication Critical patent/WO2018159764A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0026Welding of thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • B23K11/166Welding of coated materials of galvanized or tinned materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a resistance spot welding method.
  • a resistance spot welding method which is a kind of a lap resistance welding method, is used for joining stacked steel plates.
  • a high current welding current is applied between the upper and lower electrodes while pressing with a pair of electrodes 3 and 4 from above and below with two or more stacked steel plates 1 and 2 sandwiched between them.
  • This is a method of joining by energizing for a short time.
  • a spot-like welded portion 5 is obtained using resistance heat generated by flowing a high-current welding current.
  • This spot-like welded portion 5 is called a nugget and is a portion where both steel plates 1 and 2 are melted and solidified at the contact points of the steel plates when an electric current is passed through the stacked steel plates. Are joined together.
  • the surface-treated steel sheet is a zinc plating typified by electrogalvanizing or hot dip galvanizing (including galvannealed alloying), or a zinc alloy containing elements such as aluminum and magnesium in addition to zinc. It refers to a steel plate having a metal plating layer such as on the surface of a base material (underlying steel plate). Since the melting point of zinc plating or zinc alloy plating is lower than the melting point of the base material of the surface-treated steel sheet, there are the following problems.
  • the cracks in the welded part melted when the low-melting point metal plating layer on the surface of the steel sheet was melted during welding, and when tensile stress due to electrode pressure, thermal expansion and contraction of the steel sheet was applied to the welded part.
  • the low melting point metal is a crack caused by so-called liquid metal embrittlement that penetrates into the crystal grain boundary of the base material of the surface-treated steel sheet to lower the grain boundary strength and cause cracking.
  • the occurrence position of the crack is various, such as the surface of the steel plates 1 and 2 on the side in contact with the electrodes 3 and 4 as shown in FIG.
  • the composition of a steel sheet as a plate assembly is a specific range of composition, specifically, by weight percent, C: 0.003 to 0.01%, Mn: 0 .05-0.5%, P: 0.02% or less, sol. Al: 0.1% or less, Ti: 48 ⁇ (N / 14) to 48 ⁇ ⁇ (N / 14) + (S / 32) ⁇ %, Nb: 93 ⁇ (C / 12) to 0.1%, B: 0.0005 to 0.003%, N: 0.01% or less, Ni: 0.05% or less, the balance Fe and inevitable impurities are proposed.
  • Patent Document 2 is characterized in that, in spot welding of a high-strength plated steel sheet, spot welding is performed by setting a welding energization time and a holding time after welding energization so as to satisfy the following conditions (1) and (2).
  • a spot welding method of high strength plated steel sheet is proposed.
  • welding is performed using a high-tensile galvanized steel sheet in which the energization time and the holding time of the electrode after energization are appropriately set according to the thickness of the steel sheet, and the amount of alloy elements in the steel sheet is below a certain level. It has also been proposed to do.
  • the energization pattern is a multi-stage energization of three or more stages, and an appropriate current range ( ⁇ I: a current range in which a nugget having a desired nugget diameter or more and a molten residual thickness of 0.05 mm or more can be stably formed)
  • ⁇ I a current range in which a nugget having a desired nugget diameter or more and a molten residual thickness of 0.05 mm or more can be stably formed
  • the welding conditions such as energization time and welding current are adjusted so that the cooling time is provided between the stages so that the current becomes 1.0 kA or more, preferably 2.0 kA or more.
  • joints obtained by resistance spot welding are required to have high joint strength such as cross tensile strength (strength when a tensile test is performed in the peeling direction of the joint).
  • the energization pattern is a multi-stage energization of two or more stages, and after energization, post energization without increasing the nugget is performed at a higher current value than the main energization. It has been shown that doing so can improve the cross tensile strength.
  • Patent Document 1 since it is necessary to limit the amount of alloy elements of the steel sheet, there is a problem that the use of the steel sheet that satisfies the required performance is restricted. In particular, the application of the steel sheet is extremely limited under the circumstances where high alloying is progressing with increasing strength.
  • Patent Document 2 proposes only a crack suppressing method when an excessive welding current that causes scattering is set, and does not mention cracking in a state where no scattering occurs.
  • Patent Document 3 there is a problem that many man-hours are required for optimizing the welding conditions, and the method cannot be applied to steel plates and plate assemblies in which it is difficult to ensure an appropriate current range.
  • the present invention has been made in view of the circumstances as described above, and is capable of suppressing the occurrence of cracks in the welded portion according to the striking angle and sufficiently ensuring the joint strength regardless of the steel type.
  • the purpose is to propose a spot welding method.
  • the inventors have made extensive studies in order to achieve the above object. Cracks that occur during welding also occur in a range of welding conditions where no scattering occurs. The occurrence is affected by various factors, and in particular, the striking angle A (degree) during welding (the striking angle refers to the angle at which the axis of the electrode is inclined with respect to the vertical direction of the surface of the steel sheet, FIG. (See below). And in this order, the main energization for forming the nugget part, the non-energization for stopping energization for a predetermined time, and the post-energization for reheating without growing the nugget part, and depending on the size of the striking angle, etc. To energize under specific conditions. Thereby, the knowledge that a crack can be suppressed and joint strength is securable enough was acquired.
  • the effect of the present invention on cracks that occur during welding cannot be simply explained because various factors affect it in a complicated manner, but the basic mechanism is considered as follows.
  • the cause of cracks in the welded part is that the tensile stress described below occurs when the plated metal of the surface-treated steel sheet that has reached a high temperature is in contact with the base material of the surface-treated steel sheet (underlying steel sheet). Is mentioned. In this tensile stress, there is a region where the electrode is locally increased when the electrode is separated from the steel plate after the end of welding.
  • a metal such as zinc on the surface of the steel sheet is alloyed with a metal plating layer or other elements of the steel sheet to increase the melting point, and the solidification upon cooling after reheating is promoted.
  • CTS cross tensile strength
  • the present invention is based on the above knowledge, and the gist is as follows.
  • a resistance spot welding method in which a plate assembly in which a plurality of steel plates are overlapped is sandwiched between a pair of electrodes, and energized while being pressed and joined. At least one of the superposed steel plates is a surface-treated steel plate having a metal plating layer on the surface,
  • a main energization process for energizing to form a nugget portion;
  • a non-energization process in which the energization is suspended for the energization stop time Tc (cycle) after the main energization process;
  • a post-energization step for conducting energization to reheat without growing the nugget part after the non-energization step,
  • the striking angle of the electrode is A (degrees)
  • the current value in the main energization process is Im (kA)
  • the current value in the post-energization process is Ip (kA)
  • 1 + 0.1 ⁇ Tc is a variable B, 1
  • FIG. 1 is a diagram schematically illustrating an example of a resistance spot welding method.
  • FIG. 2 is a diagram showing a striking angle in the resistance spot welding method.
  • the present invention is a resistance spot welding method in which a plate set in which a plurality of steel plates are overlapped is sandwiched between a pair of electrodes and energized while being pressed and joined, and at least one of the plurality of stacked steel plates is: It is a surface-treated steel sheet having a metal plating layer on its surface, and energization is suspended during energization pause time Tc (cycle (cyc)) after energization and main energization process for energizing to form a nugget portion as energization.
  • Tc cycle
  • the electrode striking angle is A (degrees)
  • the current value of the main energization process is Im ( kA)
  • the current value in the post-energization process is Ip (kA)
  • 1 + 0.1 ⁇ Tc is variable B
  • 1 + 0.2 ⁇ Tc is variable C
  • the energization satisfies the relationship of the following formula (I) It is.
  • FIG. 1 schematically shows an example of a resistance spot welding method, and shows an example of resistance spot welding of two steel plates.
  • FIG. 2 is a diagram showing a striking angle in the resistance spot welding method.
  • the present invention is a resistance spot welding method in which a plate assembly in which a plurality of steel plates are overlapped is sandwiched between a pair of electrodes and is energized and joined while being pressed.
  • a plurality of steel plates (steel plate 1, steel plate 2) are overlapped to form a plate set.
  • At least one steel plate to be resistance spot welded is a surface-treated steel plate having a metal plating layer on the surface.
  • the metal plating layer preferably has a melting point lower than the melting point of the base material of the surface-treated steel sheet. If it is a general metal plating layer, melting
  • the melting point of the base material (underlying steel plate) is 1400 to 1570 ° C.
  • the melting point of the metal plating layer is 300 to 1200 ° C.
  • a metal plating layer is not specifically limited, For example, a Zn type plating layer and an Al type plating layer are mentioned.
  • the Zn-based plating layer is superior to the Al-based plating layer. This is because the corrosion rate of the base steel sheet can be reduced by the sacrificial anticorrosive action of zinc (Zn).
  • Zn-based plating layer general hot-dip galvanizing (GI), alloyed hot-dip galvanizing (GA), electrogalvanizing (EG), Zn-Ni-based plating (for example, containing 10 to 25% by mass of Ni) Examples thereof include Zn—Ni plating, Zn—Al plating, Zn—Mg plating, and Zn—Al—Mg plating.
  • Al-based plating layer examples include Al—Si based plating (for example, Al—Si based plating containing 10 to 20% by mass of Si).
  • the metal plating layer only needs to be provided on one side of the surface-treated steel sheet, but may be provided on both sides. Moreover, the metal plating layer may be provided on the surface of the side which becomes the joint surface (mating surface) between the steel plates, the metal plating layer may be provided on the surface in contact with the electrode, The metal plating layer may be provided on the surface on the side to be the bonding surface and the surface in contact with the electrode.
  • the adhesion amount of a metal plating layer is also arbitrary, it is preferable that it is 120 g / m ⁇ 2 > or less per one surface from a viewpoint of weldability.
  • the steel type (component composition) of the steel sheet to be resistance spot welded in the present invention is not particularly limited, and the steel sheet production method is arbitrary such as cold rolling and hot rolling, and the structure of the steel sheet is also arbitrary. Moreover, there is no problem even if a hot-pressed steel sheet is used. Further, the thickness of the steel plate is not particularly limited, but is preferably in a range (about 0.5 to 4.0 mm) that can be used for a general automobile body.
  • At least one of the steel plates is a high strength steel plate having a tensile strength of 590 MPa or more, more preferably 780 MPa or more. Since cracks are likely to occur when the tensile strength is increased, the present invention is applied to a plate assembly in which at least one steel plate of the plate assembly has a tensile strength of 590 MPa or more. The effect of this is remarkably obtained. In particular, a greater effect can be obtained when at least one of the steel plates of the plate set has a tensile strength of 780 MPa or more.
  • the plurality of steel plates to be stacked may be the same or different, and a plurality of the same type steel plates may be stacked or a plurality of different types of steel plates may be stacked. Further, there is no problem even if the thickness of each steel plate is different, and a surface-treated steel plate having a metal plating layer and a steel plate not having a metal plating layer may be overlapped. In addition, in FIG. 2, although the example which piled up two steel plates was shown, you may pile up three or more steel plates.
  • a plate set in which a plurality of steel plates are overlapped is sandwiched between a pair of welding electrodes (electrode 3 and electrode 4), energized while being pressed, and then the electrodes are released from the steel plate.
  • a welding apparatus that can be used in the resistance spot welding method of the present invention, a welding apparatus that includes a pair of upper and lower electrodes and can arbitrarily control the pressure and welding current during welding can be used.
  • the pressure mechanism air cylinder, servo motor, etc.
  • type stationary, robot gun, etc.
  • electrode shape, etc. of the welding apparatus there are no particular limitations on the pressure mechanism (air cylinder, servo motor, etc.), type (stationary, robot gun, etc.), electrode shape, etc. of the welding apparatus.
  • the present invention can be applied to both direct current and alternating current, and the type of power source (single-phase alternating current, alternating current inverter, direct current inverter) and the like are not particularly limited.
  • current means “effective current”.
  • the shape of the electrode is not particularly limited.
  • the type of the electrode tip is, for example, DR type (dome radius type), R diameter (radius type), D type (dome type) described in JIS C 9304: 1999.
  • the tip diameter of the electrode is, for example, 4 mm to 16 mm, and the radius of curvature of the tip of the electrode is, for example, 10 mm to 100 mm.
  • resistance spot welding is performed in a state where the electrode is always water-cooled.
  • a plate assembly in which a plurality of steel plates (steel plate 1 and steel plate 2) are overlapped is sandwiched between a pair of welding electrodes (electrode 3 and electrode 4), energized while being pressed, and a nugget is formed by resistance heat generation.
  • a joint is obtained by joining the steel plates stacked together.
  • this energization has a specific pattern, that is, a main energization process, a non-energization process after the main energization process, and a post-energization process after the de-energization process. Note that energization is stopped after the post-energization step.
  • the main energization step is a step of forming a nugget portion that becomes the nugget 5 when solidified.
  • the energizing conditions and pressurizing conditions for forming the nugget portion are not particularly limited, and conventionally used welding conditions can be employed.
  • the “nugget” is a melt-solidified portion generated in a welded portion in lap resistance welding, and the “nugget portion” is a melted portion that becomes a nugget when solidified (that is, a melted portion before solidification).
  • the non-energization process is a process that is performed subsequent to the main energization process and is de-energized during the energization stop time Tc (cycle). By stopping energization, the nugget portion is cooled.
  • One cycle is 20 ms (50 Hz).
  • the post-energization process is a process that is performed following the non-energization process and is reheated without growing the nugget portion.
  • the striking angle of the electrode is A (degrees)
  • the current value in the main energization process is Im (kA)
  • the current value in the post-energization process is Ip (kA)
  • 1 + 0.1 ⁇ Tc is the variable B
  • 1 + 0.2 ⁇ Tc is a variable C
  • the welding condition satisfies the relationship of the above formula (I).
  • the striking angle A is an angle at which the axis of the electrode 3 is inclined with respect to the vertical direction of the surface of the steel plate 1 shown in FIG. 2, that is, “the electrode pressing direction and the steel plate thickness direction. "An angle formed by".
  • the direction of electrode pressing force is indicated by an arrow in the spot welding diagram described in 4.2.1 of JIS Z 3001-6: 2013, and is also indicated by an arrow in FIG. .
  • the main energization process for forming the nugget part, the non-energization process for stopping energization for a predetermined time, and the post-energization process for reheating without growing the nugget part in this order, and the striking angle A By conducting energization under specific conditions according to the size of the crack, even when the striking angle A is greater than 0 degrees, for example, when the striking angle A is 0.2 (degrees) or more, cracking can be suppressed, and The joint strength can be sufficiently secured.
  • the striking angle A is preferably 15 degrees or less from the viewpoint of securing the welded portion. This is because the formation of the weld itself becomes difficult when the angle exceeds 15 degrees.
  • the striking angle A exceeds 0 degrees and less than 3 degrees, the bending stress applied to the welded portion by the striking angle is relatively small, so the tensile stress generated in the welded portion after the electrode is released does not become so large. That is, the alloying of a metal such as molten zinc, which is a plating layer on the steel sheet surface, may be limited.
  • the striking angle A is 3 degrees or more and less than 7 degrees
  • the allowance (increase) in the tensile stress generated in the weld after the electrode is released becomes significant. For this reason, it is necessary to promote alloying by performing a post-energization process with a higher current.
  • the striking angle A When the striking angle A is in the range of 7 degrees or more and less than 15 degrees, the tensile stress generated in the welded portion becomes very large. Therefore, it is necessary to promote alloying by performing a higher current post-energization process. .
  • action of alloying by post-energization reheating
  • the energization stop time cooling time
  • welding itself becomes difficult. Therefore, in the above formula (I), when the striking angle A is 15 degrees or more, it is preferable to review the welding method.
  • the post-energization current in the post-energization process is defined by the ratio with the main energization, and the upper limit is determined in relation to Tc.
  • the relational expression shown in the above formula (I) was found. About the coefficient in a relational expression, the optimal coefficient was calculated
  • the above formula (I) preferably satisfies the relationship shown below.
  • the stability of the fracture form means whether or not the plug fracture during the cross tension test can be stably obtained.
  • the total thickness of the superposed steel plates (total thickness of the superposed steel plates) is t (mm), and the tip of the electrode
  • D the diameter of the electrode tip
  • the striking angle A exceeds 0 degrees and less than 3 degrees, the bending stress applied to the welded portion by the striking angle is relatively small, so the tensile stress generated in the welded portion after the electrode is released does not become so large. . Therefore, the alloying of a metal such as molten zinc, which is a plating layer on the steel sheet surface, may be limited. Thereby, even if energization stop time Tc (cycle) in a non-energization process is lengthened, the effect of the crack suppression by a post-energization process can be acquired.
  • the striking angle A is 3 degrees or more and less than 7 degrees
  • the allowance (increase) in the tensile stress generated in the weld after the electrode is released becomes significant.
  • the post-energization process with a higher current is performed, and the energization stop in the non-energization process before the post-energization process is further shortened compared to the case where the hitting angle A is in the range of 0 degrees and less than 3 degrees. It is preferable to promote alloying by limiting. Thereby, the action of alloying can be obtained effectively.
  • the striking angle A is in the range of 7 degrees or more and less than 15 degrees
  • the tensile stress generated in the welded portion is very large.
  • the effect of alloying by post-energization (reheating) can be effectively obtained by limiting the length to be shorter than that in the range of 7 degrees or more and less than 15 degrees.
  • the nugget may be rapidly cooled and hardened, and the toughness may be reduced.
  • the above formula (II) quenching and hardening of the nugget is suppressed.
  • the energization stop time Tc (cycle) in the non-energization process Preferably, it is 4 cycles (50 Hz) or more.
  • Tc cycle
  • the non-energization process is too long, the welded portion is excessively cooled, and the specific resistance is lowered, so that it is difficult to obtain the effect of the post-energization process.
  • the non-energization process which is too long also has the effect of increasing the welding tact.
  • the tip diameter D (mm) of the electrode is not particularly limited, and is preferably 6 mm to 8 mm, for example. If it is less than 6 mm, sufficient nugget may not be obtained. On the other hand, if it exceeds 8 mm, there is a risk of electrode wear during process welding.
  • welding is performed so as to satisfy the above-described formula (I), or formula (I) and formula (II), for example, depending on the electrode striking angle A (degree).
  • the energization stop process and the post-energization process described above may be repeated twice or more in this order.
  • the energization stop process and the post-energization process described above may be repeated twice or more in this order.
  • alloying on the steel sheet surface is promoted, and the effect of suppressing cracking can be further improved.
  • the number of repetitions increases, the manufacturing cost increases. Therefore, it is preferably 1 to 9 times from the viewpoint of construction efficiency.
  • the welding current value (current value when energized) in the present invention is not particularly limited, and the welding current is, for example, 4 to 18 kA. However, since it is necessary to obtain a predetermined nugget diameter in construction, an excessive current value causes scattering, so the current value Im (kA) in the main energization process is, for example, 4 to 11 kA, The current value Ip (kA) is, for example, 5 to 12 kA.
  • the applied pressure is preferably, for example, 2000 N to 7000 N (2 kN to 7 kN).
  • the time from the start of energization to the end of energization is not particularly limited, and is preferably 8 to 30 cycles (50 Hz) in the main energization process, and preferably 3 to 10 cycles (50 Hz) in the post-energization process. .
  • a welded joint in which a plurality of steel plates including at least one surface-treated steel plate having a metal plating layer on its surface are welded.
  • a step of superimposing a plurality of steel plates including at least one surface-treated steel plate having a metal plating layer on the surface to obtain a plate set, and a step of welding the obtained plate set by the resistance spot welding method A welded joint can be manufactured by the manufacturing method having the following.
  • FIG. 1 shows the tensile strength TS, plate thickness, and plating type of the steel plate used.
  • Table 1 shows the tensile strength TS, plate thickness, and plating type of the steel plate used.
  • the welding conditions are shown in Table 2-1, Table 2-2, and Table 2-3.
  • the welding machine was an inverter DC resistance spot welder, and the two electrodes 3 and 4 were of the same shape.
  • the electrodes 3 and 4 used are DR type chromium copper electrodes having a tip diameter D (mm) and a curvature radius of 40 mm shown in Table 2. Resistance spot welding was performed at room temperature (20 ° C.), and the electrode was always water-cooled.
  • the applied pressure (kN) was constant throughout the main energization process, the non-energization process, and the post-energization process.
  • the holding time after the end of the post-energization process was set to 5 ms under all welding conditions.
  • the melting point of the base material of each steel plate in this example and the comparative example is in the range of 1400 to 1570 ° C.
  • the melting point of hot dip galvanizing (GI) and galvannealed alloy (GA) is 400 to 500 ° C., respectively.
  • the range is 600 to 950 ° C.
  • the tensile strength TS (MPa) shown in Table 1 is a tensile test in accordance with the provisions of JIS Z 2241: 2011 by preparing a JIS No. 5 tensile specimen from each steel plate in a direction parallel to the rolling direction. Is the tensile strength obtained by carrying out
  • the rupture mode is the plug rupture
  • the fracture to the base material progresses and the ratio represented by the rupture part diameter / melt part diameter is 110% or more, symbol ⁇ , rupture part diameter / melt part
  • the case where the ratio represented by the diameter was 100% or more and less than 110% was a symbol ⁇
  • the ratio represented by the fracture part diameter / melted part diameter was a partial plug fracture or an interface fracture at the nugget of less than 100%.
  • the case was evaluated as a symbol x.
  • (3) Evaluation of stability of rupture mode in CTS In the evaluation result of (2) above, rupture at the time of CTS was further performed for the case where the ratio represented by the rupture part diameter / melted part diameter was 110% or more. The stability of the form was evaluated.
  • Evaluation A 10 out of 10 bodies represented by a fracture part diameter / melting part diameter is 115% or more
  • Evaluation B 5 to 9 out of 10 bodies are represented by a fracture part diameter / melting part diameter
  • Tables 2-1 and 2 -2 and Table 2-3 The results obtained when the ratio represented by the fracture part diameter / melting part diameter is 115% or more are shown in Tables 2-1 and 2 -2 and Table 2-3.

Abstract

鋼種に関わらず、打角に応じて溶接部の割れ発生を抑制することができ且つ継手強度を十分確保可能である抵抗スポット溶接方法を提供する。複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、重ね合わせた複数の鋼板のうち少なくとも1枚は、表面に金属めっき層を有する表面処理鋼板であり、通電として、ナゲット部を形成する通電を行なう主通電工程と、主通電工程の後に通電休止時間Tc(サイクル)の間通電を休止する無通電工程と、無通電工程の後にナゲット部を成長させずに再加熱する通電を行なう後通電工程とを有し、電極の打角をA(度)、主通電工程の電流値をIm(kA)、後通電工程の電流値をIp(kA)、1+0.1・Tcを変数B、1+0.2・Tcを変数Cとしたとき、通電は、下記式(I)の関係を満たす。 式(I) 0<A<3の場合は、(22+A)・B/100<Ip/Im<C 3≦A<7の場合は、(17+A)・B/80<Ip/Im<C 7≦A<15の場合は、(11+A)・B/60<Ip/Im<C

Description

抵抗スポット溶接方法
 本発明は、抵抗スポット溶接方法に関する。
 一般に、重ね合わせた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接方法が用いられている。この溶接法は、図1に示すように、重ね合わせた2枚以上の鋼板1、2を挟んでその上下から一対の電極3、4で加圧しつつ、上下電極間に高電流の溶接電流を短時間通電して接合する方法である。高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部5を得る。この点状の溶接部5はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板1、2が溶融し、凝固した部分であり、これにより鋼板同士が点状に接合される。
 しかしながら、表面処理鋼板を含む複数の鋼板を重ね合わせた板組のスポット溶接においては、溶接部に割れが生じることがあるという問題があった。ここで、表面処理鋼板とは、電気亜鉛めっき、溶融亜鉛めっき(合金化溶融亜鉛めっきを含む)に代表される亜鉛めっきや、亜鉛の他にアルミニウムやマグネシウムなどの元素を含んだ亜鉛合金のめっきなどの金属めっき層を母材(下地鋼板)の表面に有する鋼板を言う。亜鉛めっきや亜鉛合金めっきの融点は、表面処理鋼板の母材の融点よりも低いため以下のような問題がある。
 すなわち、上記溶接部の割れは、溶接中に鋼板表面の低融点の金属めっき層が溶融し、電極の加圧力や鋼板の熱膨張、収縮による引張応力が溶接部に加わった際に、溶融した低融点金属が表面処理鋼板の母材の結晶粒界に侵入して粒界強度を低下させ、割れを引き起こす、いわゆる液体金属脆性に起因する割れであると考えられる。割れの発生位置は、図1のような電極3、4と接する側の鋼板1、2の表面や、鋼板同士が接する側の鋼板1、2の表面など、様々である。
 このような割れの対策として、例えば特許文献1では、板組である鋼板の組成を特定範囲の組成、具体的には、重量%で、C:0.003~0.01%、Mn:0.05~0.5%、P:0.02%以下、sol.Al:0.1%以下、Ti:48×(N/14)~48×{(N/14)+(S/32)}%、Nb:93×(C/12)~0.1%、B:0.0005~0.003%、N:0.01%以下、Ni:0.05%以下、残部Feおよび不可避的不純物からなる組成とすることが提案されている。
 特許文献2には、高強度めっき鋼板のスポット溶接において、下記条件(1)および(2)を満足させるように溶接通電時間および溶接通電後の保持時間を設定してスポット溶接を行うことを特徴とする高強度めっき鋼板のスポット溶接方法が提案されている。また、特許文献2では、鋼板の板厚に応じて通電時間および通電後の電極の保持時間を適切に設定し、鋼板中の合金元素量が一定以下となる高張力亜鉛めっき鋼板を用いて溶接を行うことも提案されている。
0.25・(10・t+2)/50≦WT≦0.50・(10・t+2)/50 ・・(1)
300-500・t+250・t2≦HT ・・(2)
ただし、t:板厚(mm)、WT:溶接通電時間(ms)、HT:溶接通電後の保持時間(ms)
 特許文献3では、通電パターンを3段以上の多段通電とし、適正電流範囲(ΔI:所望のナゲット径以上で、かつ溶融残厚が0.05mm以上であるナゲットを安定して形成できる電流範囲)が1.0kA以上、好ましくは2.0kA以上となるように、通電時間、溶接電流等の溶接条件を調整し、各段の間に冷却時間を設ける方法が提案されている。
 また、抵抗スポット溶接で得られる継手には、十字引張強さ(継手の剥離方向に引張試験をしたときの強さ)等の継手強度が高いことも求められている。
 このような高い継手強度を達成するための技術として、特許文献4では、通電パターンを2段以上の多段通電とし、ナゲット形成後に、ナゲットを増加させない後通電を、主通電よりも高い電流値で行うことにより、十字引張強さを向上できることが示されている。
特開平10-195597号公報 特開2003-103377号公報 特開2003-236676号公報 特開2010-115706号公報
 しかしながら、特許文献1では鋼板の合金元素量を限定する必要があるため、要求性能を満たす鋼板の使用が制限されるなどの課題がある。特に最近の鋼板での、高強度化に伴って高合金化が進んでいる状況下では、その適用は極めて制限される。特許文献2では、散りが発生するような過大な溶接電流を設定した際の割れ抑制方法のみが提案されており、散りが発生しない状態での割れについては言及されていない。特許文献3では、溶接条件の適正化に多くの工数が必要であり、また適正電流範囲の確保が困難な鋼板および板組に対しては適用できないという課題があった。また、特許文献4では、上記のような割れについては言及されておらず、割れの抑制と十字引張強さの両立が可能な条件については記載されていない。そして、特許文献1~4では、電極の打角による影響については検討されていないため、自動車組立て時の実際の施工を考慮すると、対策としては不十分な場合があった。
 本発明は、上記のような事情に鑑みてなされたものであり、鋼種に関わらず、打角に応じて溶接部の割れ発生を抑制することができ、且つ継手強度を十分確保可能である抵抗スポット溶接方法を提案することを目的とする。
 発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。溶接時に発生する割れは、散りが発生しない溶接条件範囲でも発生する。その発生は種々の要因の影響を受けるが、特に溶接時の打角A(度)(打角とは、鋼板の表面の垂直方向に対して電極の軸芯が傾く角度をいう、図2を参照)に大きな影響を受けることを知見した。そして、ナゲット部を形成する主通電と、所定時間通電を休止する無通電と、ナゲット部を成長させずに再加熱する後通電とをこの順に有し、且つ、打角の大きさ等に応じて通電を特定条件で行なう。これにより、割れを抑止でき、且つ、継手強度を十分に確保可能であるとの知見を得た。
 溶接時に発生する割れに対する本発明の効果は、種々の因子が複雑に影響しているため単純には説明できないが、基本的なメカニズムは以下のように考えられる。溶接部の割れが発生する原因としては、高温になった表面処理鋼板のめっき金属が、表面処理鋼板の母材(下地鋼板)と接している状態で、以下に説明する引張応力が発生することが挙げられる。この引張応力には、溶接終了後に電極が鋼板から離れることで局部的に大きくなる領域が存在する。
 通電中に溶接部5の膨張によって、溶接部周囲が圧縮変形した後、通電終了後の冷却により凝固収縮が生じるが、電極3、4に加圧されている間は、その加圧力により拘束されることによって応力は圧縮状態、あるいは引張状態であったとしても応力が緩和される。しかし、電極加圧力による拘束から解放されると、引張応力が局所的に大きくなる領域が発生し、この領域で割れが発生すると考えられる。
 また種々の外乱がある状態で割れの評価を行った結果、打角A(度)がある場合、特に打角A(度)が大きい場合に、割れが発生しやすくなることが分かった。これは打角があると、溶接部に曲げ応力が加わり、局所的に大きな圧縮塑性変形が生じることで、電極解放後の引張応力が非常に大きくなることが原因と考えられる。前述のように、引張応力が溶接部に加わった際に、溶融した低融点金属が鋼板の結晶粒界に侵入して粒界強度を低下させ、割れを引き起こす。
 このとき、適切に再加熱を行うことにより、鋼板表面の亜鉛等の金属を金属めっき層あるいは鋼板の他元素と合金化して融点を上昇させ、再加熱後の冷却時の凝固を促進し、鋼板の結晶粒界に侵入して粒界強度を低下させてしまう溶融亜鉛等の溶融金属を減じる。これにより割れを抑制できるとの知見を得た。さらに、この時の再加熱条件を制御することにより、ナゲットを改質し、十字引張強さ(CTS)を向上できるとの知見を得た。
 本発明は以上のような知見に立脚するものであり、要旨は以下のとおりである。
 [1] 複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
 重ね合わせた複数の鋼板のうち少なくとも1枚は、表面に金属めっき層を有する表面処理鋼板であり、
 通電として、ナゲット部を形成する通電を行なう主通電工程と、
主通電工程の後に通電休止時間Tc(サイクル)の間通電を休止する無通電工程と、
無通電工程の後にナゲット部を成長させずに再加熱する通電を行なう後通電工程とを有し、
 電極の打角をA(度)、主通電工程の電流値をIm(kA)、後通電工程の電流値をIp(kA)、1+0.1・Tcを変数B、1+0.2・Tcを変数Cとしたとき、前記通電は、下記式(I)の関係を満たす抵抗スポット溶接方法。
式(I)
0<A<3の場合は、(22+A)・B/100<Ip/Im<C
3≦A<7の場合は、(17+A)・B/80<Ip/Im<C
7≦A<15の場合は、(11+A)・B/60<Ip/Im<C
 [2] 重ね合わせた複数の鋼板の総板厚をt(mm)、電極の先端径をD(mm)としたとき、前記無通電工程は、下記式(II)の関係を満たす[1]に記載の抵抗スポット溶接方法。
式(II)
0<A<3の場合は、0<Tc<(103-A)・t/D
3≦A<7の場合は、0<Tc<5・(23-A)・t/D
7≦A<15の場合は、0<Tc<8・(17-A)・t/D
 [3] 前記主通電工程の後に、前記無通電工程および前記後通電工程をこの順で2回以上繰り返す[1]または[2]に記載の抵抗スポット溶接方法。
 [4] 重ね合わせた複数の鋼板のうち少なくとも1枚は、引張強さが590MPa以上である[1]~[3]のいずれか1つに記載の抵抗スポット溶接方法。
 本発明によれば、鋼種に関わらず、溶接部の割れ発生を抑制し、高い継手強度を得ることができる抵抗スポット溶接方法を提供することができる。
図1は、抵抗スポット溶接方法の一例を模式的に示す図である。 図2は、抵抗スポット溶接方法における打角を示す図である。
 以下、本発明を具体的に説明する。
 本発明は、複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法であって、重ね合わせた複数の鋼板のうち少なくとも1枚は、表面に金属めっき層を有する表面処理鋼板であり、通電として、ナゲット部を形成する通電を行なう主通電工程と、主通電工程の後に通電休止時間Tc(サイクル(cyc))の間通電を休止する無通電工程と、無通電工程の後にナゲット部を成長させずに再加熱する通電を行なう後通電工程とを有し、電極の打角をA(度)、主通電工程の電流値をIm(kA)、後通電工程の電流値をIp(kA)、1+0.1・Tcを変数B、1+0.2・Tcを変数Cとしたとき、前記通電は、下記式(I)の関係を満たすものである。
式(I)
0<A<3の場合は、(22+A)・B/100<Ip/Im<C
3≦A<7の場合は、(17+A)・B/80<Ip/Im<C
7≦A<15の場合は、(11+A)・B/60<Ip/Im<C
 本発明を図1および図2を用いて以下に具体的に説明する。図1は抵抗スポット溶接方法の一例を模式的に示す図であり、2枚の鋼板の抵抗スポット溶接を行う例を示している。図2は、抵抗スポット溶接方法における打角を示す図である。
 本発明は、複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法である。まず、図2に示すように、複数の鋼板(鋼板1、鋼板2)を重ね合わせて板組とする。
 本発明において抵抗スポット溶接する鋼板は、少なくとも1枚が、表面に金属めっき層を有する表面処理鋼板である。金属めっき層の融点は、表面処理鋼板の母材の融点よりも低いものを対象とすることが好ましい。一般的な金属めっき層であれば、鋼板よりも融点は低い。例えば、母材(下地鋼板)の融点は1400~1570℃であり、金属めっき層の融点は300~1200℃である。金属めっき層は特に限定されないが、例えばZn系めっき層やAl系めっき層が挙げられる。耐食性が必要とされる部材では、Al系めっき層に比べて、Zn系めっき層が優れている。これは、亜鉛(Zn)の犠牲防食作用により、下地鋼板の腐食速度を低下することができるためである。Zn系めっき層としては、一般的な溶融亜鉛めっき(GI)、合金化溶融亜鉛めっき(GA)、電気亜鉛めっき(EG)、Zn-Ni系めっき(例えば、10~25質量%のNiを含むZn-Ni系めっき)、Zn-Al系めっき、Zn-Mg系めっき、Zn-Al-Mg系めっきなどが例示できる。また、Al系めっき層としては、Al-Si系めっき(例えば、10~20質量%のSiを含むAl-Si系めっき)などが例示できる。金属めっき層は表面処理鋼板の片面に設けられていればよいが、両面に設けられていてもよい。また、鋼板同士の接合面(合わせ面)となる側の表面に金属めっき層が設けられていてもよく、電極と接する側の表面に金属めっき層が設けられていてもよく、また、鋼板同士の接合面となる側の表面および電極と接する側の表面に金属めっき層が設けられていてもよい。金属めっき層の付着量も任意であるが、溶接性の観点からは片面あたり120g/m以下であることが好ましい。本発明で抵抗スポット溶接する鋼板の鋼種(成分組成)は、特に限定されず、また、鋼板の製造方法は冷間圧延、熱間圧延など任意であり、鋼板の組織も同様に任意である。また、熱間プレスされた鋼板を用いても何ら問題ない。また、鋼板の板厚についても特に限定はないが、一般的な自動車車体に用いられ得る範囲(0.5~4.0mm程度)であることが好ましい。
 また、鋼板のうち少なくとも1枚が、引張強さが590MPa以上、さらには780MPa以上である高強度鋼板であることが好ましい。引張強さが大きくなると割れが発生しやすくなるため、板組の鋼板のうち少なくとも1枚の鋼板が引張強さ:590MPa以上である板組に対して、本発明を適用することで、本発明の効果が顕著に得られる。特に、板組の鋼板のうち少なくとも1枚が、引張強さが780MPa以上である場合に、より大きな効果を得ることができる。
 重ね合わせる複数の鋼板は、同じでも異なっていてもよく、同種鋼板を複数枚重ねてもよいし、あるいは異種鋼板を複数枚重ねてもよい。また各鋼板の板厚が異なっても何ら問題ないし、金属めっき層を有する表面処理鋼板と金属めっき層を有さない鋼板を重ね合わせてもよい。なお、図2においては、2枚の鋼板を重ね合わせた例を示したが、3枚以上の鋼板を重ね合わせてもよい。
 次いで、複数の鋼板を重ね合わせた板組を、一対の溶接電極(電極3および電極4)で挟み、加圧しながら通電した後に、電極を鋼板から解放する。本発明の抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能な溶接装置を用いることができる。溶接装置の加圧機構(エアシリンダやサーボモータ等)、形式(定置式、ロボットガン等)、および電極形状等はとくに限定されない。また、直流、交流のいずれにも本発明を適用でき、電源の種類(単相交流、交流インバータ、直流インバータ)などは、特に限定されるものではない。ここで交流の場合は、「電流」は「実効電流」を意味する。電極の形状等も特に限定されない。電極先端の形式は、例えばJIS C 9304:1999に記載されるDR形(ドームラジアス形)、R径(ラジアス形)、D形(ドーム形)等である。電極の先端径は、例えば4mm~16mmであり、また電極の先端の曲率半径は、例えば10mm~100mmである。なお、電極が常に水冷されている状態で抵抗スポット溶接を行う。
 このように、複数の鋼板(鋼板1および鋼板2)を重ね合わせた板組を、一対の溶接電極(電極3および電極4)で挟み、加圧しながら通電して、抵抗発熱によりナゲットを形成すると共に重ね合わせた鋼板を接合することで、継手が得られる。
 本発明においては、この通電を特定パターン、すなわち、主通電工程と、主通電工程の後の無通電工程と、無通電工程の後の後通電工程とを有するものとする。なお、後通電工程終了後は、通電を停止する。
 主通電工程は、凝固するとナゲット5となるナゲット部を形成する工程である。そのナゲット部を形成するための通電条件、加圧条件は特に限定されず、従来から用いられている溶接条件を採用することができる。なお、「ナゲット」とは、重ね抵抗溶接において溶接部に生じる溶融凝固した部分であり、「ナゲット部」とは、凝固するとナゲットになる溶融部(すなわち凝固する前の溶融部)である。
 無通電工程は、主通電工程に続いて行なわれ、通電休止時間Tc(サイクル)の間通電を休止する工程である。通電が休止されることで、ナゲット部が冷却される。なお、1サイクルは20ms(50Hz)である。
 後通電工程は、無通電工程に続いて行なわれ、ナゲット部を成長させずに再加熱する工程である。
 そして、本発明においては、電極の打角をA(度)、主通電工程の電流値をIm(kA)、後通電工程の電流値をIp(kA)、1+0.1・Tcを変数B、1+0.2・Tcを変数Cとしたとき、上記式(I)の関係を満たす溶接条件とする。ここで、打角Aとは、上述したように、図2に示す鋼板1の表面の垂直方向に対して電極3の軸芯が傾く角度、すなわち、「電極加圧力方向と鋼板板厚方向との成す角度」を意味する。なお、電極加圧力方向は、JIS Z 3001-6:2013の4.2.1に記載されるスポット溶接の図において矢印で示されているものであり、図2においても矢印で記載してある。このように、ナゲット部を形成する主通電工程と、所定時間通電を休止する無通電工程と、ナゲット部を成長させずに再加熱する後通電工程とをこの順に有し、且つ、打角Aの大きさ等に応じて通電を特定条件で行なうことにより、打角Aが0度より大きい場合でも、例えば打角Aが0.2(度)以上の場合でも、割れを抑止でき、且つ、継手強度を十分に確保することができる。
 前述したように、打角があると、溶接部に曲げ応力が加わり、局所的に大きな圧縮塑性変形が生じ、電極解放後の引張応力が非常に大きくなり、割れが生じる。この割れを抑制するためには、打角が大きい場合には鋼板表層のめっき層の合金化を促進し、溶融亜鉛等の金属をより減少させることが有効である。
打角Aは、溶接部確保の観点より、15度以下が好ましい。15度を超える場合には溶接部形成そのものが困難となるからである。
 すなわち、打角Aが0度超えかつ3度未満の範囲においては、打角により溶接部に加わる曲げ応力は比較的小さいため、電極解放後に溶接部に発生する引張応力もそれほど大きくならない。つまり、鋼板表面のめっき層である溶融亜鉛等の金属の合金化は限定的でよい。
 打角Aが3度以上かつ7度未満の範囲においては、打角が大きくなるにつれて電極解放後に溶接部に発生する引張応力の増加代(増加量)が顕著になる。このため、より高電流の後通電工程を行うことにより、合金化を促進する必要がある。
 打角Aが7度以上かつ15度未満の範囲においては、溶接部に発生する引張応力が非常に大きくなるため、より高電流の後通電工程を行うことにより、合金化を促進する必要がある。なお、後述するが、後通電工程前の無通電工程における通電休止時間(冷却時間)を短くすることで、後通電(再加熱)による合金化の作用を効果的に得ることができる。
 打角Aが15度以上の場合、溶接そのものが困難となる。そのため、上記式(I)において、打角Aが15度以上の場合には溶接方法の見直しが好ましい。
 また、後通電工程における後通電電流を著しく高くした場合は散りが発生し、継手強度を低下させる要因となる。後通電による発熱は本通電で形成されるナゲット径で規定されるため、本通電との関係でその上限を決定できる。一方で、通電休止工程を増加させることで継手の温度が低下し、それに応じて固有抵抗が減少する。これらのことから、後通電工程における後通電電流は、本通電との比率で規定し、Tcとの関係で上限が決定される。
 これら等を総合的に検討して、上記式(I)に示す関係式を見い出した。関係式中の係数については、実験により最適な係数を求めた。
本発明では、上記式(I)の関係を満たす通電を行うことにより、鋼種に関わらず、溶接部の割れ発生を抑制し、高い継手強度を得られる。なお、破断形態の安定性を得る観点より、上記式(I)は下記に示す関係を満たすことが好ましい。ここで、破断形態の安定性とは、十字引張試験時のプラグ破断が安定して得られるかどうかを意味する。
0<A<3の場合は、(22+A)・B/80<Ip/Im<1+0.15・Tc
3≦A<7の場合は、(17+A)・B/64<Ip/Im<1+0.15・Tc
7≦A<15の場合は、(11+A)・B/48<Ip/Im<1+0.15・Tc
 そして、本発明においては、上記式(I)の関係に加えて、重ね合わせた複数の鋼板の総板厚(重ね合わせた複数の鋼板の板厚の合計)をt(mm)、電極の先端径(電極先端の直径)をD(mm)としたとき、下記式(II)の関係を満たすことが好ましい。式(II)を満たすようにすることによって、より割れの発生の抑制および十分な継手強度の確保をすることができる。
式(II)
0<A<3の場合は、0<Tc<(103-A)・t/D
3≦A<7の場合は、0<Tc<5・(23-A)・t/D
7≦A<15の場合は、0<Tc<8・(17-A)・t/D
 上述したように、打角Aが0度超えかつ3度未満の範囲においては、打角により溶接部に加わる曲げ応力は比較的小さいため、電極解放後に溶接部に発生する引張応力もそれほど大きくならない。よって、鋼板表面のめっき層である溶融亜鉛等の金属の合金化は限定的でもよい。これにより、無通電工程における通電休止時間Tc(サイクル)を長くしても後通電工程による割れ抑制の効果を得ることができる。
 打角Aが3度以上かつ7度未満の範囲においては、打角が大きくなるにつれて電極解放後に溶接部に発生する引張応力の増加代(増加量)が顕著になる。このため、より高電流の後通電工程を行い、且つ後通電工程前の無通電工程における通電休止を、上記した打角Aが0度超えかつ3度未満の範囲の場合に比べて、さらに短く制限することにより、合金化を促進することが好ましい。これにより、合金化の作用を効果的に得ることができる。
 打角Aが7度以上かつ15度未満の範囲においては、溶接部に発生する引張応力が非常に大きくなるが、後通電工程前の無通電工程における通電休止時間を、上記した打角Aが7度以上かつ15度未満の範囲の場合に比べて、さらに短く制限することで、後通電(再加熱)による合金化の作用を効果的に得ることができる。
 加えて、無通電工程における通電休止時間(冷却時間)Tcが長く、かつ後通電工程の電流値Ipが所定の値より小さい場合には、ナゲットが急冷・硬化し、靱性が低下する場合があるが、上記式(II)を満たすようにすることで、このナゲットの急冷・硬化が抑制される。
 なお、溶接を行う鋼板の総板厚t(mm)が大きくなる場合や、電極の先端径D(mm)が小さくなる場合には、電極への抜熱が十分でなくなるため、溶接部の冷却速度が低下する。従って、無通電工程における通電休止時間Tc(サイクル)を長く取ることが好ましい。好ましくは4サイクル(50Hz)以上である。
 ただし、無通電工程が長すぎる場合は、溶接部が過剰に冷却してしまい、固有抵抗が低下することにより、後通電工程の効果を得づらくなる。また、長すぎる無通電工程は溶接タクトを増加させるという影響もある。このため、無通電工程は長くとも20サイクル(50Hz)以下が好ましい。
 電極の先端径D(mm)は、特に限定されず、例えば6mm~8mmが好ましい。6mm未満の場合には十分なナゲットが得られない恐れがある。一方、8mm超えの場合には工程溶接時に電極損耗しやすい恐れがある。
 以上のとおり、本発明では、上記した式(I)、または、式(I)および式(II)を満たすようにして溶接を行なうこと、例えば、電極の打角A(度)に応じて場合分けをして上記各式を用いて溶接条件を決定し、その溶接条件で溶接を行なうことにより、容易に、割れの発生の抑制および十分な継手強度の確保をすることができる。
 また、本発明では、上記した主通電工程の後に、上記した通電休止工程および後通電工程をこの順に2回以上繰り返してもよい。通電休止工程および後通電工程を2回以上繰り返すことにより、鋼板表面での合金化が促進され、割れの抑止効果をより向上させることができる。なお、繰り返し回数は、増加するほど好ましいが、製造コストが増加する。そのため、施工効率の観点より、好ましくは1~9回とする。
 なお、本明細書において、上記各式(I)および(II)は数値のみの関係を規定したものである。
 本発明における溶接電流値(通電時の電流値)は、特に限定されず、溶接電流は例えば4~18kAである。ただし、施工上は所定のナゲット径を得る必要があり、過大な電流値は散り発生の原因となるため、主通電工程の電流値Im(kA)は例えば4~11kAであり、後通電工程の電流値Ip(kA)は例えば5~12kAである。
 また、加圧力は、例えば2000N~7000N(2kN~7kN)が好ましい。
 また、通電開始から通電終了までの時間(通電時間)は、特に限定されず、主通電工程では8サイクル~30サイクル(50Hz)が好ましく、後通電工程では3サイクル~10サイクル(50Hz)が好ましい。
 また、本発明では、溶接中の抵抗値および電圧値といったパラメータを監視し、その変動に応じて電流値や通電時間を変化させる制御方法を用いても何ら問題ない。
 上記本発明の抵抗スポット溶接方法を用いて、表面に金属めっき層を有する表面処理鋼板を少なくとも1枚含む複数の鋼板が溶接された溶接継手を得ることができる。具体的には、表面に金属めっき層を有する表面処理鋼板を少なくとも1枚含む複数の鋼板を重ね合わせて板組を得る工程と、得られた板組を上記抵抗スポット溶接方法により溶接する工程とを有する製造方法により、溶接継手を製造することができる。上記抵抗スポット溶接方法を用いて溶接すると溶接部の割れ発生が抑制でき且つ継手強度を十分に確保できるため、溶接部の割れが低減され且つ継手強度が高い溶接継手を製造することができる。
 以下に、本発明の更なる理解のために実施例を用いて説明するが、実施例は何ら本発明を限定するものではない。
 (本発明例および比較例)
 本発明の実施例を以下に示す。本発明は2枚以上の鋼板を重ね合わせて板組とすることができる。一部の実施例については、図1に示すように、2枚の鋼板1および鋼板2を重ね合わせて一対の電極3、4によって挟持し、所定の溶接条件で抵抗スポット溶接を行い、溶接継手を作成した。それ以外の実施例については、3枚の鋼板(鋼板1、鋼板2および鋼板3)を重ね合わせた板組を用い、同様に溶接継手を作製した。なお、この場合の板組は、例えば図1に示す鋼板2の下層に鋼板3を重ね合わせた。
用いた鋼板の引張強さTS、板厚、めっき種を表1に示す。また、溶接条件を表2-1、表2-2および表2-3に示す。
 溶接機はインバータ直流抵抗スポット溶接機を用い、2つの電極3、4には、同じ形状のものを用いた。用いた電極3、4は、表2に示す先端径D(mm)、曲率半径40mmのDR形のクロム銅製電極である。抵抗スポット溶接は室温(20℃)で行い、電極を常に水冷した状態で行った。また、加圧力(kN)は、主通電工程、無通電工程、後通電工程にわたって一定とした。後通電工程終了後の保持時間については、全ての溶接条件で5msを設定した。
 また、本実施例および比較例における各鋼板の母材の融点は1400~1570℃の範囲であり、溶融亜鉛めっき(GI)および合金化溶融亜鉛めっき(GA)の融点はそれぞれ400~500℃、600~950℃の範囲である。また、表1に示される引張強さTS(MPa)は、各鋼板から、圧延方向に対して平行方向にJIS5号引張試験片を作製し、JIS Z 2241:2011の規定に準拠して引張試験を実施して求めた引張強さである。
 得られた各溶接継手について、(1)溶接部の割れの有無、(2)十字引張試験(CTS)における破断形態について、それぞれ評価した。一部の溶接継手については、さらに(3)CTSにおける破断形態の安定性についても評価した。
(1)溶接部の割れの有無の評価
 得られた各溶接継手について、溶接部を切断して断面を鏡面研磨し、走査型電子顕微鏡(倍率2000倍)により溶接部周囲の鋼板表層全面の割れの有無を観察した。溶接部に割れが観察されなかった場合を記号○、割れが観察された場合を記号×と評価した。
(2)十字引張試験(CTS)における破断形態の評価
 得られた各溶接継手について、JIS Z 3137に準拠し、十字引張試験を行い、その破断部径をノギスにて計測した。さらに断面を切断してピクリン酸エッチングを行い、断面から溶融部径を測定した。このとき破断形態が、プラグ破断のうち、母材への破断が進展し、破断部径/溶融部径で表される割合が110パーセント以上であった場合を記号◎、破断部径/溶融部径で表される割合が100パーセント以上110パーセント未満であった場合を記号○、破断部径/溶融部径で表される割合が100パーセント未満の部分プラグ破断あるいはナゲットでの界面破断であった場合を記号×と評価した。
(3)CTSにおける破断形態の安定性の評価
 上記(2)の評価結果において、破断部径/溶融部径で表される割合が110パーセント以上であったものを対象に、さらにCTS時の破断形態の安定性について評価を行った。この評価に用いる溶接継手は、表1、表2-1、表2-2および表2-3に示した条件で、溶接継手を10体ずつ作製した。得られた各溶接継手について、上記(2)に示した方法と同じ方法で、破断部径および溶融部径をそれぞれ求めた。ここでは、以下に示した基準に照らし、各記号を付与して評価した。記号A、Bの場合を優れる、記号Cの場合を良いと評価する。
評価A:10体中10体が、破断部径/溶融部径で表される割合が115パーセント以上
評価B:10体中5体以上9体以下が、破断部径/溶融部径で表される割合が115パーセント以上
評価C:10体中1体以上4体以下が、破断部径/溶融部径で表される割合が115パーセント以上
以上により得られた結果を表2-1、表2-2および表2-3に示す。
 表2-1、表2-2および表2-3に示すように、本発明を満たす溶接条件で行なった本発明例では、溶接継手は、全て良好(記号○または◎)な評価であった。すなわち、溶接部の割れ発生を抑制し、さらに高い継手強度を得られることがわかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1、2 鋼板
 3、4 電極
 5 溶接部(ナゲット)

Claims (4)

  1.  複数の鋼板を重ね合わせた板組を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
     重ね合わせた複数の鋼板のうち少なくとも1枚は、表面に金属めっき層を有する表面処理鋼板であり、
     通電として、ナゲット部を形成する通電を行なう主通電工程と、
    主通電工程の後に通電休止時間Tc(サイクル)の間通電を休止する無通電工程と、
    無通電工程の後にナゲット部を成長させずに再加熱する通電を行なう後通電工程とを有し、
     電極の打角をA(度)、主通電工程の電流値をIm(kA)、後通電工程の電流値をIp(kA)、1+0.1・Tcを変数B、1+0.2・Tcを変数Cとしたとき、前記通電は、下記式(I)の関係を満たす抵抗スポット溶接方法。
    式(I)
    0<A<3の場合は、(22+A)・B/100<Ip/Im<C
    3≦A<7の場合は、(17+A)・B/80<Ip/Im<C
    7≦A<15の場合は、(11+A)・B/60<Ip/Im<C
  2.  重ね合わせた複数の鋼板の総板厚をt(mm)、電極の先端径をD(mm)としたとき、前記無通電工程は、下記式(II)の関係を満たす請求項1に記載の抵抗スポット溶接方法。
    式(II)
    0<A<3の場合は、0<Tc<(103-A)・t/D
    3≦A<7の場合は、0<Tc<5・(23-A)・t/D
    7≦A<15の場合は、0<Tc<8・(17-A)・t/D
  3.  前記主通電工程の後に、前記無通電工程および前記後通電工程をこの順で2回以上繰り返す請求項1または2に記載の抵抗スポット溶接方法。
  4.  重ね合わせた複数の鋼板のうち少なくとも1枚は、引張強さが590MPa以上であることを特徴とする請求項1~3のいずれか1項に記載の抵抗スポット溶接方法。
PCT/JP2018/007809 2017-03-01 2018-03-01 抵抗スポット溶接方法 WO2018159764A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880014171.6A CN110325313B (zh) 2017-03-01 2018-03-01 电阻点焊方法
EP18760585.2A EP3590645A4 (en) 2017-03-01 2018-03-01 RESISTANCE SPOT WELDING PROCESS
MX2019010321A MX2019010321A (es) 2017-03-01 2018-03-01 Metodo de soldadura por puntos de resistencia.
JP2018524852A JP6372639B1 (ja) 2017-03-01 2018-03-01 抵抗スポット溶接方法
KR1020197024833A KR102197434B1 (ko) 2017-03-01 2018-03-01 저항 스폿 용접 방법
US16/488,703 US11298773B2 (en) 2017-03-01 2018-03-01 Resistance spot welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-038590 2017-03-01
JP2017038590 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159764A1 true WO2018159764A1 (ja) 2018-09-07

Family

ID=63370497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007809 WO2018159764A1 (ja) 2017-03-01 2018-03-01 抵抗スポット溶接方法

Country Status (5)

Country Link
EP (1) EP3590645A4 (ja)
KR (1) KR102197434B1 (ja)
CN (1) CN110325313B (ja)
MX (1) MX2019010321A (ja)
WO (1) WO2018159764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220088699A1 (en) * 2020-09-18 2022-03-24 Futaba Industrial Co., Ltd. Method of resistance spot welding and resistance spot welding apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116455A4 (en) * 2020-03-05 2024-02-21 Jfe Steel Corp METHOD FOR RESISTANCE SPOT WELDING AND PRODUCTION METHOD FOR A RESISTANCE SPOT WELDED JOINT
JP7299192B2 (ja) * 2020-04-15 2023-06-27 株式会社神戸製鋼所 抵抗溶接部材の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195597A (ja) 1996-11-14 1998-07-28 Sumitomo Metal Ind Ltd 接合性に優れた薄鋼板
JP2003103377A (ja) 2001-09-27 2003-04-08 Nippon Steel Corp 高強度めっき鋼板のスポット溶接方法
JP2003236676A (ja) 2002-02-19 2003-08-26 Jfe Steel Kk 高張力亜鉛系めっき鋼板のスポット溶接方法
JP2010115706A (ja) 2008-10-16 2010-05-27 Jfe Steel Corp 高強度鋼板の抵抗スポット溶接方法
JP2016068142A (ja) * 2014-09-30 2016-05-09 新日鐵住金株式会社 スポット溶接方法
WO2016181996A1 (ja) * 2015-05-11 2016-11-17 新日鐵住金株式会社 スポット溶接方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2148631Y (zh) * 1993-02-21 1993-12-08 董洪祥 小型便携式手提点焊机
JP2004330253A (ja) * 2003-05-08 2004-11-25 Daihatsu Motor Co Ltd スポット溶接方法およびスポット溶接装置
JP5415896B2 (ja) * 2009-01-29 2014-02-12 Jfeスチール株式会社 インダイレクトスポット溶接方法
CN201815791U (zh) * 2010-09-25 2011-05-04 湖南吉利汽车部件有限公司 悬点焊定位装置
CN203541838U (zh) * 2013-07-02 2014-04-16 上海通用汽车有限公司 一种具有焊接截面开口的车身

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195597A (ja) 1996-11-14 1998-07-28 Sumitomo Metal Ind Ltd 接合性に優れた薄鋼板
JP2003103377A (ja) 2001-09-27 2003-04-08 Nippon Steel Corp 高強度めっき鋼板のスポット溶接方法
JP2003236676A (ja) 2002-02-19 2003-08-26 Jfe Steel Kk 高張力亜鉛系めっき鋼板のスポット溶接方法
JP2010115706A (ja) 2008-10-16 2010-05-27 Jfe Steel Corp 高強度鋼板の抵抗スポット溶接方法
JP2016068142A (ja) * 2014-09-30 2016-05-09 新日鐵住金株式会社 スポット溶接方法
WO2016181996A1 (ja) * 2015-05-11 2016-11-17 新日鐵住金株式会社 スポット溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3590645A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220088699A1 (en) * 2020-09-18 2022-03-24 Futaba Industrial Co., Ltd. Method of resistance spot welding and resistance spot welding apparatus
US11883898B2 (en) * 2020-09-18 2024-01-30 Futaba Industrial Co., Ltd. Method of resistance spot welding and resistance spot welding apparatus

Also Published As

Publication number Publication date
MX2019010321A (es) 2019-10-21
KR20190112045A (ko) 2019-10-02
CN110325313A (zh) 2019-10-11
CN110325313B (zh) 2021-07-23
EP3590645A4 (en) 2020-03-25
EP3590645A1 (en) 2020-01-08
KR102197434B1 (ko) 2020-12-31

Similar Documents

Publication Publication Date Title
US10040145B2 (en) Spot welding method of high-strength steel sheets excellent in joint strength
JP6278154B2 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6558443B2 (ja) 抵抗スポット溶接方法
KR102225221B1 (ko) 저항 스폿 용접 조인트의 제조 방법
WO2016181996A1 (ja) スポット溶接方法
WO2018159764A1 (ja) 抵抗スポット溶接方法
WO2016139951A1 (ja) 抵抗スポット溶接方法および溶接継手
JP6108017B2 (ja) スポット溶接方法
JP6168246B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
TW201718144A (zh) 點熔接方法
JP7047535B2 (ja) 抵抗スポット溶接方法
WO2018181232A1 (ja) 抵抗スポット溶接継手の製造方法
JP6372639B1 (ja) 抵抗スポット溶接方法
JP7355281B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP7355282B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP7435935B1 (ja) 溶接部材およびその製造方法
WO2024063010A1 (ja) 溶接部材およびその製造方法
JP7364113B2 (ja) 抵抗スポット溶接部材およびその抵抗スポット溶接方法
WO2024063009A1 (ja) 溶接部材およびその製造方法
WO2023233704A1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
WO2024063011A1 (ja) 溶接部材およびその製造方法
WO2023233705A1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP7477059B1 (ja) 溶接部材およびその製造方法
WO2022215103A1 (ja) 抵抗スポット溶接継手および抵抗スポット溶接継手の製造方法
WO2024014146A1 (ja) 抵抗スポット溶接方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524852

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024833

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018760585

Country of ref document: EP

Effective date: 20191001