WO2024063009A1 - 溶接部材およびその製造方法 - Google Patents

溶接部材およびその製造方法 Download PDF

Info

Publication number
WO2024063009A1
WO2024063009A1 PCT/JP2023/033590 JP2023033590W WO2024063009A1 WO 2024063009 A1 WO2024063009 A1 WO 2024063009A1 JP 2023033590 W JP2023033590 W JP 2023033590W WO 2024063009 A1 WO2024063009 A1 WO 2024063009A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
plate
steel plate
layer
steel
Prior art date
Application number
PCT/JP2023/033590
Other languages
English (en)
French (fr)
Inventor
央海 澤西
友美 金澤
克利 ▲高▼島
広志 松田
俊佑 山本
克弥 星野
崇史 河野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024063009A1 publication Critical patent/WO2024063009A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded

Definitions

  • the present invention relates to a welded member obtained by resistance spot welding steel plates, and particularly to a welded member having a resistance spot welded portion suitable for use as a member of structural parts such as automobiles, and a method for manufacturing the same.
  • a resistance spot welding method which is a type of lap resistance welding method, is used to join stacked steel plates together.
  • This welding method involves sandwiching two or more stacked steel plates between a pair of welding electrodes from above and below, applying pressure with the welding electrodes, and applying a high welding current between the upper and lower electrodes for a short period of time to join them. It is.
  • FIG. 1 shows an example in which two superimposed steel plates 1 and 2 are sandwiched between welding electrodes 4 and 5 and resistance spot welded. According to this method, point-shaped welded portions 6 are obtained by utilizing resistance heat generation generated by flowing a high welding current.
  • This point-like welded portion 6 is called a nugget, and is a portion where both steel plates 1 and 2 are melted and solidified at the contact point of the steel plates when an electric current is passed through the stacked steel plates. As a result, the steel plates are joined in a dotted manner.
  • surface-treated steel sheets refer to galvanized galvanizing, typified by electrogalvanizing and hot-dip galvanizing (including alloyed hot-dip galvanizing), and zinc alloy plating containing elements such as aluminum and magnesium in addition to zinc.
  • a steel plate that has a metal plating layer such as on the surface of the base material (base steel plate). Since the melting point of zinc plating and zinc alloy plating is lower than that of the base material of the surface-treated steel sheet, there are the following problems.
  • LME cracking occurs at various locations, such as on the surfaces of the steel plates 1 and 2 that are in contact with the welding electrodes 4 and 5, and on the surfaces of the steel plates 1 and 2 that are in contact with each other.
  • Patent Document 1 the composition of the steel plate that is a plate assembly is set within a specific range, specifically, in weight%, C: 0.003 to 0.01%, Mn: 0.05 to 0.5%, P : 0.02% or less, sol. Al: 0.1% or less, Ti: 48 x (N/14) to 48 x ⁇ (N/14) + (S/32) ⁇ %, Nb: 93 x (C/12) to 0.1%, It has been proposed to have a composition consisting of B: 0.0005 to 0.003%, N: 0.01% or less, Ni: 0.05% or less, and the balance: Fe and unavoidable impurities.
  • Patent Document 2 discloses that in resistance spot welding of high-strength plated steel sheets, the welding energization time and the holding time after welding energization are set so as to satisfy the following conditional expressions (A) and (B).
  • a spot welding method for high-strength plated steel sheets has been proposed. 0.25 ⁇ (10 ⁇ t+2)/50 ⁇ WT ⁇ 0.50 ⁇ (10 ⁇ t+2)/50...(A) 300-500 ⁇ t+250 ⁇ t 2 ⁇ HT...(B)
  • t plate thickness (mm)
  • WT welding energization time (ms)
  • HT holding time after welding energization (ms).
  • Patent Document 2 the energization time and the holding time of the electrode after energization are appropriately set according to the thickness of the steel sheet, and a high-tensile galvanized steel sheet is used in which the amount of alloy elements in the steel sheet is below a certain level. , it has also been proposed to perform welding.
  • the energization pattern is multistage energization of three or more stages, and welding conditions such as energization time and welding current are adjusted so that the appropriate current range ( ⁇ I) is 1.0 kA or more, preferably 2.0 kA or more.
  • a method has been proposed in which cooling time is provided between each stage.
  • the above-mentioned appropriate current range refers to a current range in which a nugget having a desired nugget diameter or more and a melted residual thickness of 0.05 mm or more can be stably formed.
  • Patent Document 1 since it is necessary to limit the amount of alloying elements in the steel plate, there are problems such as the use of a steel plate that satisfies the required performance is restricted. In particular, the application of the technique of Patent Document 1 is extremely limited under the current situation in which steel sheets are becoming more highly alloyed as their strength increases.
  • Patent Document 2 only proposes a method for suppressing cracking when an excessive welding current that causes expulsion is set, and does not mention cracking in a state where expulsion does not occur.
  • Patent Document 3 requires a lot of man-hours to optimize the welding conditions, and has the problem that it cannot be applied to steel plates and plate assemblies for which it is difficult to ensure an appropriate current range.
  • Patent Documents 2 and 3 do not consider the effects of the electrode strike angle, so when considering the actual work during automobile assembly, it may be insufficient as a countermeasure.
  • Patent Documents 1 to 3 To summarize the common issues of Patent Documents 1 to 3, including the viewpoint of joint strength, no technology has been proposed that secures the strength of the welded part of high-strength steel plates while also suppressing the occurrence of LME cracking.
  • the present invention has been made in view of the above circumstances, and provides a welded member having a resistance spot weld that can both secure the strength of the resistance spot weld in a high-strength steel plate and suppress LME cracking.
  • the purpose is to provide a method for producing the same.
  • LME cracking The effect of the present invention on cracking that occurs during welding (LME cracking) cannot be simply explained because it is complicatedly influenced by various factors.
  • LME cracking in a resistance spot weld is likely to occur when excessive tensile residual stress is generated in the resistance spot weld due to construction disturbances during welding.
  • LME cracks occur in areas with locally large tensile stress when the pair of welding electrodes is released after the energization and pressurization in resistance spot welding. It is known that this is likely to occur.
  • the present inventors achieved both ensuring the strength of the resistance spot weld and suppressing LME cracking by controlling the hardness of the softened layer on the surface of the steel sheet in the weld heat affected zone within a certain range. I got the idea that it was possible.
  • FIG. 3(A) to 3(C) show enlarged cross-sectional views of a weld heat affected zone (HAZ) of a welding member and its surrounding area, which is a region surrounded by a rectangular frame shown in FIG. 2, which will be described later.
  • HZ weld heat affected zone
  • FIG. 3 shows enlarged cross-sectional views of a weld heat affected zone (HAZ) of a welding member and its surrounding area, which is a region surrounded by a rectangular frame shown in FIG. 2, which will be described later.
  • HZ weld heat affected zone
  • the welded member is obtained by resistance spot welding a plate assembly including steel plates having a softened layer on the surface layer of the steel plate. It has layers.
  • the softened layer is present in the region of the weld heat affected zone (HAZ) and the base metal. Basically, the softened layer in the weld heat affected zone region decreases as it approaches the nugget 6a, as shown in FIG. 3(A). However, as shown in Figure 3 (B), due to the heat effect during welding, a part of the softened layer in the weld heat affected zone may completely disappear due to the diffusion of elements such as C, or as shown in Figure 3 (B).
  • the softened layer in the weld heat affected zone may remain without almost disappearing.
  • the softened layer existing in the weld heat affected zone region including the states shown in FIGS. 3(A) to 3(C) is referred to as "the softened layer of the surface layer of the steel plate in the weld heat affected zone.”
  • a welded member having a resistance spot welded part in which a set of two or more steel plates stacked together is resistance spot welded,
  • the total plate thickness of the plate set is t all and the minimum thickness of the resistance spot weld is t weld
  • t all and t weld satisfy formula (1)
  • At least one of the two or more steel plates is a steel plate having a softened layer on the surface layer of the steel plate
  • nanoindentation hardness at a position 20 ⁇ m away from the surface of the softened layer in the thickness direction is set as Hbs
  • the starting point is a position 400 ⁇ m away from the nugget end of the resistance spot welding part in the direction of the base material and on the mating surface of the steel plate, and the starting point is a position on the mating surface of the steel plate.
  • the nanoindentation hardness at a position 20 ⁇ m away from the starting point in the plate thickness direction is Hws
  • the nanoindentation hardness at a position 1/4 of the plate thickness away from the starting point in the plate thickness direction is Hwt.
  • Hws in equation (5) is the nanoindentation hardness at a position 20 ⁇ m away from the starting point in the sheet thickness direction
  • Hwt is a distance of 1/4 of the sheet thickness from the starting point in the sheet thickness direction. This is the nanoindentation hardness at the position.
  • the average value of the shortest distance from the welding point center of the resistance spot weld to the end surface of the steel plate is 3 mm or more,
  • Hbs is the nanoindentation hardness at a position 20 ⁇ m away from the surface of the softened layer of the base material in the sheet thickness direction
  • Hbt is the thickness of the sheet from the surface of the softened layer of the base material. This is the nanoindentation hardness at a position separated by 1/4 of the plate thickness in the direction.
  • a welded member and method for manufacturing the same can prevent a decrease in the strength of the resistance spot weld due to softening of the surface layer of the steel plate and also prevent LME cracking from occurring. can be provided.
  • FIG. 1 is a sectional view schematically showing an example of resistance spot welding of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a resistance spot weld and its surroundings in a welded member according to an embodiment of the present invention.
  • 3(A) to 3(C) are enlarged cross-sectional views illustrating a softened layer on the surface layer of a steel plate in a weld heat affected zone.
  • FIG. 4 is a cross-sectional view in the thickness direction for explaining an example of a steel plate having a softened layer on the surface layer of the steel plate used in the present invention.
  • FIG. 5 is a diagram illustrating the shortest distance (H 1 ) from the center of the welding point to the end surface of the steel plate in the welded member of the present invention.
  • FIG. 6 is a diagram illustrating the distance (H 2 ) between the centers of adjacent welding points in the welded member of the present invention.
  • FIG. 7 is a cross-sectional view illustrating an example of a tensile test for a three-plate assembly in an example of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing an example of occurrence of cracks during conventional resistance spot welding.
  • FIG. 1 shows an example of resistance spot welding of two steel plates.
  • FIG. 2 is a cross-sectional view in the plate thickness direction showing an example of the welded member of the present invention, and is an enlarged cross-sectional view of a resistance spot weld and its surroundings in the welded member.
  • the present invention is a welded member having a resistance spot welded part (hereinafter referred to as "welded part") in which a set of two or more steel plates stacked together is resistance spot welded. be.
  • welded part a resistance spot welded part
  • At least one of the two or more superimposed steel plates is a steel plate having a softened layer on the surface layer of the steel plate (see FIG. 4).
  • the number of steel plates is not particularly limited, and may be two or more.
  • the number of steel plates is preferably three or more. Note that the upper limit of the number of steel plates is not particularly specified, but it is preferably 5 or less.
  • FIG. 2 shows an example of a welding member 10 in which two overlapping steel plates are welded.
  • Both or one of the steel plate 2 (lower plate) disposed on the lower side and the steel plate 1 (upper plate) disposed on the upper side is a steel plate having the above-mentioned softened layer.
  • the welded portion 6 of the present invention is formed only on the mating surface 7 side of the lower plate 2.
  • the steel plate having the above-mentioned softened layer of the present invention is used for both the upper plate 1 and the lower plate 2
  • the steel plate of the present invention is applied to both the upper plate 1 side and the lower plate 2 side with respect to the mating surface 7. A weld 6 is formed.
  • the steel plate placed on the lowest side i.e., lower plate
  • the steel plate placed on the uppermost side i.e., upper plate
  • All or at least one of the steel plates (that is, intermediate plates) disposed between the two is a steel plate having the above-mentioned softened layer.
  • the weld of the present invention is formed to include the mating surfaces between each steel plate.
  • the welded portion of the present invention is formed to include two mating surfaces where the lower plate and the middle plate are in contact with each other, and the middle plate and the upper plate.
  • the welded part 6 of the present invention has the total plate thickness (t all ) and the minimum thickness of the welded part, where t all is the total plate thickness of the plate set and t weld is the minimum thickness of the welded part.
  • the thickness ( tweld ) satisfies the following formula (1).
  • the nanoindentation hardness at a position 20 ⁇ m away from the surface of the softened layer in the plate thickness direction is defined as Hbs, and from the surface of the softened layer
  • Hbs the nanoindentation hardness at a position separated by 1/4 of the sheet thickness in the sheet thickness direction
  • the thickness of the welded part 6 is reduced. As a result, the tensile residual stress generated in the welded portion 6 becomes excessive, and LME cracking is likely to occur. Along with this, joint strength is reduced. Note that during welding, the thickness of the plate assembly is reduced due to the pressure applied by the pair of welding electrodes and the influence of heat, so the upper limit of t weld /t all is less than 1.0.
  • the lower limit of formula (1) is preferably 0.55 or more.
  • the upper limit of formula (1) is preferably 0.95 or less.
  • minimum thickness of the weld refers to the minimum thickness in the sheet thickness direction within the region in the sheet width direction of the nugget 6a, as shown in Fig. 2. This minimum thickness (t weld ) can be measured by the method described in the examples below.
  • the lower limit of formula (2) is preferably 0.22 or more.
  • the upper limit of formula (2) is preferably 0.75 or less.
  • the following configuration may be included.
  • the starting point (In other words, let point A) shown in Figure 2 be the nanoindentation hardness at a position 20 ⁇ m away from the starting point in the plate thickness direction
  • Hws the nanoindentation hardness at a position 20 ⁇ m away from the starting point in the plate thickness direction.
  • the nanoindentation hardness at the above three positions is Hwt, it is effective that the nanoindentation hardness (Hws, Hwt and Hbs) at the above three positions satisfies the following equations (3) and (4). be. 0.2 ⁇ Hws/Hwt ⁇ 1.0...(3) 0.8 ⁇ Hws/Hbs ⁇ 7.0...(4)
  • the surface layer of the steel plate in the welding heat affected zone 6b i.e., the position 20 ⁇ m away from the starting point A in the plate thickness direction
  • the inside of the steel plate in the welding heat affected zone 6b i.e., the plate from the starting point A to We are focusing on the difference in hardness between the material and the material (a position 1/4 of the thickness of the plate in the thickness direction).
  • the hardness ratio (Hws/Hwt) in the weld heat affected zone 6b shown in equation (3) is less than 0.2, that is, stress concentration becomes large inside the steel plate of the weld heat affected zone 6b.
  • the hardness ratio in the weld heat affected zone 6b preferably satisfies the relationship 0.25 ⁇ Hws/Hwt ⁇ 0.9, and more preferably satisfies the relationship 0.30 ⁇ Hws/Hwt ⁇ 0.8.
  • the above formula (4) focuses on the difference between the base material and the weld heat affected zone in the steel plate surface.
  • the hardness changes due to changes in the structure and diffusion of alloy elements caused by the thermal effects of welding. Therefore, satisfying the relationship 0.8 ⁇ Hws/Hbs ⁇ 7.0 is effective in controlling the hardness of the softened layer (see Figure 3) in the steel plate surface in the weld heat affected zone.
  • the hardness ratio of the surface layer of the steel plate preferably satisfies the relationship 1.0 ⁇ Hws/Hbs ⁇ 6.5, and more preferably satisfies the relationship 1.1 ⁇ Hws/Hbs ⁇ 6.0. be.
  • the hardness of the weld heat-affected zone is greater than the hardness of the base metal, which makes it possible to suppress excessive strain concentration in the weld heat-affected zone when a tensile load is applied to the weld. , which has an advantageous effect on avoiding breakage in the weld heat-affected zone.
  • nanoindition hardness (unit: GPa) can be measured by a nanoindition hardness test as described in Examples below.
  • the present invention does not limit the nanoindentation hardness test method, it may be performed in accordance with ISO 14577 using, for example, a nanoindentation device (TI-950 TriboIndenter manufactured by Hysitron).
  • ⁇ Steel plate> [Plate thickness, tensile strength]
  • the strength of the welded part is affected by the thickness and tensile strength of the steel plates that are overlapped. Therefore, in the present invention, it is preferable to appropriately control the hardness ratio (Hws/Hwt) of the steel plate surface layer and the steel plate interior in the weld heat affected zone according to the plate thickness and tensile strength. Thereby, the effects of the present invention can be obtained even more effectively.
  • the steel plate having a softened layer preferably satisfies the following formula (5).
  • Hws in equation (5) is the nanoindentation hardness at a position 20 ⁇ m away from the above starting point in the plate thickness direction
  • Hwt is a distance of 1/4 of the plate thickness from the above starting point in the plate thickness direction. This is the nanoindentation hardness at the position.
  • the thickness (t) of a steel plate with a softened layer When the thickness (t) of a steel plate with a softened layer is large, the cross-sectional area of the weld heat-affected zone becomes large, so when a tensile load is applied to the weld, rupture occurs within the nugget instead of in the weld heat-affected zone. more likely to occur. As a result, even if the surface layer of the weld heat affected zone is significantly softened, the strength of the weld is less likely to decrease. Therefore, the larger the thickness (t) of the steel plate, the smaller the preferable lower limit value of Hws/Hwt.
  • Hws/Hwt satisfy equation (5).
  • the lower limit of formula (5) is preferably - ⁇ (1000 ⁇ t/TS) ⁇ 0.25 ⁇ /35+0.3 or more.
  • the upper limit of formula (5) is preferably 0.9 or less. Note that, for the above-mentioned reasons, it is more preferable that equation (6) is further satisfied.
  • the lower limit of formula (6) is preferably 0.5 or more, and the upper limit of formula (6) is preferably 2.5 or less.
  • the tensile strength of the steel plate having the softened layer is preferably TS ⁇ 980 MPa. This is because the effects of the present invention can be obtained even more effectively in the case of a high-strength steel plate that satisfies this relationship.
  • At least one of the two or more steel plates to be stacked is a steel plate having a softened layer on the surface layer of the steel plate.
  • a steel plate having a softened layer on the surface layer of the steel plate will be described with reference to FIG. 4 .
  • FIG. 4 shows an example of a steel plate having a softened layer on the surface layer of the steel plate.
  • the steel sheet having this softened layer include a galvanized steel sheet having a galvanized layer on the softened layer, and a steel sheet having a Si internal oxidation layer on the outermost layer within the softened layer.
  • FIG. 4 shows, as an example, a steel sheet having a structure including a softened layer, a Si internal oxidation layer, a galvanized layer, and an Fe-based pre-plated layer to be described later.
  • the galvanized steel sheet may have an Fe-based pre-plating layer between the softened layer and the galvanized layer.
  • an Fe-based pre-plating layer which is a soft layer, the surface layer of the steel sheet can be further softened.
  • This pre-plating layer is preferably an Fe-based electroplating layer.
  • Fe-based electroplating layers include Fe-B alloy, Fe-C alloy, Fe-P alloy, Fe-N alloy, Fe-O alloy, Fe-Ni alloy, Fe-Mn alloy, Fe- An alloy plating layer such as Mo alloy or Fe-W alloy can be used.
  • the composition of the Fe-based electroplated layer is not particularly limited, but in the present invention, a group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V, and Co is used.
  • the composition contains one or more elements selected from the following in a total amount of 10% by mass or less, with the remainder consisting of Fe and unavoidable impurities.
  • the amount of the Fe-based electroplated layer deposited on one side is preferably 0.5 g/m 2 or more.
  • the amount of adhesion is more preferably 1.0 g/m 2 or more.
  • the upper limit of the amount of the Fe-based electroplated layer per side is not particularly limited, but from the viewpoint of cost, it is preferable that the amount of the Fe-based electroplated layer applied per side is 60 g/m 2 or less.
  • the amount of adhesion is preferably 50 g/m 2 or less, more preferably 40 g/m 2 or less, even more preferably 30 g/m 2 or less.
  • the thickness of the Fe-based electroplated layer is measured as follows. A 10 ⁇ 15 mm sample is taken from an alloyed high-strength hot-dip galvanized steel sheet after hot-dip galvanizing and embedded in resin to form a cross-sectional embedded sample. Three arbitrary points on the same cross section were observed using a scanning electron microscope (SEM) at an accelerating voltage of 15 kV and a magnification of 2,000 to 10,000 times depending on the thickness of the Fe-based electroplated layer. By multiplying the average thickness by the specific gravity of iron, it is converted into the amount of Fe-based electroplating layer deposited on one side.
  • SEM scanning electron microscope
  • Fe-based electroplating treatment it is preferable to perform Fe-based electroplating treatment on the surface of a high-strength pre-annealed cold-rolled steel sheet to obtain a pre-annealed Fe-based electroplated steel sheet.
  • the Fe-based electroplating method is not particularly limited.
  • a sulfuric acid bath, a hydrochloric acid bath, or a mixture of both can be used as the Fe-based electroplating bath.
  • a sulfuric acid bath a hydrochloric acid bath, or a mixture of both can be used.
  • the Fe ion content in the Fe-based electroplating bath before the start of current application is preferably 1.0 mol/L or more as Fe 2+ . If the Fe ion content in the Fe-based electroplating bath is 1.0 mol/L or more as Fe 2+ , a sufficient amount of Fe deposition can be obtained.
  • the effects of the present invention can be obtained more effectively.
  • the steel sheets are alloyed hot-dip galvanized steel sheets that are pre-plated before forming the zinc plating layer and then alloyed after hot-dip galvanizing.
  • Si internal oxide layer As shown in FIG. 4, for example, in the case of a steel sheet that includes a Si internal oxidation layer in the softened layer, by raising the dew point during annealing during steel sheet manufacturing, an internal Si oxidation layer is formed in the outermost layer of the steel sheet. At the same time, it also controls the behavior of other alloying elements that occur accordingly. Thereby, a softened layer can be formed. By using such a steel plate, the effects of the present invention can be obtained more effectively.
  • Si internal oxide layer specifically refers to a region in which Si oxide is formed within a crystal grain and/or at a part of a crystal grain boundary.
  • FIGS. 5 and 6 are top views (views of the welded member viewed from above) showing the vicinity of the welded part of the welded member.
  • the welded member 10 of the present invention has an average value of the shortest distance (H 1 ) from the center of the welding point of the welding part to the end face of the steel plate of 3 mm or more, and has a plurality of welding points. In such a case, it is preferable that the average distance (H 2 ) between the centers of adjacent welding points is 6 mm or more.
  • the "average value of the shortest distance from the center of the welding point to the end face of the steel plate (H 1 )" means setting the end face of the steel plate closest to the center of the welding point and measuring that distance for each welding point, as shown in Figure 5. Ask by doing. If the number of welding points in the welding member is 5 or more, the average value of the 5 appropriately selected points is taken as the "average value of the shortest distance.” If the number of welding points in the welding member is less than 5, all Let the average value of the hitting points be the "average value of the shortest distance.”
  • the average value (H 1 ) of this shortest distance is less than 3 mm, the pressure between the plates around the nugget on the edge side of the steel plate will be insufficient, and molten metal will easily scatter from between the plates to the edge side of the steel plate. Become. Therefore, the occurrence of spatter during welding becomes noticeable, and the nugget diameter becomes more likely to vary, making the strength of the welded part unstable.
  • the average value (H 1 ) of the shortest distance is preferably 1000 mm or less.
  • the "average distance (H 2 ) between the centers of adjacent welding points" is determined by measuring the distance between the centers of each adjacent welding point, as shown in FIG. If the average distance (H 2 ) between the centers of welding points is less than 6 mm, a shunt will occur during welding to the previously welded point and the current density in the weld will decrease, reducing the nugget diameter and reducing the strength of the weld. tends to decline. Furthermore, the welded portion is restrained by the already welded points, and tensile residual stress increases, making LME cracking more likely to occur. There is no upper limit to the average distance between the centers of the dots. From the viewpoint of ensuring the strength and rigidity of the welded member, the average distance (H 2 ) between the centers of the dots is preferably 100 mm or less.
  • the welded member of the present invention is manufactured through a manufacturing process that includes a preparation process of stacking two or more steel plates to form a plate assembly, and a welding process of resistance spot welding the plate assembly.
  • ⁇ Preparation process> two or more steel plates including at least one steel plate having the above-mentioned softened layer are prepared, and the two or more steel plates are stacked to form a plate assembly.
  • two steel plates 1 and 2 are stacked together to form a plate assembly.
  • a welding process is performed.
  • the welding process includes an energization process and an electrode holding process, which will be described later.
  • the plate sets prepared in the preparation process are joined.
  • the plate assembly is held between a pair of welding electrodes 4 and 5 placed on the lower side and the upper side of the plate assembly, and the plate assembly is controlled to achieve predetermined welding conditions while applying pressure. Then turn on the power.
  • the steel plates can be joined together by forming the above-described welded portion 6 of the present invention between the steel plates that serve as the mating surfaces 7 of the steel plates 1 and 2 (see FIG. 2).
  • a steel plate with a softened layer and a steel plate without a softened layer are used to form a plate set, they are stacked so that the side with the softened layer becomes the mating surface of the steel plates.
  • the steel sheet having a softened layer is a galvanized steel sheet having a galvanized layer (GI steel sheet, GA steel sheet, EG steel sheet)
  • the steel sheets are stacked so that the side with the galvanized layer becomes the mating surface of the steel sheets.
  • the present invention can be applied to either a direct current or an alternating current welding power source.
  • current means "effective current.”
  • the pressurizing mechanism air cylinder, servo motor, etc.
  • type stationary type, robot gun, etc.
  • electrode shape, etc. of the welding device are not particularly limited.
  • Examples of the format of the electrode tip include DR type (dome radius type), R diameter (radius type), D type (dome type), etc. described in JIS C 9304:1999. Further, the tip diameter of the electrode is, for example, 4 mm to 16 mm.
  • the plate assembly is sandwiched between a pair of welding electrodes, and when joining is performed by applying current while applying pressure, at least one welding point is immediately before applying pressure with the welding electrodes as shown below ( One or more of the conditions a) to (e) are satisfied, and the above energization is applied with pressure: 2.0 to 10.0 kN, welding current: 4.0 to 15.0 kA, and energization time: 0. It has an energization process performed under welding conditions of .1 to 2.0 s, and an electrode holding process where Th satisfies the relationship of formula (7), where Th(s) is the time to hold the pressurizing force after the energization ends. .
  • the pressing force is preferably 3.0 kN or more, and preferably 7.0 kN or less.
  • the welding current is preferably 5.0 kA or more, and preferably 12.0 kA or less.
  • the diffusion of alloying elements in the weld heat affected zone will be insufficient, and the hardness of the softened layer in the weld heat affected zone may be almost the same as the hardness of the base metal.
  • the geometric strain concentration in the weld heat affected zone is greater than that of the base metal, so if the hardness of the softened layer in the weld heat affected zone is almost the same as the hardness of the base metal, it is due to the softening of the surface layer of the steel plate in the weld heat affected zone. Strain concentration and geometric strain concentration overlap, resulting in a decrease in TSS.
  • the current application time is preferably 0.10 seconds or more. Further, the current application time is preferably 0.12 seconds or more, and preferably 1.5 seconds or less.
  • the energization time is more preferably (0.13 ⁇ (t all ⁇ H bs /H bt ))s or more, and even more preferably (0.19 ⁇ (t all ⁇ H bs /H bt )). s or more. This is because the larger the total plate thickness, the longer the energization time required to secure the nugget diameter, and the larger the value of H bs /H bt , which is the ratio of the hardness of the base material mentioned above, the more likely LME cracking will occur. This is because the current application time necessary for discharging Zn plating from the corona bond portion and promoting alloying increases. The current application time is even more preferably 0.30 seconds or more.
  • resistance spot welding may be performed with multiple levels of pressure and current values, or with a specific pattern that combines energization and non-energization.
  • the minimum value of the pressing force during energization is set to 2.0 kN or more
  • the maximum value of the pressing force during energization is set to 10.0 kN or less.
  • the current value during energization is set to multiple levels
  • the minimum value of the current value during energization excluding the non-energizing period is set to 4.0 kA or more
  • the maximum value of the current value is set to 15.0 kA or less.
  • the total energization time excluding the non-energization period is set to be 0.1 s or more and 2.0 s or less.
  • (a) A state in which the angle of attack between the welding electrode and the superimposed steel plate is 0.2 degrees or more.
  • the angle of attack is the angle at which the electrode is inclined with respect to the steel plate, i.e., the angle between the electrode pressing force direction and the steel plate thickness direction.
  • "The angle formed by" When the striking angle is large, bending stress is applied to the welded part, and large compressive plastic deformation occurs locally, resulting in an increase in tensile stress after the electrode is released. The effects of the present invention can be effectively obtained when the hitting angle is 0.2 degrees or more. If the striking angle is too large, nugget formation becomes unstable and may cause scattering, so it is preferable that the striking angle is 10 degrees or less.
  • the striking angle is more preferably 1 degree or more, and even more preferably 8 degrees or less.
  • Misalignment means a state in which the center axes of a pair of welding electrodes are not aligned. Similar to the above-mentioned strike angle, if the misalignment is large, bending stress is applied to the welded part, making LME cracking more likely to occur. When the amount of misalignment is 0.1 mm or more, the effects of the present invention can be effectively obtained. If the amount of misalignment is too large, the nugget formation becomes unstable and may cause scattering, so it is preferable that the amount of misalignment is 5 mm or less. The amount of misalignment is more preferably 0.2 mm or more, and even more preferably 3 mm or less.
  • this gap amount is 0.5 mm or more, the effects of the present invention can be effectively obtained. If the amount of this gap is too large, the nugget formation becomes unstable and causes the occurrence of scattering, so it is preferable that the amount of this gap is 5 mm or less.
  • the amount of gap is more preferably 1 mm or more, and even more preferably 3 mm or less.
  • gap between one or more sets of steel plates refers to the gap between one or more sets of steel plates when two or more steel plates arranged in the vertical direction constitute one set of two or more stacked steel plates. This means that there is a gap.
  • the shortest distance from the center of the welding point to the end surface of the steel plate of the overlapped steel plate is 10 mm or less. If the shortest distance from the center of the welding point to the end surface of the steel plate is small, the heat conduction from the welded portion is hindered at the end surface of the steel plate, so the cooling rate of the welded portion decreases. Therefore, the temperature at the time of electrode release increases, and LME cracking is likely to occur. When the shortest distance from the center of the welding point to the end surface of the steel plate is 10 mm or less, the effect of the present invention can be effectively obtained.
  • this shortest distance is 3 mm or more.
  • This shortest distance is preferably 4 mm or more, and more preferably 8 mm or less.
  • the electrode holding process is a process aimed at suppressing the occurrence of blowholes by holding the welding electrode with a constant pressure after energization is completed.
  • the pressurizing force holding time (Th(s)) is expressed by the following equation (7), where Th(s) is the pressurizing force holding time after the end of energization. Satisfy the relationship. Thereby, the effects of the present invention can be effectively obtained.
  • Th(s) is the pressurizing force holding time after the end of energization.
  • Hbs is the nanoindentation hardness at a position 20 ⁇ m away from the surface of the softened layer of the base material in the sheet thickness direction
  • Hbt is the thickness of the sheet from the surface of the softened layer of the base material. This is the nanoindentation hardness at a position separated by 1/4 of the plate thickness in the direction.
  • the pressure holding time (Th) is too small, the temperature at the time the electrode is released will increase, making LME cracking more likely to occur.
  • the pressure holding time (Th) is too large, the tact time per welding point will increase, reducing productivity.
  • the cooling rate of the weld will increase, making the weld structure more brittle, reducing joint strength and making the weld more susceptible to delayed fracture.
  • the higher the hardness ratio of the base material (Hbs/Hbt) is i.e., the smaller the degree of softening of the steel plate surface layer compared to the base material steel plate interior), the smaller the effect of the softened layer on the steel plate surface in suppressing LME cracking, so the lower limit of the pressure holding time (Th) must be increased.
  • the pressure holding time is set to a time that satisfies formula (7).
  • the lower limit of formula (7) is preferably set to ⁇ (Hbs/Hbt)-0.2 ⁇ /30+0.02 or more.
  • the upper limit of formula (7) is preferably set to [- ⁇ (Hbs/Hbt)-0.2 ⁇ /3]+1.0 or less.
  • the lower limit of formula (8) is preferably 0.02 or more, more preferably 0.17 or more.
  • the upper limit of formula (8) is preferably 1.0 or less.
  • welded joints (welded members) were produced under the welding conditions shown in Table 2.
  • the plate set was arranged in the order of steel plate 1, steel plate 2, and steel plate 3 shown in Table 1 from above and overlapped.
  • "None” shown in the plating column of Table 1 refers to a steel sheet (cold rolled steel sheet) having no plating layer.
  • "with” a "softened layer on the surface layer of the steel sheet” means that the steel sheet has a softened layer on the surface layer
  • "with an internal oxidation layer” means that the surface layer of the steel sheet has Si internal oxidation.
  • the term "with Fe-based pre-plating” refers to the state where Fe-based pre-plating is present on the surface layer of the steel sheet. Further, the codes shown in the "state immediately before pressurization" column of Table 3 correspond to (a) to (e) shown in the above-mentioned welding disturbance.
  • the welding device used was a single-phase AC (50 Hz) resistance welding machine with a pressurized servo motor attached to a welding gun.
  • the pair of electrode tips used were DR type electrodes made of chromium copper and having a tip radius of curvature R of 40 mm and a tip diameter of 6 mm.
  • the "Tensile Strength” column in Table 1 shows the tensile strength (MPa) measured by taking JIS No. 5 tensile test pieces from each steel plate in the rolling direction and conducting a tensile test in accordance with JIS Z 2241.
  • the presence or absence of TSS and LME cracking in welded joints was evaluated by the method shown below.
  • the thickness (t all , t weld ) of the welded joint and the nanoindition hardness (Hbs, Hbt, Hws, Hst) at each position were measured using the following method.
  • the produced welded joint was cut with a micro cutter passing through the center of the weld, and the cross section in the plate thickness direction was observed.
  • the total plate thickness (t all ) of the plate set was determined by measuring the plate thickness of the steel plates before welding, and determining the sum of the thicknesses as the total plate thickness.
  • the minimum thickness ( tweld ) of the welded part was determined by measuring the size in the thickness direction within the area of the nugget in the sheet width direction at intervals of 100 ⁇ m, and the minimum value was defined as the "minimum thickness" (Fig. 2). Using each of the obtained values, the value of " tweld / tall " was determined.
  • the nanoindition hardness in the base material was measured as follows. Specifically, as shown in Fig. 2, in the base metal part of the steel plate side having the softened layer (in the example shown in Fig. 2, the lower plate 2 side), nanometer particles are located 20 ⁇ m away from the surface of the softened layer in the plate thickness direction. The indition hardness (Hbs) and the nanoindition hardness (Hbt) at a position away from the softened layer surface in the thickness direction by 1/4 of the thickness of the plate were measured. Moreover, the measurement position of the base metal part was performed at a position 5000 ⁇ m away from the intersection of the outer edge of the weld heat affected zone and the mating surface 7 of the steel plate in the direction of the base metal.
  • the nanoindition hardness in the weld heat affected zone was measured as follows. Specifically, as shown in Fig. 2, the steel plate is placed at a position 400 ⁇ m away from the nugget end of the weld on the steel plate side having the softened layer (lower plate 2 side in the example shown in Fig. 2) in the direction of the base metal. The position on the mating surface is the starting point A, and the nanoindition hardness (Hws) at a position 20 ⁇ m away from the starting point A in the sheet thickness direction, and the nanoindition hardness (Hws) at a distance of 1/4 of the sheet thickness from the starting point A in the sheet thickness direction. The nanoindition hardness (Hwt) at the position was measured.
  • TSS evaluation The tensile shear strength (TSS) was evaluated based on the tensile shear test method (JIS Z3136). For the tensile shear test, a shear tensile test piece was cut out from each steel plate shown in Table 1, and a welded joint (test piece) was prepared by resistance spot welding under the plate assembly shown in Table 1 and the welding conditions shown in Table 3. Using.
  • the shape of the test piece at the time of TSS evaluation was based on JIS Z3136, but in a three-ply plate set (such as plate set No. H in Table 1), as shown in Fig. 7, there was a tension difference between steel plate 2 and steel plate 3.
  • a stress evaluation was conducted.
  • TSS was evaluated based on the following criteria.
  • the evaluation result was A or B, it was evaluated as passing (having excellent shear tensile strength).

Abstract

溶接部材およびその製造方法の提供を目的とする。本発明は、2枚以上の鋼板を重ね合わせた板組が抵抗スポット溶接された溶接部材であって、板組の総板厚tallと抵抗スポット溶接部の最小厚さtweldとが式(1)を満たし、2枚以上の鋼板のうち少なくとも1枚は鋼板表層に軟化層を有する鋼板であり、かつ、軟化層を有する鋼板側の母材部では、鋼板表層のナノインデンテーション硬さHbsと鋼板内部のナノインデンテーション硬さHbtとが式(2)を満たす。 0.5<tweld/tall<1.0 …(1) 0.2<Hbs/Hbt<0.8 …(2)

Description

溶接部材およびその製造方法
 本発明は、鋼板を抵抗スポット溶接した溶接部材に関し、特に、自動車などの構造部品の部材として好適な抵抗スポット溶接部を有する溶接部材およびその製造方法に関する。
 近年、環境問題の高まりからCO2排出規制が厳格化しており、自動車分野においては燃費向上に向けた車体の軽量化が課題となっている。そのために自動車部品への高強度鋼板の適用による薄肉化が進められており、引張強度(TS)が980MPa以上の鋼板の適用が進められている。また、耐食性の観点から、雨水に曝される部位には亜鉛等の防錆能を有するめっき鋼板が使用される。
 また、自動車の組み立てでは、コストや製造効率の観点から、抵抗スポット溶接によりプレス成形された自動車部品を組み合わせることが多い。一般に、重ね合わせた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接方法が用いられている。この溶接方法は、重ね合わせた2枚以上の鋼板をその上下から一対の溶接電極で挟み、当該溶接電極で加圧しつつ、上下電極間に高電流の溶接電流を短時間通電して接合する方法である。図1には、重ね合わせた2枚の鋼板1、2を溶接電極4、5で挟んで抵抗スポット溶接する一例を示す。この方法によれば、高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部6を得る。この点状の溶接部6はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板1、2が溶融し、凝固した部分である。これにより鋼板同士が点状に接合される。
 衝突安全性を確保するために、鋼板の強度を向上させるとともに溶接部における強度を向上させることが求められる。抵抗スポット溶接部の強度を評価する試験方法は様々であるが、一般的な評価方法のひとつとして、JIS Z3136に規定される引張せん断試験が挙げられる。これは、溶接継手を引張せん断方向に引張荷重を負荷して引張せん断強度(以下、「TSS」と称する)を測定する試験法である。
 表面処理鋼板を含む複数の鋼板を重ね合わせた板組の抵抗スポット溶接においては、図8に示すように、溶接部に割れが生じることがあるという問題がある。ここで、表面処理鋼板とは、電気亜鉛めっきおよび溶融亜鉛めっき(合金化溶融亜鉛めっきを含む)に代表される亜鉛めっきや、亜鉛の他にアルミニウムやマグネシウムなどの元素を含んだ亜鉛合金のめっきなどの金属めっき層を母材(下地鋼板)の表面上に有する鋼板を言う。亜鉛めっきや亜鉛合金めっきの融点は、表面処理鋼板の母材の融点よりも低いため以下のような問題がある。
 すなわち、溶接部の割れは、溶接中に鋼板表面の低融点の金属めっき層が溶融し、電極の加圧力や、鋼板の熱膨張および収縮による引張応力が溶接部に加わった際に、溶融した低融点金属が表面処理鋼板の母材の結晶粒界に侵入して粒界強度を低下させ、割れを引き起こす、いわゆる液体金属脆性に起因する割れであると考えられている(以下、「LME割れ」と称する)。LME割れの発生位置は、図8に示すように、溶接電極4、5と接する側の鋼板1、2の表面や、鋼板同士が接する側の鋼板1、2の表面など、様々である。
 このようなLME割れの対策として、例えば特許文献1~特許文献3の技術が挙げられる。特許文献1では、板組である鋼板の組成を特定範囲の組成、具体的には、重量%で、C:0.003~0.01%、Mn:0.05~0.5%、P:0.02%以下、sol.Al:0.1%以下、Ti:48×(N/14)~48×{(N/14)+(S/32)}%、Nb:93×(C/12)~0.1%、B:0.0005~0.003%、N:0.01%以下、Ni:0.05%以下、残部:Feおよび不可避的不純物からなる組成とすることが提案されている。
 特許文献2には、高強度めっき鋼板の抵抗スポット溶接において、以下の条件式(A)および(B)を満足させるように、溶接通電時間および溶接通電後の保持時間を設定して抵抗スポット溶接を行う、高強度めっき鋼板のスポット溶接方法が提案されている。
0.25×(10×t+2)/50≦WT≦0.50×(10×t+2)/50 …(A)
300-500×t+250×t2≦HT …(B)
ただし、条件式(A)および(B)において、t:板厚(mm)、WT:溶接通電時間(ms)、HT:溶接通電後の保持時間(ms)とする。
 また、特許文献2では、鋼板の板厚に応じて通電時間および通電後の電極の保持時間を適切に設定し、かつ鋼板中の合金元素量が一定以下となる高張力亜鉛めっき鋼板を用いて、溶接を行うことも提案されている。
 特許文献3では、通電パターンを3段以上の多段通電とし、適正電流範囲(ΔI)が1.0kA以上、好ましくは2.0kA以上となるように、通電時間および溶接電流等の溶接条件を調整し、各段の間に冷却時間を設ける方法が提案されている。上記の適正電流範囲とは、所望のナゲット径以上で、かつ溶融残厚が0.05mm以上であるナゲットを、安定して形成できる電流範囲をいう。
特開平10-195597号公報 特開2003-103377号公報 特開2003-236676号公報
 しかしながら、特許文献1では鋼板の合金元素量を限定する必要があるため、要求性能を満たす鋼板の使用が制限されるなどの課題がある。特に、最近の鋼板における、高強度化に伴って高合金化が進んでいる状況下では、特許文献1の技術の適用は極めて制限される。
 特許文献2では、散りが発生するような過大な溶接電流を設定した際の割れ抑制方法のみが提案されており、散りが発生しない状態での割れについては言及されていない。
 特許文献3では、溶接条件の適正化に多くの工数が必要であり、また適正電流範囲の確保が困難な鋼板および板組に対しては適用できないという課題がある。加えて、特許文献2および3では、電極の打角による影響については検討されていないため、自動車組立て時の実施工を考慮すると、対策としては不十分な場合がある。
 継手強度の観点も加えて特許文献1~3の共通の課題をまとめると、高強度鋼板の溶接部の強度を確保しつつ、LME割れ発生も抑止する技術は提案されていない。
 本発明は、上記のような事情に鑑みてなされたものであり、高強度鋼板における抵抗スポット溶接部の強度の確保と、LME割れの抑止とを両立可能な抵抗スポット溶接部を有する、溶接部材およびその製造方法を提供することを目的とする。
 本発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。
 溶接時に発生する割れ(LME割れ)に対する本発明の効果は、種々の因子が複雑に影響しているため単純には説明できない。しかし、抵抗スポット溶接部のLME割れは、溶接時の施工外乱などによって、抵抗スポット溶接部に過大な引張残留応力が発生した際に生じやすい。特に、鋼板同士が接する鋼板の合わせ面側においては、抵抗スポット溶接での通電および加圧終了後であって、一対の溶接電極を開放した際に、局所的に引張応力が大きい領域でLME割れが発生しやすいことが知られている。そのため、以下の参考文献1に記載されるよう、重ね合わせる鋼板として鋼板の表層に軟化層を有する鋼板を用いることで、抵抗スポット溶接部の引張残留応力を低減することができ、結果としてLME割れを抑止することができると考えられる。
 〔参考文献1〕 国際公開第2021/019947号
 しかし、鋼板の表層に軟化層を有したとしても、溶接時の熱影響に伴って溶接熱影響部の組織が変化したり、Cなどの合金元素が拡散したりすることで、溶接熱影響部における鋼板表層の軟化層が消失してしまうと、本発明で目的とする効果は得られない。加えて、溶接熱影響部の表面、特に鋼板同士の合わせ面側の鋼板表層が顕著に軟らかい場合、抵抗スポット溶接部の強度が低下してしまう。これらのことより、本発明者らは、溶接熱影響部における鋼板表層の軟化層の硬さを一定の範囲に制御することで、抵抗スポット溶接部の強度の確保と、LME割れの抑止を両立可能であるとの着想を得た。
 ここで、図3を用いて、上記の「溶接熱影響部における鋼板表層の軟化層」について説明する。図3(A)~図3(C)には、後述の図2中に示す四角枠で囲った領域である、溶接部材の溶接熱影響部(HAZ)およびその周辺の拡大断面図を示す。なお、図3の各図は軟化層の説明に用いる図であるため、図2に示した板間の記載は省略している。図3の各図に示す例では、下側に配置された鋼板(すなわち下板)が、本発明で用いる「鋼板表層に軟化層を有する鋼板」である。
 図3(A)~図3(C)に示すように、鋼板表層に軟化層を有する鋼板を含む板組を抵抗スポット溶接した溶接部材は、鋼板の合わせ面7側の下板の表層に軟化層を有する。軟化層は、溶接熱影響部(HAZ)および母材部の領域に存在する。溶接熱影響部の領域における軟化層は、図3(A)に示すように、基本的にはナゲット6aに近づくほど減少する。しかし、溶接時の熱影響に伴って、図3(B)に示すように、Cなどの元素拡散に起因して溶接熱影響部の軟化層の一部が完全に消失したり、あるいは、図3(C)に示すように、溶接熱影響部の軟化層がほとんど消失せずに残存した状態となることもある。本発明では、図3(A)~図3(C)に示す状態を含む溶接熱影響部領域に存在する軟化層を、「溶接熱影響部における鋼板表層の軟化層」と称する。
 本発明は、以上の知見に立脚するものであり、要旨は次のとおりである。
[1] 2枚以上の鋼板を重ね合わせた板組が抵抗スポット溶接された抵抗スポット溶接部を有する溶接部材であって、
 前記板組の総板厚をtall、前記抵抗スポット溶接部の最小厚さをtweldとしたとき、tallおよびtweldが式(1)を満たし、
 前記2枚以上の鋼板のうち少なくとも1枚は、鋼板の表層に軟化層を有する鋼板であり、
かつ、前記軟化層を有する鋼板側の母材部では、前記軟化層の表面から板厚方向に20μm離れた位置のナノインデンテーション硬さをHbsとし、前記軟化層の表面から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さをHbtとしたとき、HbsおよびHbtが式(2)を満たす、溶接部材。
0.5<tweld/tall<1.0 …(1)
0.2<Hbs/Hbt<0.8 …(2)
[2] 前記軟化層を有する鋼板側の溶接熱影響部では、前記抵抗スポット溶接部のナゲット端から母材方向へ400μm離れた位置であって鋼板の合わせ面上の位置を始点とし、前記始点から板厚方向に20μm離れた位置のナノインデンテーション硬さをHwsとし、前記始点から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さをHwtとしたとき、
Hws、Hwtおよび前記Hbsが式(3)および式(4)を満たす、[1]に記載の溶接部材。
0.2<Hws/Hwt<1.0 …(3)
0.8<Hws/Hbs<7.0 …(4)
[3] 前記鋼板の板厚をt(mm)、前記鋼板の引張強度をTS(MPa)としたとき、
前記軟化層を有する鋼板が、式(5)を満たす、[1]または[2]に記載の溶接部材。
-{(1000×t/TS)-0.25}/35+0.2<(Hws/Hwt)<1.0 …(5)
ここで、式(5)におけるHwsは前記始点から板厚方向に20μm離れた位置のナノインデンテーション硬さであり、Hwtは前記始点から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さである。
[4] 前記軟化層を有する鋼板は、Si内部酸化層および/または亜鉛めっき層を有する、[1]~[3]のいずれか1つに記載の溶接部材。
[5] 前記亜鉛めっき層の下層に、Fe系のプレめっき層を有する、[4]に記載の溶接部材。
[6] 前記抵抗スポット溶接部の溶接打点中心から前記鋼板端面までの最短距離の平均値が3mm以上であり、
かつ、複数の溶接打点がある場合には、隣り合う溶接打点同士の打点中心間の平均距離が6mm以上である、[1]~[5]のいずれか1つに記載の溶接部材。
[7] [1]~[6]のいずれか1つに記載の溶接部材の製造方法であって、
 2枚以上の鋼板を重ね合わせて板組とする準備工程と、前記板組を抵抗スポット溶接する溶接工程と、を有し、
 前記溶接工程は、前記板組を一対の溶接電極で挟持し、加圧しながら通電して接合を行うものであり、
 前記通電は、加圧力:2.0~10.0kN、溶接電流:4.0~15.0kA、通電時間:0.1~2.0sで行い、
 通電終了後の加圧力保持時間をTh(s)としたとき、Th(s)が式(7)の関係を満たす電極保持工程を、さらに有する、溶接部材の製造方法。
{(Hbs/Hbt)-0.2}/30<Th<[-{(Hbs/Hbt)-0.2}/3]+1.2 …(7)
ここで、式(7)における、Hbsは前記母材部の軟化層表面から板厚方向に20μm離れた位置のナノインデンテーション硬さであり、Hbtは前記母材部の軟化層表面から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さである。
[8] 前記板組を一対の溶接電極で挟持し、加圧しながら通電して接合を行う際に、
少なくとも1箇所の溶接打点については、前記溶接電極による加圧を行う直前に、(a)~(e)の1つまたは2つ以上の状態を満たす、[7]に記載の溶接部材の製造方法。
(a)溶接電極と重ね合わせた鋼板との打角が0.2度以上である状態
(b)一対の溶接電極の芯ずれ量が0.1mm以上である状態
(c)いずれかの溶接電極と重ね合わせた鋼板との間に隙間が0.5mm以上ある状態
(d)重ね合わせた鋼板のうち、少なくとも1組以上の鋼板間に隙間が0.5mm以上ある状態
(e)溶接打点の中心から重ね合わせた鋼板における鋼板端面までの最短距離が10mm以下である状態
 本発明によれば、高強度鋼板を用いた抵抗スポット溶接であっても、鋼板表層の軟化に起因する抵抗スポット溶接部の強度低下を防ぎつつ、LME割れも発生しない、溶接部材およびその製造方法を提供することができる。
図1は、本発明の抵抗スポット溶接の一例を模式的に示す断面図である。 図2は、本発明の一実施形態に係る溶接部材における、抵抗スポット溶接部およびその周辺を模式的に示す断面図である。 図3(A)~図3(C)は、溶接熱影響部における鋼板表層の軟化層を説明する拡大断面図である。 図4は、本発明に用いる、鋼板表層に軟化層を有する鋼板の一例を説明する板厚方向断面図である。 図5は、本発明の溶接部材における、溶接打点中心から鋼板端面までの最短距離(H1)を説明する図である。 図6は、本発明の溶接部材における、隣り合う溶接打点中心間の距離(H2)を説明する図である。 図7は、本発明の実施例における、3枚板組の場合の引張試験の一例を説明する断面図である。 図8は、従来の抵抗スポット溶接時の割れの発生例を模式的に示す断面図である。
 以下、本発明の一実施形態である溶接部材およびその製造方法について説明する。なお、本発明はこの実施形態に限定されない。
 まず、図1および図2を参照して、本発明の溶接部材を説明する。
図1には、2枚の鋼板を抵抗スポット溶接している一例を示す。図2は、本発明の溶接部材の一例を示す板厚方向断面図であり、当該溶接部材における抵抗スポット溶接部およびその周辺を拡大した断面図である。
 本発明は、図1および図2に示すように、2枚以上の鋼板を重ね合わせた板組が抵抗スポット溶接された抵抗スポット溶接部(以下、「溶接部」と称する)を有する溶接部材である。
 後述するように、重ね合わせた2枚以上の鋼板のうち少なくとも1枚は、鋼板の表層に軟化層を有する鋼板である(図4を参照)。鋼板の枚数は特に限定されず、2枚以上であればよい。鋼板の枚数は、好ましくは3枚以上である。なお、鋼板の枚数の上限は特に規定しないが、5枚以下とすることが好ましい。
 図2には、重ね合わせた2枚の鋼板が溶接された溶接部材10の一例を示す。下側に配置される鋼板2(下板)および上側に配置される鋼板1(上板)の両方またはいずれか1方が、上記軟化層を有する鋼板である。鋼板1、2が接する鋼板の合わせ面7に、以下に説明する溶接部6が形成される。
 図2に示す例の溶接部材の場合、下板2のみが上記軟化層(図示を省略)を有する鋼板とし、上板1は軟化層を有しない鋼板とする。この場合、下板2の合わせ面7側のみに、本発明の溶接部6が形成される。なお、上板1および下板2の両方に本発明の上記軟化層を有する鋼板を用いた場合には、合わせ面7に対して上板1側および下板2側の両方に、本発明の溶接部6が形成される。
 図示は省略するが、3枚以上の鋼板を重ね合わせて溶接した場合には、最も下側に配置される鋼板(すなわち下板)、最も上側に配置される鋼板(すなわち上板)、およびそれらの間に配置される鋼板(すなわち中板)の全部または少なくとも1枚が、上記軟化層を有する鋼板となる。各鋼板間の合わせ面を含むように、本発明の溶接部が形成される。
例えば、3枚の鋼板からなる板組の場合、下板と中板、および中板と上板が接する2つの合わせ面を含むように、本発明の溶接部が形成される。3枚の鋼板の全てに上記軟化層を有する鋼板を用いた場合には、各合わせ面に対して上下側にある鋼板表層の軟化層の硬さがそれぞれ制御される。
 <溶接部>
 本発明の溶接部について、詳細に説明する。なお、2枚の鋼板を重ね合わせた板組の場合でも、3枚以上の鋼板を重ね合わせた板組の場合でも、同様の溶接部が形成されるため、以降の説明には図2を用いる。
 図2に示すように、本発明の溶接部6は、板組の総板厚をtall、溶接部の最小厚さをtweldとしたとき、総板厚(tall)および溶接部の最小厚さ(tweld)が以下の式(1)を満たす。
また、この条件に加えて、上記軟化層を有する鋼板側の母材部9では、軟化層の表面から板厚方向に20μm離れた位置のナノインデンテーション硬さをHbsとし、軟化層の表面から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さをHbtとしたとき、上記2つの位置でのナノインデーション硬さ(HbsおよびHbt)が以下の式(2)を満たす。
0.5<tweld/tall<1.0 …(1)
0.2<Hbs/Hbt<0.8 …(2)
 総板厚および溶接部の最小厚さの比(tweld/tall)が上記の式(1)を満たさない場合、すなわち式(1)の下限値以下となる場合、溶接部6の減厚が顕著となるため、溶接部6に生じる引張残留応力が過大となってLME割れが発生しやすくなる。これとともに、継手強度の低下をもたらす。なお、溶接時における、一対の溶接電極による加圧と熱影響によって板組の板厚は減厚されるため、tweld/tallの上限は1.0未満となる。
 式(1)の下限は、好ましくは0.55以上とする。式(1)の上限は、好ましくは0.95以下とする。
 ここで、上記の「溶接部の最小厚さ(tweld)」とは、図2に示すように、ナゲット6aの板幅方向の領域内における板厚方向の最小厚さを指す。なお、この最小厚さ(tweld)は、後述する実施例に記載の方法で、測定することができる。
 また、上記の式(2)に示す母材部の硬さの比(Hbs/Hbt)が0.8以上の場合、抵抗スポット溶接後の電極解放時において、鋼板表層の引張残留応力が過大となり、その結果、LME割れが発生しやすくなる。一方、当該母材部の硬さの比が0.2以下の場合、鋼板表層でのき裂発生が容易となり、その結果、継手強度の低下をもたらす。
 これらに起因して、後述する溶接熱影響部の表層軟化(すなわち、溶接熱影響部における鋼板表層の軟化層の硬さを所定範囲に制御すること)を実現するのが困難となるおそれがある。
 式(2)の下限は、好ましくは0.22以上とする。式(2)の上限は、好ましくは0.75以下とする。
 以上の構成により、溶接部の強度の確保とLME割れの抑止を両立できる。
 本発明では、溶接部の強度の確保とLME割れの抑止の効果をより有効に向上させる観点から、上述の構成に加えて、さらに、以下の構成を有していてもよい。
 図2に示すように、軟化層を有する鋼板側の溶接熱影響部6bでは、溶接部のナゲット端6cから母材方向へ400μm離れた位置であって鋼板の合わせ面7上の位置を始点(すなわち図2に示した点A)とし、当該始点から板厚方向に20μm離れた位置のナノインデンテーション硬さをHwsとし、当該始点から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さをHwtとしたとき、上記3つの位置でのナノインデーション硬さ(Hws、HwtおよびHbs)が以下の式(3)および式(4)を満たすことが有効である。
0.2<Hws/Hwt<1.0 …(3)
0.8<Hws/Hbs<7.0 …(4)
 上記の式(3)では、溶接熱影響部6b内における鋼板表層(すなわち、始点Aから板厚方向に20μm離れた位置)と、溶接熱影響部6b内における鋼板内部(すなわち、始点Aから板厚方向に板厚の1/4の厚さだけ離れた位置)との硬さの差に、着目している。式(3)中に示す溶接熱影響部6b内の硬さの比(Hws/Hwt)が0.2未満となる状態、すなわち溶接熱影響部6bの鋼板内部に対して、応力集中が大きくなる鋼板の合わせ面7側の溶接熱影響部6bの鋼板表層における軟化が顕著となる状態では、溶接熱影響部の鋼板表層における延性き裂発生抵抗が過度に低下する。その結果、溶接部の強度が低下してしまう。
 一方、この硬さの比(Hws/Hwt)が1.0以上となる状態では、溶接熱影響部6bの鋼板内部に対して溶接熱影響部6bの鋼板表層が軟化していないため、溶接部の引張残留応力の低減効果が得られず、その結果、LME割れの抑止が困難となる。そのため、0.2<Hws/Hwt<1.0の関係を満たすことが有効となる。
 溶接熱影響部6b内の硬さの比は、好ましくは0.25<Hws/Hwt<0.9の関係を満たすことであり、より好ましくは0.30<Hws/Hwt<0.8の関係を満たすことである。
 加えて、上記の式(4)では、鋼板表層における母材部と溶接熱影響部との差異に着目している。溶接熱影響部6bの鋼板表層では、溶接時の熱影響を受けることで組織の変化や合金元素の拡散によって硬さが変化する。そのため、0.8<Hws/Hbs<7.0の関係を満たすことが、溶接熱影響部における鋼板表層の軟化層(図3を参照)の硬さ制御に有効となる。
 式(1)と同様、式(4)中に示す鋼板表層の硬さの比(Hws/Hbs)が0.8未満となる状態では、溶接熱影響部の鋼板表層における延性き裂発生抵抗が過度に低下し、その結果、溶接部の強度が低下してしまう。一方、この硬さの比(Hws/Hwt)が7.0以上となる状態では、溶接熱影響部の鋼板表層の硬さが過大となってしまう。硬さが大きいほど、電極解放時の引張残留応力は増加するため、溶接部の引張残留応力の低減効果が得られない。
 鋼板表層の硬さの比は、好ましくは1.0<Hws/Hbs<6.5の関係を満たすことであり、より好ましくは1.1<Hws/Hbs<6.0の関係を満たすことである。鋼板表層において、母材部の硬さより溶接熱影響部の硬さが大きくなることで、溶接部に引張荷重が付与された際の溶接熱影響部への過度なひずみ集中を抑制することができ、溶接熱影響部での破断回避に有利に作用する。
 なお、上述のナノインデーション硬さ(単位:GPa)は、後述の実施例に記載のように、ナノインデーション硬さ試験によって測定できる。ナノインデーション硬さ試験方法については本発明では制限しないが、例えば、ナノインデンテーション装置(Hysitron社製 TI-950 TriboIndenter)を用いて、ISO 14577に準拠して行えばよい。
 <鋼板>
 [板厚、引張強度]
 溶接部の強度は、重ね合わせる鋼板の板厚や引張強度の影響を受ける。そのため、本発明では、上記の溶接熱影響部内における鋼板表層と鋼板内部の硬さの比(Hws/Hwt)を板厚および引張強度に応じて適正に制御することが好ましい。これにより、本発明の効果をより一層有効に得ることができる。
 具体的には、鋼板の板厚をt(mm)、鋼板の引張強度をTS(MPa)としたとき、軟化層を有する鋼板は、以下の式(5)を満たすことが好ましい。
-{(1000×t/TS)-0.25}/35+0.2<(Hws/Hwt)<1.0 …(5)
ここで、式(5)におけるHwsは上記始点から板厚方向に20μm離れた位置のナノインデンテーション硬さであり、Hwtは上記始点から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さである。
 なお、上記硬さの比(Hws/Hwt)をより適切に制御する観点から、この条件式((式)5)に加えて、以下の式(6)を満たすことが、より好ましい。
0.25≦1000×t/TS≦3.75 …(6)
 軟化層を有する鋼板の板厚(t)が大きい場合、溶接熱影響部の断面積が大きくなるため、溶接部に引張荷重が付与された際に溶接熱影響部ではなくナゲット内での破断が生じやすくなる。その結果、溶接熱影響部の表層軟化が顕著であっても、溶接部の強度は低下しにくくなる。そのため、鋼板の板厚(t)が大きいほど、好適なHws/Hwtの下限値は小さくなる。
 一方、軟化層を有する鋼板の引張強度(TS)が大きい場合、溶接時の熱影響によるマルテンサイト変態が生じるため、一般的には溶接熱影響部は硬化しやすい。そのため、鋼板表層の軟化層と鋼板内部との硬度差が大きくなることに起因して生じる、溶接熱影響部の表層軟化によって、溶接部の強度は低下しやすくなる。つまり、鋼板の引張強度(TS)が大きいほど、好適なHws/Hwtの下限値は大きくなる。
 したがって、鋼板の板厚(t)および引張強度(TS)の観点からは、Hws/Hwtは、式(5)を満足することが好ましい。
式(5)の下限は、好ましくは、-{(1000×t/TS)-0.25}/35+0.3以上である。式(5)の上限は、好ましくは0.9以下である。
なお、上述の理由から、さらに式(6)を満足することがより好ましい。式(6)の下限は、好ましくは0.5以上であり、式(6)の上限は、好ましくは2.5以下である。
 上述のように、一般的に、鋼板の高強度化および高合金成分化に伴って、LME割れは発生しやすい傾向にある。そのため、本発明では、軟化層を有する鋼板の引張強度は、TS≧980MPaであることが好ましい。この関係を満たす高強度鋼板の場合に、本発明の効果をより一層有効に得ることが出来るからである。
 [軟化層を有する鋼板]
 本発明では、上述のとおり、重ね合わせる2枚以上の鋼板のうち少なくとも1枚は、鋼板の表層に軟化層を有する鋼板である。図4を参照して、鋼板の表層に軟化層を有する鋼板について説明する。図4には、鋼板の表層に軟化層を有する鋼板の一例を示す。この軟化層を有する鋼板として、例えば、軟化層上に亜鉛めっき層を有する亜鉛めっき鋼板や、軟化層内の最表層にSi内部酸化層を有する鋼板が挙げられる。
 本発明に用いた鋼板について、鋼板表層に軟化層を付与する方法は特に制限しない。
 なお、図4には、一例として、軟化層、Si内部酸化層、亜鉛めっき層および後述のFe系プレめっき層を有する構造の鋼板を示している。
  [亜鉛めっき鋼板]
 LME割れは、溶融亜鉛が鋼板と接した状態で引張応力が付与されることで生じる現象である。そのため、本発明において亜鉛めっき鋼板を用いる場合には、亜鉛めっき層と接する面で、かつ、鋼板表層に、軟化層を設けることが好ましい。この亜鉛めっき鋼板の場合に、本発明の効果をより一層有効に得ることが出来るからである。特に、鋼板のプレス性や連続打点溶接性も含めて考慮すると、亜鉛めっき鋼板は、合金化溶融亜鉛めっき鋼板(GA鋼板)、溶融亜鉛めっき鋼板(GI鋼板)、電気亜鉛めっき鋼板(EG鋼板)であることがより好ましい。
 図4に示すように、亜鉛めっき鋼板は、軟化層と亜鉛めっき層との間に、Fe系のプレめっき層を有していてもよい。軟質層であるFe系のプレめっき層を形成するという方法によって、鋼板表層をより軟化させることができる。
 このプレめっき層は、Fe系電気めっき層であることが好ましい。Fe系電気めっき層としては、純Feの他、Fe-B合金、Fe-C合金、Fe-P合金、Fe-N合金、Fe-O合金、Fe-Ni合金、Fe-Mn合金、Fe-Mo合金、Fe-W合金等の合金めっき層が使用できる。Fe系電気めっき層の成分組成は特に限定されないが、本発明では、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、V及びCoからなる群から選ばれる1種または2種以上の元素を合計で10質量%以下含み、残部はFeおよび不可避的不純物からなる成分組成とすることが好ましい。Fe以外の元素の量を合計で10質量%以下とすることで、電解効率の低下を防ぎ、低コストでFe系電気めっき層を形成することができる。
 さらにFe系電気めっき層の片面当たりの付着量は、0.5g/m2以上が好ましい。当該付着量は、さらに好ましくは1.0g/m2以上である。Fe系電気めっき層の片面あたりの付着量の上限は特に限定されないが、コストの観点から、Fe系電気めっき層の片面あたりの付着量を60g/m2以下とすることが好ましい。当該付着量は、好ましくは50g/m2以下とし、より好ましくは40g/m2以下とし、さらに好ましくは30g/m2以下とする。
 なお、Fe系電気めっき層の厚みは、以下の通り測定する。溶融亜鉛めっき後の合金化した高強度溶融亜鉛めっき鋼板から10×15mmサイズのサンプルを採取して樹脂に埋め込み、断面埋め込みサンプルとする。同断面の任意の3か所を走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて加速電圧15kV、およびFe系電気めっき層の厚みに応じて倍率2000~10000倍で観察し、3視野の厚みの平均値に鉄の比重を乗じることによってFe系電気めっき層の片面あたりの付着量に換算する。
 高強度焼鈍前冷延鋼板の表面にFe系電気めっき処理を施して、焼鈍前Fe系電気めっき処理鋼板とするのが好ましい。Fe系電気めっき処理方法は特に限定されない。例えば、Fe系電気めっき浴としては硫酸浴、塩酸浴あるいは両者の混合などが適用できる。なお、冷間圧延後の高強度焼鈍前冷延鋼板に対して予熱炉等における酸化処理を行なわずに、Fe系電気めっき処理を施すこともできる。
 通電開始前のFe系電気めっき浴中のFeイオン含有量は、Fe2+として1.0mol/L以上とすることが好ましい。Fe系電気めっき浴中のFeイオン含有量が、Fe2+として1.0mol/L以上であれば、十分なFe付着量を得ることができる。
 このような鋼板を用いることで、本発明の効果をより有効に得ることができる。特に、亜鉛めっき層を形成する前にプレめっきを施し、溶融亜鉛めっき後に合金化処理した合金化溶融亜鉛めっき鋼板である場合は、より一層有効である。
  [Si内部酸化層]
 図4に示すように、例えば、軟化層にSi内部酸化層を内包する鋼板の場合には、鋼板製造において焼鈍時の露点を上昇させることで、鋼板最表層にSiの内部酸化層を形成するとともに、それに伴って生じる他の合金元素の挙動も制御する。これにより、軟化層を形成することができる。このような鋼板を用いることで、本発明の効果をより有効に得ることができる。
 上記の「Si内部酸化層」とは、具体的には、結晶粒内およびまたは結晶粒界の一部に、Si酸化物が形成した領域を指す。
 <溶接部材の溶接打点>
 図5および図6を用いて、溶接部材の溶接打点について説明する。図5および図6は、溶接部材の溶接部周辺を示す上面図(溶接部材を上方からみた図)である。
 図5および図6に示すように、本発明の溶接部材10は、溶接部の溶接打点中心から鋼板端面までの最短距離(H1)の平均値が3mm以上であり、かつ、複数の溶接打点がある場合には、隣り合う溶接打点同士の打点中心間の平均距離(H2)が6mm以上であることが好適である。
 ここで、「溶接打点中心から鋼板端面までの最短距離の平均値(H1)」とは、図5に示すように溶接打点中心から最も近い鋼板端面を設定し、その距離を打点毎に測定することで求める。溶接部材中の溶接打点数が5点以上である場合は、適宜選択した5打点の平均値を「最短距離の平均値」とし、溶接部材中の溶接打点数が5点未満の場合は、全打点の平均値を「最短距離の平均値」とする。
 この最短距離の平均値(H1)が3mm未満の場合、鋼板端面側におけるナゲット周囲の板-板間の加圧が不十分となり、溶融金属が板-板間から鋼板端面側に飛散しやすくなる。そのため、溶接時の散り発生が顕著となり、ナゲット径がばらつきやすくなることで、溶接部の強度が不安定化する。この最短距離の平均値の上限は規定しない。一般的な形状の溶接ガンで溶接可能とするためには、この最短距離の平均値(H1)は1000mm以下とすることが好ましい。
 また、「隣り合う溶接打点同士の打点中心間の平均距離(H2)」とは、図6に示すように、隣り合う各打点中心間の距離をそれぞれ測定することで求める。この打点中心間の平均距離(H2)が6mm未満の場合、溶接時に既溶接点への分流が発生して溶接部の電流密度が低下するため、ナゲット径が縮小し、溶接部の強度が低下しやすくなる。また、既溶接点によって溶接部が拘束され、引張残留応力が増加することでLME割れも発生しやすくなる。この打点中心間の平均距離の上限は規定しない。溶接部材の強度および剛性確保の観点からは、この打点中心間の平均距離(H2)は100mm以下とすることが好ましい。
 次に、本発明の溶接部材の製造方法の一実施形態について説明する。
 本発明の溶接部材は、2枚以上の鋼板を重ね合わせて板組とする準備工程と、当該板組を抵抗スポット溶接する溶接工程と、を有する製造工程を経て、製造される。
 <準備工程>
 この工程では、少なくとも1枚の上記軟化層を有する鋼板を含む、2枚以上の鋼板を準備し、当該2枚以上の鋼板を重ね合わせて板組とする。例えば、図1に示すように、2枚の鋼板1、2を重ね合わせて板組とする。なお、鋼板については、上述しているため説明は省略する。次いで、溶接工程が行われる。
 <溶接工程>
 溶接工程は、後述する通電工程と電極保持工程とを有する。この溶接工程では、準備工程で準備した板組の接合を行う。この工程では、例えば図1に示すように、板組の下側および上側に配置される一対の溶接電極4、5で該板組を挟持し、加圧しながら所定の溶接条件となるように制御して通電を行う。これにより、鋼板1、2の合わせ面7となる鋼板間に上述の本発明の溶接部6を形成することによって、鋼板同士を接合できる(図2を参照)。
 なお、軟化層を有する鋼板と、軟化層を有しない鋼板とを用いて板組とする場合には、軟化層を有する面側が鋼板の合わせ面となるように重ね合わせる。軟化層を有する鋼板が亜鉛めっき層を有する亜鉛めっき鋼板(GI鋼板、GA鋼板、EG鋼板)である場合には、亜鉛めっき層を有する面側が鋼板の合わせ面となるように重ね合わせる。なお、電極と接する側の鋼板表面にも、軟化層およびまたは亜鉛めっき層を有しても当然問題はない。
 本発明の抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能な溶接装置を用いることができる。また、直流、交流のいずれの溶接電源にも本発明を適用できる。交流の場合は、「電流」は「実効電流」を意味する。溶接装置の加圧機構(エアシリンダやサーボモータ等)、形式(定置式、ロボットガン等)、電極形状等はとくに限定されない。電極先端の形式としては、例えば、JIS C 9304:1999に記載されるDR形(ドームラジアス形)、R径(ラジアス形)、D形(ドーム形)等が挙げられる。また、電極の先端径は、例えば4mm~16mmである。
 続いて、本発明の溶接工程の溶接条件について説明する。
 溶接工程は、板組を一対の溶接電極で挟持し、加圧しながら通電して接合を行う際に、少なくとも1箇所の溶接打点については、溶接電極による加圧を行う直前に、以下に示す(a)~(e)の1つまたは2つ以上の状態を満たし、かつ、上記通電は、加圧力:2.0~10.0kN、溶接電流:4.0~15.0kA、通電時間:0.1~2.0sとなる溶接条件で行う通電工程と、通電終了後の加圧力保持時間をTh(s)としたとき、Thが式(7)の関係を満たす電極保持工程と、を有する。
 [通電工程]
  [加圧力、溶接電流、通電時間]
 加圧力が2.0kN未満では、鋼板間の加圧が不十分となり、散りが発生しやすいため、LME割れ発生しやすくなる。一方、加圧力が10.0kN超えでは、高加圧仕様の特殊な溶接ガンが必要で、設備制約が大きい。それだけでなく、溶接部の減厚も顕著となるため、LME割れが発生したり、継手強度が低下したりする。加圧力は、好ましくは3.0kN以上とし、好ましくは7.0kN以下とする。
 溶接電流が4.0kA未満では、入熱が不足し、ナゲット径が確保できない。一方、溶接電流が15.0kA超えでは、入熱が過大で散りが発生しやすいため、LME割れが発生しやすくなる。溶接電流は、好ましくは5.0kA以上とし、好ましくは12.0kA以下とする。
 通電時間が0.1s未満では、溶接熱影響部の合金元素の拡散が不十分となり、溶接熱影響部の軟化層の硬さが母材の硬さとほとんど変化しない場合がある。溶接熱影響部は形状的ひずみ集中が母材よりも大きくなるため、溶接熱影響部の軟化層の硬さが母材の硬さとほとんど変化しない場合は、溶接熱影響部の鋼板表層の軟化によるひずみ集中と形状的ひずみ集中が重畳し、TSSが低下してしまう。一方、通電時間が2.0s超えでは、自動車組み立て工程のタクトタイムが長くなり、生産性が低下する。通電時間は、0.10s以上が好ましい。また通電時間は、好ましくは0.12s以上とし、好ましくは1.5s以下とする。
 通電時間は、より好ましくは、(0.13×√(tall×Hbs/Hbt))s以上とし、さらに好ましくは、(0.19×√(tall×Hbs/Hbt))s以上とする。これは、総板厚が大きいほどナゲット径の確保に必要な通電時間は増加すること、また、上記母材部の硬さの比であるHbs/Hbtの値が大きいほどLME割れが生じ易いため、コロナボンド部からのZnめっき排出および合金化促進に必要な通電時間が増加すること、に起因するためである。通電時間は、さらに一層好ましくは0.30s以上とする。
 なお、抵抗スポット溶接は、加圧力や電流値を多段階としたり、通電と無通電を組合わせた特定のパターンで行なっても良い。例えば、通電中の加圧力を多段階とする場合、通電中の加圧力の最小値を2.0kN以上とし、加圧力の最大値を10.0kN以下とする。通電中の電流値を多段階とする場合、無通電期間を除いた通電中の電流値の最小値を4.0kA以上とし、電流値の最大値を15.0kA以下とする。また、無通電期間を除いた通電時間の総和を、0.1s以上、2.0s以下とする。
  [溶接施工外乱]
 本発明では、上記条件に加えて、溶接部材の製造時に、少なくとも1箇所の溶接打点については、溶接電極による加圧を行う直前に、以下の(a)~(e)の1つまたは2つ以上の状態を満たす場合、本発明の効果をより有効に得ることができる。
(a)溶接電極と重ね合わせた鋼板との打角が0.2度以上である状態
(b)一対の溶接電極の芯ずれ量が0.1mm以上である状態
(c)いずれかの溶接電極と重ね合わせた鋼板との間に隙間が0.5mm以上ある状態
(d)重ね合わせた鋼板のうち、少なくとも1組以上の鋼板間に隙間が0.5mm以上ある状態
(e)溶接打点の中心から重ね合わせた鋼板における鋼板端面までの最短距離が10mm以下である状態
 これらの溶接施工外乱は、いずれも電極解放時における溶接部の温度および/または引張応力を、局所的に上昇させるため、LME割れが発生しやすい状態となる。しかし、本発明の溶接部の表層制御を行うことで、これらの溶接施工外乱がある状態であってもLME割れを抑制することができ、溶接部材製造時の施工外乱管理の裕度が向上する。以下、各施工外乱の詳細について説明する。
 (a)溶接電極と重ね合わせた鋼板との打角が0.2度以上である状態
 打角とは、鋼板に対して電極が傾く角度、すなわち、「電極加圧力方向と鋼板板厚方向との成す角度」を意味する。打角が大きいと、溶接部に曲げ応力が加わり、局所的に大きな圧縮塑性変形が生じることで、電極解放後の引張応力が増加する。打角は0.2度以上の場合に、本発明の効果を有効に得ることができる。打角が過大の場合はナゲット形成が不安定となり、散り発生の原因となるため、打角は10度以下とすることが好適である。打角は、さらに好ましくは1度以上とし、さらに好ましくは8度以下とする。
 (b)一対の溶接電極の芯ずれ量が0.1mm以上である状態
 芯ずれとは、一対の溶接電極の中心軸が揃っていない状態を意味する。上述した打角と同様、芯ずれが大きいと、溶接部に曲げ応力が加わることで、LME割れが発生しやすくなる。芯ずれ量が0.1mm以上の場合に、本発明の効果を有効に得ることができる。芯ずれ量が過大の場合はナゲット形成が不安定となり、散り発生の原因となるため、芯ずれ量は5mm以下とすることが好適である。芯ずれ量は、さらに好ましくは0.2mm以上とし、さらに好ましくは3mm以下とする。
 (c)いずれかの溶接電極と重ね合わせた鋼板との間に隙間が0.5mm以上ある状態
 加圧開始直前にいずれかの溶接電極と鋼板との間に隙間がある状態では、例えば片方の溶接電極が可動(以下、可動側電極)、もう片方の溶接電極が固定(以下、固定側電極)としたとき、固定側電極と鋼板との間に隙間がある状態では、可動側電極による加圧が開始される。その結果、鋼板に曲げ変形が生じるため、溶接部に曲げ応力が加わることで、LME割れが発生しやすくなる。この隙間量が0.5mm以上の場合に、本発明の効果を有効に得ることができる。この隙間量が過大の場合はナゲット形成が不安定となり、散り発生の原因となるため、この隙間量は5mm以下とすることが好適である。隙間量は、さらに好ましくは1mm以上とし、さらに好ましくは3mm以下とする。
 (d)重ね合わせた鋼板のうち、少なくとも1組以上の鋼板間に隙間が0.5mm以上ある状態
 上述の(c)と同様、加圧開始直前にいずれかの鋼板間に隙間がある状態では、鋼板が曲げ変形が生じるため、溶接部に曲げ応力が加わることで、LME割れが発生しやすくなる。この隙間量が0.5mm以上の場合に、本発明の効果を有効に得ることができる。この隙間量が過大の場合はナゲット形成が不安定となり、散り発生の原因となるため、この隙間量は4mm以下とすることが好適である。隙間量は、さらに好ましくは1mm以上とし、さらに好ましくは3mm以下とする。なお、上記の「1組以上の鋼板間の隙間」とは、重ね合わせた2枚以上の鋼板において、上下方向に配置された2枚の鋼板を1組とするとき、1組以上の鋼板間に隙間あることを意味する。
 (e)溶接打点の中心から重ね合わせた鋼板における鋼板端面までの最短距離が10mm以下である状態
 溶接打点の中心から鋼板端面までの最短距離が小さいと、鋼板端面では溶接部からの熱伝導が阻害されるので、溶接部の冷却速度が低下する。そのため、電極解放時の温度が増加することで、LME割れが発生しやすくなる。溶接打点の中心から鋼板端面までの最短距離が10mm以下の場合に、本発明の効果を有効に得ることができる。また、上述したとおり、この最短距離が3mm未満の場合、溶接時の散り発生が顕著となり、ナゲット径がばらつきやすくなることで、溶接部の強度が不安定化する。そのため、この最短距離は3mm以上とするのが好適である。この最短距離は、好ましくは4mm以上とし、さらに好ましくは8mm以下とする。
 [電極保持工程]
 上述の通電工程の後、電極保持工程を行う。電極保持工程とは、通電完了後に一定加圧力で溶接電極を保持することで、ブローホールの発生抑止を目的とする工程である。
 電極保持工程は、電極解放時の温度制御の観点から、通電終了後の加圧力保持時間をTh(s)としたとき、加圧力保持時間(Th(s))が以下の式(7)の関係を満たす。これにより、本発明の効果を有効に得られる。
{(Hbs/Hbt)-0.2}/30<Th<[-{(Hbs/Hbt)-0.2}/3]+1.2 …(7)
ここで、式(7)における、Hbsは上記母材部の軟化層表面から板厚方向に20μm離れた位置のナノインデンテーション硬さであり、Hbtは上記母材部の軟化層表面から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さである。
 なお、より適切に温度制御する観点から、この条件式((式)7)に加えて、以下の式(8)を満たすことが、より好ましい。
0<Th …(8)
 加圧力保持時間(Th)が過小であると、電極解放時の温度が増加してLME割れが発生しやすくなる。一方、加圧力保持時間(Th)が過大であると、溶接1打点あたりのタクトタイムが増加することで生産性が低下する。これとともに、溶接部の冷却速度が増加することで溶接部の組織が脆くなるため、継手強度が低下したり、溶接部の遅れ破壊が発生しやすくなったりする。特に、母材部の硬さの比(Hbs/Hbt)が大きい(すなわち、母材部の鋼板内部に対して鋼板表層の軟化の程度が小さい)ほど、鋼板表層の軟化層によるLME割れ抑制効果が小さくなるので、加圧力保持時間(Th)の下限値は大きくする必要がある。加えて、Hbs/Hbtが大きいほど、溶接部の鋼板表層の組織が脆くなりやすいので、Thの上限値は小さくする必要がある。
 このような理由から、加圧力保持時間は、式(7)を満足する時間とする。式(7)の下限は、好ましくは{(Hbs/Hbt)-0.2}/30+0.02以上とする。式(7)の上限は、好ましくは[-{(Hbs/Hbt)-0.2}/3]+1.0以下とする。
なお、上記理由から、さらに式(8)を満足することがより好ましい。式(8)の下限は、好ましくは0.02以上とし、より好ましくは0.17以上とする。式(8)の上限は、好ましくは1.0以下とする。
 以下、本発明の作用および効果について、実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。
 表1に示す板組を用いて、表2に示す溶接条件で溶接継手(溶接部材)を作製した。なお、板組は、表1に示す鋼板1、鋼板2、鋼板3の順に、上側から配置して重ね合わせた。表1のめっき欄に示す「無し」とはめっき層を有しない鋼板(冷延鋼板)を指すものとした。ここで、いずれも図4で示すように、「鋼板表層の軟化層」が「あり」とは鋼板表層に軟化層を有する状態をいい、「内部酸化層あり」とは鋼板表層にSi内部酸化層を有する状態をいい、「Fe系プレめっき」が「あり」とは鋼板表層上にFe系のプレめっきを有する状態をいう。また、表3の「加圧直前の状態」欄に示す符号は、上述の溶接施工外乱に示した(a)~(e)に対応するものとした。また、溶接装置には、溶接ガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いた。使用した一対の電極チップは、先端の曲率半径R40mm、先端径6mmを有するクロム銅のDR型電極とした。
 また、表1の「引張強度」欄には、各鋼板から圧延方向にJIS 5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行い測定した引張強度(MPa)を示す。
 以下に示す方法で、溶接継手のTSSおよびLME割れの有無を評価した。また、以下の方法で、溶接継手における厚さ(tall、tweld)および各位置でのナノインデーション硬さ(Hbs、Hbt、Hws、Hst)を測定した。
 [各厚さの測定]
 作製した溶接継手は、溶接部中心を通るようにマイクロカッターで切断し、板厚方向断面を観察した。板組の総板厚(tall)は、溶接前の鋼板の板厚を測定し、その総和を総板厚として求めた。また、溶接部の最小厚さ(tweld)は、100μm間隔で、ナゲットの板幅方向の領域内における板厚方向の大きさを測定し、その最小値を「最小厚さ」とした(図2を参照)。得られた各値を用いて、「tweld/tall」の値を求めた。
 [各ナノインデーション硬さの測定]
 作製した溶接継手の溶接部中心を通るようにマイクロカッターで切断し、溶接熱影響部および母材部におけるナノインデンテーション硬さ試験をおこなった。ナノインデーション硬さ試験は、三角錐形のダイヤモンド圧子を押込み荷重500μNとして測定位置に押込み、負荷開始から除荷完了までの荷重-変位曲線を取得した後、Oliver-Pharrの解析法を用いて硬さを求めた。
 母材部におけるナノインデーション硬さは次のように測定した。具体的には、図2に示すように、軟化層を有する鋼板側(図2に示す例では下板2側)の母材部において、軟化層表面から板厚方向に20μm離れた位置のナノインデーション硬さ(Hbs)と、軟化層表面から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデーション硬さ(Hbt)と、を測定した。また、母材部の測定位置は、溶接熱影響部の外縁と鋼板の合わせ面7との交点から母材方向へ5000μm離れた位置で行った。
 また、溶接熱影響部におけるナノインデーション硬さは次のように測定した。具体的には、図2に示すように、軟化層を有する鋼板側(図2に示す例では下板2側)の溶接部のナゲット端から母材方向へ400μm離れた位置で、かつ、鋼板合わせ面上の位置を始点Aとし、始点Aから板厚方向に20μm離れた位置のナノインデーション硬さ(Hws)と、始点Aから板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデーション硬さ(Hwt)と、を測定した。
 得られた各値を用いて、各溶接継手における硬さの比を示す値として、「Hbs/Hbt」、「Hws/Hwt」および「Hws/Hbs」の値を求めた。なお、表2の「評価鋼板」欄に記載した鋼板における「Hbs/Hbt」、「Hws/Hwt」および「Hws/Hbs」の各値を、代表値として表2に記載した。
 [TSSの評価]
 引張せん断強度(TSS)の評価は、引張せん断試験方法(JIS Z3136)に基づき評価した。引張せん断試験には、表1に示す各鋼板から、せん断引張試験片を切り出し、表1に示す板組および表3に示す溶接条件で抵抗スポット溶接を施して作製した溶接継手(試験片)を用いた。
 また、得られた各試験片(本発明の溶接方法で作製された溶接継手)と比較するために、鋼板の表層性状を制御していない比較用継手(すなわち、得られる溶接継手の硬度差がHbs/Hbt≒1.0となる溶接継手)も作製した。比較用継手も、同様の引張せん断試験方法に基づき、TSSを評価した。
 なお、表3に示す条件No.4(板組No.D)の溶接継手は、重ね合わせた全ての鋼板が上記軟化層を有しなかったため、TSS評価は行っていない。
 TSS評価時の試験片形状はJIS Z3136に準拠したが、3枚重ねの板組(表1の板組No.Hなど)においては、図7に示すように、鋼板2-鋼板3間に引張負荷を与える評価を実施した。
 なお、TSSを評価する溶接継手の作製においては、溶接打点は1点のみとし、表2および3に示す打角および板間隙などの溶接施工外乱は設けなかった。
 そして、以下の基準でTSSを評価した。
<評価基準>
A:(本発明の溶接方法で作製された溶接継手のTSS)/(比較用継手のTSS)≧0.9
B:0.9>(本発明の溶接方法で作製された溶接継手のTSS)/(比較用継手のTSS)≧0.8
F:0.8>(本発明の溶接方法で作製された溶接継手のTSS)/(比較用継手のTSS)
 ここでは、評価結果がA、Bの場合に、合格(優れたせん断引張強度を有する)と評価した。
 [LME割れの評価]
 上述した(a)~(e)の溶接施工外乱のうち、1つまたは2つ以上を有する状態で溶接を行い、得られた溶接継手の溶接部中央を通るようにマイクロカッターで切断した後、溶接部の板厚方向の断面観察を行った。その観察結果から、以下の基準でLME割れの有無を評価した。具体的には、表3に示す各溶接条件でそれぞれ10体の溶接継手を作製し、鋼板間の合わせ面側で断面観察を行い、LME割れを確認した。なお、表2の「評価鋼板」欄に記載の鋼板の溶接部において、鋼板間の合わせ面側での断面観察を行い、評価した。
<評価基準>
A:10体すべて割れ無し
B:割れ発生した溶接継手が2体以下、かつ割れ深さの最大値が100μm未満
F:割れ発生した溶接継手が3体以上、または割れ深さの最大値が100μm以上
 ここでは、評価結果がAおよびBの場合に、合格と評価した。
 得られた各値および評価結果を、表2および表3にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、発明例となる溶接継手(溶接部材)の評価結果は、すべてAまたはBであった。本発明によれば、溶接部の強度の確保と、LME割れの抑止とを両立をできることがわかった。
  1、2、3  鋼板
  4、5  溶接電極
  6    溶接部
  6a   ナゲット
  6b   溶接熱影響部
  6c   ナゲット端
  7    鋼板の合わせ面
  8    溶接打点
  9    母材部
 10    溶接部材

Claims (8)

  1.  2枚以上の鋼板を重ね合わせた板組が抵抗スポット溶接された抵抗スポット溶接部を有する溶接部材であって、
     前記板組の総板厚をtall、前記抵抗スポット溶接部の最小厚さをtweldとしたとき、tallおよびtweldが式(1)を満たし、
     前記2枚以上の鋼板のうち少なくとも1枚は、鋼板の表層に軟化層を有する鋼板であり、
    かつ、前記軟化層を有する鋼板側の母材部では、前記軟化層の表面から板厚方向に20μm離れた位置のナノインデンテーション硬さをHbsとし、前記軟化層の表面から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さをHbtとしたとき、HbsおよびHbtが式(2)を満たす、溶接部材。
    0.5<tweld/tall<1.0 …(1)
    0.2<Hbs/Hbt<0.8 …(2)
  2.  前記軟化層を有する鋼板側の溶接熱影響部では、前記抵抗スポット溶接部のナゲット端から母材方向へ400μm離れた位置であって鋼板の合わせ面上の位置を始点とし、前記始点から板厚方向に20μm離れた位置のナノインデンテーション硬さをHwsとし、前記始点から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さをHwtとしたとき、
    Hws、Hwtおよび前記Hbsが式(3)および式(4)を満たす、請求項1に記載の溶接部材。
    0.2<Hws/Hwt<1.0 …(3)
    0.8<Hws/Hbs<7.0 …(4)
  3.  前記鋼板の板厚をt(mm)、前記鋼板の引張強度をTS(MPa)としたとき、
    前記軟化層を有する鋼板が、式(5)を満たす、請求項1または2に記載の溶接部材。
    -{(1000×t/TS)-0.25}/35+0.2<(Hws/Hwt)<1.0 …(5)
    ここで、式(5)におけるHwsは前記始点から板厚方向に20μm離れた位置のナノインデンテーション硬さであり、Hwtは前記始点から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さである。
  4.  前記軟化層を有する鋼板は、Si内部酸化層および/または亜鉛めっき層を有する、請求項1または2に記載の溶接部材。
  5.  前記亜鉛めっき層の下層に、Fe系のプレめっき層を有する、請求項4に記載の溶接部材。
  6.  前記抵抗スポット溶接部の溶接打点中心から前記鋼板端面までの最短距離の平均値が3mm以上であり、
    かつ、複数の溶接打点がある場合には、隣り合う溶接打点同士の打点中心間の平均距離が6mm以上である、請求項1または2に記載の溶接部材。
  7.  請求項1~6のいずれか1項に記載の溶接部材の製造方法であって、
     2枚以上の鋼板を重ね合わせて板組とする準備工程と、前記板組を抵抗スポット溶接する溶接工程と、を有し、
     前記溶接工程は、前記板組を一対の溶接電極で挟持し、加圧しながら通電して接合を行うものであり、
     前記通電は、加圧力:2.0~10.0kN、溶接電流:4.0~15.0kA、通電時間:0.1~2.0sで行い、
     通電終了後の加圧力保持時間をTh(s)としたとき、Th(s)が式(7)の関係を満たす電極保持工程を、さらに有する、溶接部材の製造方法。
    {(Hbs/Hbt)-0.2}/30<Th<[-{(Hbs/Hbt)-0.2}/3]+1.2 …(7)
    ここで、式(7)における、Hbsは前記母材部の軟化層表面から板厚方向に20μm離れた位置のナノインデンテーション硬さであり、Hbtは前記母材部の軟化層表面から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さである。
  8.  請求項1~6のいずれか1項に記載の溶接部材の製造方法であって、
     2枚以上の鋼板を重ね合わせて板組とする準備工程と、前記板組を抵抗スポット溶接する溶接工程と、を有し、
     前記溶接工程は、
     前記板組を一対の溶接電極で挟持し、加圧しながら通電して接合を行う際に、
    少なくとも1箇所の溶接打点については、前記溶接電極による加圧を行う直前に、(a)~(e)の1つまたは2つ以上の状態を満たし、
    かつ、前記通電は、加圧力:2.0~10.0kN、溶接電流:4.0~15.0kA、通電時間:0.1~2.0sで行う通電工程と、
     通電終了後の加圧力保持時間をTh(s)としたとき、Thが式(7)の関係を満たす電極保持工程と、を有する、溶接部材の製造方法。
    (a)溶接電極と重ね合わせた鋼板との打角が0.2度以上である状態
    (b)一対の溶接電極の芯ずれ量が0.1mm以上である状態
    (c)いずれかの溶接電極と重ね合わせた鋼板との間に隙間が0.5mm以上ある状態
    (d)重ね合わせた鋼板のうち、少なくとも1組以上の鋼板間に隙間が0.5mm以上ある状態
    (e)溶接打点の中心から重ね合わせた鋼板における鋼板端面までの最短距離が10mm以下である状態
    {(Hbs/Hbt)-0.2}/30<Th<[-{(Hbs/Hbt)-0.2}/3]+1.2 …(7)
    ここで、式(7)における、Hbsは前記母材部の軟化層表面から板厚方向に20μm離れた位置のナノインデンテーション硬さであり、Hbtは前記母材部の軟化層表面から板厚方向に板厚の1/4の厚さだけ離れた位置のナノインデンテーション硬さである。
PCT/JP2023/033590 2022-09-21 2023-09-14 溶接部材およびその製造方法 WO2024063009A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022150135 2022-09-21
JP2022-150135 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024063009A1 true WO2024063009A1 (ja) 2024-03-28

Family

ID=90454401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033590 WO2024063009A1 (ja) 2022-09-21 2023-09-14 溶接部材およびその製造方法

Country Status (1)

Country Link
WO (1) WO2024063009A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171237A1 (ja) * 2015-04-22 2016-10-27 新日鐵住金株式会社 めっき鋼板
JP2020082102A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法
WO2021019947A1 (ja) * 2019-07-30 2021-02-04 Jfeスチール株式会社 高強度鋼板およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171237A1 (ja) * 2015-04-22 2016-10-27 新日鐵住金株式会社 めっき鋼板
JP2020082102A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法
WO2021019947A1 (ja) * 2019-07-30 2021-02-04 Jfeスチール株式会社 高強度鋼板およびその製造方法

Similar Documents

Publication Publication Date Title
JP6278154B2 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP5572046B2 (ja) 異材接合方法
KR20150143818A (ko) 스폿 용접 조인트 및 스폿 용접 방법
JP6168246B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP2017047475A (ja) スポット溶接方法
KR102197434B1 (ko) 저항 스폿 용접 방법
CN112584959B (zh) 电阻点焊构件及其制造方法
WO2020105266A1 (ja) 接合構造体及び接合構造体の製造方法
WO2020105325A1 (ja) 接合構造体及び接合構造体の製造方法
WO2024063009A1 (ja) 溶接部材およびその製造方法
JP7435935B1 (ja) 溶接部材およびその製造方法
WO2024063010A1 (ja) 溶接部材およびその製造方法
JP7485242B1 (ja) 溶接部材およびその製造方法
WO2024063011A1 (ja) 溶接部材およびその製造方法
WO2024063012A1 (ja) 溶接部材およびその製造方法
JP7364113B2 (ja) 抵抗スポット溶接部材およびその抵抗スポット溶接方法
JP7355282B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
WO2023233705A1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP7355281B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP7347716B1 (ja) 抵抗スポット溶接継手および抵抗スポット溶接方法
JP7103923B2 (ja) 接合構造体及び接合構造体の製造方法
WO2023233704A1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
WO2024014146A1 (ja) 抵抗スポット溶接方法
JP6372639B1 (ja) 抵抗スポット溶接方法
KR20230148379A (ko) 저항 스폿 용접 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868130

Country of ref document: EP

Kind code of ref document: A1