WO2024063010A1 - 溶接部材およびその製造方法 - Google Patents

溶接部材およびその製造方法 Download PDF

Info

Publication number
WO2024063010A1
WO2024063010A1 PCT/JP2023/033591 JP2023033591W WO2024063010A1 WO 2024063010 A1 WO2024063010 A1 WO 2024063010A1 JP 2023033591 W JP2023033591 W JP 2023033591W WO 2024063010 A1 WO2024063010 A1 WO 2024063010A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
steel plate
steel
plate
layer
Prior art date
Application number
PCT/JP2023/033591
Other languages
English (en)
French (fr)
Inventor
央海 澤西
友美 金澤
克利 ▲高▼島
広志 松田
俊佑 山本
克弥 星野
崇史 河野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023572736A priority Critical patent/JP7435935B1/ja
Publication of WO2024063010A1 publication Critical patent/WO2024063010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded

Definitions

  • the present invention relates to a welded member obtained by resistance spot welding steel plates, and particularly to a welded member having a resistance spot welded portion suitable for use as a member of structural parts such as automobiles, and a method for manufacturing the same.
  • a resistance spot welding method which is a type of lap resistance welding method, is used to join stacked steel plates together.
  • This welding method involves sandwiching two or more stacked steel plates between a pair of welding electrodes from above and below, applying pressure with the welding electrodes, and applying a high welding current between the upper and lower electrodes for a short period of time to join them. It is.
  • FIG. 1 shows an example in which two superimposed steel plates 1 and 2 are sandwiched between welding electrodes 4 and 5 and resistance spot welded. According to this method, point-shaped welded portions 6 are obtained by utilizing resistance heat generation generated by flowing a high welding current.
  • This point-like welded portion 6 is called a nugget, and is a portion where both steel plates 1 and 2 are melted and solidified at the contact point of the steel plates when an electric current is passed through the stacked steel plates. As a result, the steel plates are joined in a dotted manner.
  • TSS tensile shear strength
  • surface-treated steel sheets refer to galvanized galvanizing, typified by electrogalvanizing and hot-dip galvanizing (including alloyed hot-dip galvanizing), and zinc alloy plating containing elements such as aluminum and magnesium in addition to zinc.
  • a steel plate that has a metal plating layer such as on the surface of the base material (substrate steel plate). Since the melting point of zinc plating and zinc alloy plating is lower than that of the base material of the surface-treated steel sheet, there are the following problems.
  • LME cracking occurs when the low-melting point metal plating layer on the surface of the steel plate melts during welding, and when tensile stress due to the pressure of the electrode or the thermal expansion and contraction of the steel plate is applied to the weld. It is thought that this cracking is caused by so-called liquid metal embrittlement, in which a low melting point metal invades the grain boundaries of the base material of the surface-treated steel sheet, lowering the grain boundary strength and causing cracking (hereinafter referred to as "LME cracking"). ). As shown in FIG. 10, LME cracks occur at various locations, such as on the surfaces of the steel plates 1 and 2 that are in contact with the welding electrodes 4 and 5, and on the surfaces of the steel plates 1 and 2 that are in contact with each other.
  • Patent Document 1 the composition of the steel plate that is a plate assembly is set within a specific range, specifically, in weight%, C: 0.003 to 0.01%, Mn: 0.05 to 0.5%, P : 0.02% or less, sol. Al: 0.1% or less, Ti: 48 x (N/14) to 48 x ⁇ (N/14) + (S/32) ⁇ %, Nb: 93 x (C/12) to 0.1%, It has been proposed to have a composition consisting of B: 0.0005 to 0.003%, N: 0.01% or less, Ni: 0.05% or less, and the balance: Fe and unavoidable impurities.
  • Patent Document 2 discloses that in resistance spot welding of high-strength plated steel sheets, the welding energization time and the holding time after welding energization are set so as to satisfy the following conditional expressions (A) and (B).
  • a spot welding method for high-strength plated steel sheets has been proposed. 0.25 ⁇ (10 ⁇ t+2)/50 ⁇ WT ⁇ 0.50 ⁇ (10 ⁇ t+2)/50...(A) 300-500 ⁇ t+250 ⁇ t 2 ⁇ HT...(B)
  • t plate thickness (mm)
  • WT welding energization time (ms)
  • HT holding time after welding energization (ms).
  • Patent Document 2 the energization time and the holding time of the electrode after energization are appropriately set according to the thickness of the steel sheet, and a high-tensile galvanized steel sheet is used in which the amount of alloy elements in the steel sheet is below a certain level. , it has also been proposed to perform welding.
  • Patent Document 3 proposes a method in which a current pattern is set to three or more stages, welding conditions such as current flow time and welding current are adjusted so that the appropriate current range ( ⁇ I) is 1.0 kA or more, preferably 2.0 kA or more, and a cooling time is provided between each stage.
  • the appropriate current range is a current range that can stably form a nugget that is equal to or larger than the desired nugget diameter and has a molten residual thickness of 0.05 mm or more.
  • At least one steel plate among a plurality of steel plates to be resistance welded has a chemical composition with a carbon equivalent Ceq of 0.53% or more. It is a high tensile strength steel plate having a tensile strength of 590 MPa or more.
  • This high-strength steel sheet is formed between a zinc-based plating layer formed on the surface of at least one of the steel sheets on the overlapping surface side and the welding electrode side and the base material, or a zinc-based plating layer of the overlapping zinc-based plated steel sheets. It has been proposed to have a decarburized layer on the overlapping surfaces adjacent to each other.
  • Patent Document 1 since it is necessary to limit the amount of alloying elements in the steel plate, there are problems such as the use of a steel plate that satisfies the required performance is restricted. In particular, the application of the technique of Patent Document 1 is extremely limited under the current situation in which steel sheets are becoming more highly alloyed as their strength increases.
  • Patent Document 2 only proposes a method for suppressing cracking when an excessive welding current that causes expulsion is set, and does not mention cracking in a state where expulsion does not occur.
  • Patent Document 3 has the problem that a large number of man-hours are required to optimize welding conditions, and it cannot be applied to steel plates and plate assemblies where it is difficult to secure an appropriate current range.
  • Patent Documents 2 and 3 do not consider the influence of the striking angle of the electrodes, so they may be insufficient as a countermeasure when considering the work performed during automobile assembly.
  • Patent Document 4 LME cracking is suppressed by providing a decarburized layer on the surface layer of the steel sheet, but cracking is likely to occur during welding.
  • the decarburized layer in the weld zone which becomes the stress concentration area during the tensile test, has not been studied.
  • Patent Documents 1 to 4 To summarize the common problems of Patent Documents 1 to 4, including the viewpoint of joint strength, no technology has been proposed that secures the strength of the welded part of high-strength steel plates while also suppressing the occurrence of LME cracking.
  • the present invention has been made in view of the above circumstances, and provides a welded member having a resistance spot weld that can both secure the strength of the resistance spot weld in a high-strength steel plate and suppress LME cracking.
  • the purpose is to provide a method for producing the same.
  • LME cracking The effect of the present invention on cracking that occurs during welding (LME cracking) cannot be simply explained because it is complicatedly influenced by various factors.
  • LME cracking in a resistance spot weld is likely to occur when excessive tensile residual stress is generated in the resistance spot weld due to construction disturbances during welding.
  • LME cracking occurs in areas where local tensile stress is large. It is known to occur easily.
  • the temperature and stress when the electrode is released are reduced. This is effective in suppressing the occurrence of LME cracking.
  • tensile residual stress in the resistance spot weld can be reduced, and it is thought that LME cracking can be suppressed as a result.
  • the welded member is obtained by resistance spot welding a plate assembly including steel plates having a decarburized layer on the steel plate surface layer. has.
  • a steel plate having the above decarburized layer is used as the lower plate.
  • the decarburized layer is present in the weld heat affected zone (HAZ) and the base metal region.
  • HAZ weld heat affected zone
  • the decarburized layer in the weld heat affected zone basically decreases as it approaches the nugget 6a.
  • the decarburized layer in the weld heat affected zone may remain without almost disappearing.
  • the decarburized layer existing in the weld heat affected zone region including the states shown in FIGS. 3(A) to 3(C) is referred to as the "decarburized layer on the surface layer of the steel plate in the weld heat affected zone.”
  • the average value of the shortest distance from the center of the welding point to the end face of the steel plate is 3.0 mm or more,
  • the average distance between the centers of adjacent welding points is 6.0 mm or more
  • At least one of the two or more steel plates is a steel plate having a decarburized layer on the surface layer of the steel plate, And, on the steel plate side having the decarburized layer, the above-mentioned in the plate thickness direction from the steel plate surface in the weld heat affected zone at a position 400 ⁇ m away from the nugget end of the resistance spot weld in parallel to the steel plate mating surface toward the base material.
  • the thickness of the decarburized layer is tw (mm), and the thickness of the decarburized layer in the plate thickness direction from the steel plate surface at the base metal part at a position away from the nugget end parallel to the steel plate mating surface in the base metal direction is When tb (mm), A welded member in which tw and tb satisfy formula (1).
  • the steel plate having the decarburized layer is The hardness of the decarburized layer in the steel plate surface layer of the weld heat affected zone at a position 400 ⁇ m away from the nugget end parallel to the steel plate mating surface in the direction of the base metal is Hws, and from the nugget end parallel to the steel plate mating surface When the hardness of the nugget at a position 200 ⁇ m away from the inside of the nugget is Hn, The welding member according to [1], wherein Hws, Hn, the tw, and the tb satisfy equations (2) and (3).
  • tw/tb is the thickness of the decarburized layer of the weld heat affected zone at a position 400 ⁇ m away from the nugget end in parallel with the steel plate mating surface toward the base material
  • tb (mm) is the thickness of the decarburized layer of the base material at a position parallel to the mating surface of the steel plates from the nugget end.
  • tw (mm) in equation (4) is the thickness of the decarburized layer of the weld heat affected zone at a position 400 ⁇ m away from the nugget end in parallel with the steel plate mating surface toward the base material
  • tb (mm) is the thickness of the decarburized layer of the base material at a position parallel to the mating surface of the steel plates from the nugget end.
  • the tensile strength of the steel plate with the highest strength is TSm (MPa)
  • the total plate thickness of the plate set is t all (mm)
  • the energization time in the energization process is Ts ( S)
  • the pressurizing force in the energization step is F (kN)
  • the average flow rate of the cooling water flowing into the welding electrodes arranged on the upper and lower sides of the plate assembly is L (l/min).
  • a welded member and its manufacture can prevent a decrease in strength of the resistance spot weld due to decarburization of the surface layer of the steel plate and do not cause LME cracking. method can be provided.
  • FIG. 1 is a cross-sectional view that illustrates an example of resistance spot welding according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a resistance spot weld and its surroundings in a welded member according to an embodiment of the present invention.
  • 3(A) to 3(C) are enlarged cross-sectional views illustrating a decarburized layer on the surface layer of a steel plate in a weld heat affected zone.
  • FIG. 4 is a cross-sectional view in the thickness direction for explaining an example of a steel plate having a decarburized layer on the surface layer of the steel plate used in the present invention.
  • FIG. 1 is a cross-sectional view that illustrates an example of resistance spot welding according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a resistance spot weld and its surroundings in a welded member according to an embodiment of the present invention.
  • 3(A) to 3(C) are enlarged cross-sectional views illustrating a
  • FIG. 5 is a diagram illustrating the shortest distance (H 1 ) from the center of the welding point to the end surface of the steel plate in the welded member of the present invention.
  • FIG. 6 is a diagram illustrating the distance (H 2 ) between the centers of adjacent welding points in the welded member of the present invention.
  • FIG. 7 is a cross-sectional view illustrating an example of a tensile test for a three-plate assembly in an example of the present invention.
  • FIG. 8 is a diagram illustrating the distance (Xn) between the centers of welding points (between the centers of welding points and already welded points) in the welding process in the manufacturing method of the present invention.
  • FIG. 9 is a diagram illustrating the distance (Xe) from the center of the welding point to the end surface of the steel plate in the welding process in the manufacturing method of the present invention.
  • FIG. 10 is a cross-sectional view that shows a schematic example of crack generation during conventional resistance spot welding.
  • FIGS. 1 to 9 a welded member and a method for manufacturing the same, which are one embodiment of the present invention, will be described with reference to FIGS. 1 to 9. Note that the present invention is not limited to this embodiment.
  • FIG. 2 is a cross-sectional view in the plate thickness direction showing an example of the welded member of the present invention, and is an enlarged cross-sectional view of a resistance spot weld and a portion of its surroundings in the welded member.
  • the area shown in this enlarged sectional view is the area surrounded by a rectangular frame in FIG. 3(A) to 3(C) are cross-sectional views illustrating the decarburized layer of the weld heat-affected zone, and show the area surrounded by a rectangular frame in FIG. 2.
  • FIG. 4 shows a cross-sectional view in the thickness direction of a steel plate having a decarburized layer used in the present invention.
  • 5 and 6 are top views showing the vicinity of the resistance spot welding portion of the welding member (that is, views of the welding member viewed from above).
  • the present invention is a welding member 10 having a resistance spot welded part (hereinafter referred to as a "welded part") in which a plate set of two or more overlapping steel plates is resistance spot welded.
  • a welded part a resistance spot welded part
  • the welded member 10 of the present invention has an average value (H 1 ) of the shortest distance from the center of the welding point of the welded part to the end surface of the steel plate of 3.0 mm or more, and When there are welding points, the average distance (H 2 ) between the centers of adjacent welding points is 6.0 mm or more.
  • the above “average value (H 1 ) of the shortest distance from the center of the welding point to the end face of the steel plate” means that the end face of the steel plate closest to the center of the welding point 8 is set as shown in Figure 5, and that distance is calculated for each Obtained by measuring. If the number of welding points in the welding member is 5 or more, the average value of the 5 appropriately selected points is taken as the "average value of the shortest distance.” If the number of welding points in the welding member is less than 5, all Let the average value of the hitting points be the "average value of the shortest distance.”
  • this shortest distance (H 1 ) is 1000 mm or less.
  • the average value of the shortest distance (H 1 ) is preferably 4.0 mm or more.
  • the average value of the shortest distance (H 1 ) is more preferably 100.0 mm or less, even more preferably 30.0 mm or less, and even more preferably 20.0 mm or less.
  • the above-mentioned "average distance between the centers of adjacent welding points (H 2 )" is determined by measuring the distance between the centers of each adjacent welding point 8, as shown in Figure 6. . If the average distance (H 2 ) between the centers of welding points is less than 6.0 mm, a shunt of current to the already welded point occurs during welding, lowering the current density in the welded area, reducing the nugget diameter and reducing the welded area. Strength tends to decrease. Furthermore, the welded portion is restrained by the already welded points, and tensile residual stress increases, making LME cracking more likely to occur. There is no upper limit to the average distance between the centers of the dots.
  • the average distance (H 2 ) between the centers of the dots is preferably 100 mm or less.
  • the average distance (H 2 ) between the centers of the dots is preferably 10.0 mm or more. Further, the average distance (H 2 ) between the centers of the dots is more preferably 60.0 mm or less, and even more preferably 40.0 mm or less.
  • the welded member of the present invention includes a case where the number of welding points is only one. In this case, among the above-mentioned welding point conditions, it is sufficient to satisfy that "the average value of the shortest distance (H 1 ) from the center of the welding point of the welding part to the end face of the steel plate is 3.0 mm or more.”
  • At least one of the two or more superimposed steel plates is a steel plate having a decarburized layer on the surface layer of the steel plate (see FIG. 4).
  • the number of superimposed steel plates is not particularly limited, and may be two or more. Preferably the number is 3 or more. Note that the upper limit of the number of steel plates is not particularly specified, but it is preferably 5 or less.
  • FIG. 2 shows an example of a welding member 10 in which two overlapping steel plates are welded.
  • Both or one of the steel plate 2 (lower plate) disposed on the lower side and the steel plate 1 (upper plate) disposed on the upper side is a steel plate having the decarburized layer.
  • a welded portion 6, which will be described below, is formed on the steel plate mating surface 7 where the steel plates 1 and 2 are in contact.
  • the weld 6 of the present invention is formed only on the steel plate mating surface 7 side of the lower plate 2. Note that, if steel plates having a decarburized layer of the present invention are used for both the upper plate 1 and the lower plate 2, the weld 6 of the present invention is formed on both the upper plate 1 side and the lower plate 2 side of the steel plate mating surface 7.
  • the weld of the present invention is formed so as to include the steel plate mating surfaces between the steel plates.
  • the weld of the present invention is formed so as to include two steel plate mating surfaces where the lower plate and the middle plate and the middle plate and the upper plate are in contact with each other.
  • the welded part 6 of the present invention has a decarburized layer on the steel plate surface layer at the base metal part on the steel plate side (in the example shown in FIG. 2, the lower plate 2 side) and the weld heat affected zone 6b. It specifies the ratio of coal seam thickness. Specifically, on the steel plate side having a decarburized layer, decarburization occurs in the plate thickness direction from the steel plate surface of the weld heat affected zone at a position 400 ⁇ m away from the nugget end of the resistance spot weld in parallel to the mating surface of the steel plates and toward the base metal.
  • the thickness of the coal seam is tw (mm), and the thickness of the decarburized layer in the plate thickness direction from the steel plate surface of the base metal at a position away from the nugget end parallel to the steel plate mating surface in the plate thickness direction is tb (mm).
  • tw thickness of the decarburized layer in the weld heat affected zone
  • tb thickness of the decarburized layer in the base metal part
  • the welding heat is When the thickness of the decarburized layer in the affected zone is large, a coarse ferrite-centered structure is formed in the surface layer of the weld heat affected zone. As a result, this surface layer structure easily causes necking when a tensile load is applied, resulting in a decrease in joint strength. Therefore, the ratio of the decarburized layer thickness is set to be less than 1.0.
  • the lower limit of the above decarburized layer thickness ratio is 0.1. It is more effective for the above decarburized layer thickness ratio to satisfy the relationship 0.1 ⁇ tw/tb ⁇ 0.9, and even more preferably, it is even more effective for the above decarburized layer thickness ratio to satisfy the relationship 0.2 ⁇ tw/tb ⁇ 0.8.
  • decarburized layer thickness (tw, tb) can be measured by the method described in the Examples described later.
  • the following configuration may be included.
  • the strength and fracture location of the weld are affected by the hardness of the nugget and the weld heat affected zone. Therefore, the effects of the present invention can be more effectively obtained by appropriately controlling the ratio of the decarburized layer thickness (tw/tb) according to the surface hardness of the nugget and the weld heat affected zone.
  • a steel plate with a decarburized layer has a decarburized layer on the surface layer of the steel plate in the weld heat affected zone at a position 400 ⁇ m away from the nugget end parallel to the mating surface of the steel plate toward the base metal.
  • Hws be the hardness
  • Hn be the hardness of the nugget at a position 200 ⁇ m inward from the nugget end parallel to the mating surface of the steel plates
  • the surface hardness of the nugget and weld heat affected zone (Hn and Hws ) and the decarburized layer thicknesses (tw and tb) of the weld heat-affected zone and base metal part preferably satisfy the following formulas (2) and (3).
  • the above-mentioned "steel plate surface layer of the weld heat affected zone” is a position 400 ⁇ m away from the nugget end 6c in parallel to the steel plate mating surface 7 toward the base metal, and A position on the surface 7 is defined as a starting point A, and a position 20 ⁇ m away from the starting point A in the plate thickness direction on the side of the steel plate 2 having a decarburized layer is indicated.
  • the surface layer hardness ratio is more preferably 0.3 or more, and more preferably 1.0 or less.
  • the ratio of the surface hardness of the nugget and weld heat affected zone to the ratio of the decarburized layer thickness of the weld heat affected zone and base metal satisfies equations (2) and (3). It is preferable.
  • the lower limit of formula (2) is not particularly defined. From the viewpoint of suppressing LME cracking by ensuring an appropriate thickness of the decarburized layer in the heat affected zone, the lower limit of formula (2) is preferably 0.15 or more.
  • the lower limit of the decarburized layer thickness ratio (tw/tb) shown in equation (2) is more preferably 0.20 or more, and the upper limit of the decarburized layer thickness ratio is preferably 0.80 or less. More preferred.
  • the above-mentioned surface layer hardness (unit: GPa) can be measured by a nanoindition hardness test as described in Examples below.
  • the nanoindentation hardness test method is not limited in the present invention, but may be performed in accordance with ISO 14577 using, for example, a nanoindentation device (TI-950 TriboIndenter manufactured by Hysitron).
  • ⁇ Steel plate> [Plate thickness, tensile strength]
  • the strength and residual stress of welded parts are affected by the thickness and tensile strength of the steel plates that are superimposed. Therefore, in the present invention, it is preferable to appropriately control the ratio (tw/tb) of the thickness of the decarburized layer in the weld heat affected zone and the base metal portion in accordance with the plate thickness and tensile strength. Thereby, the effects of the present invention can be obtained even more effectively.
  • the steel plate having a decarburized layer preferably satisfies the following formula (4).
  • tw (mm) in equation (4) is the thickness of the decarburized layer in the weld heat affected zone at a position 400 ⁇ m away from the nugget end parallel to the steel plate mating surface toward the base metal
  • tb (mm) is the thickness of the decarburized layer in the base metal at a position parallel to the mating surface of the steel plates from the nugget end.
  • the thickness (t) of a steel plate with a decarburized layer When the thickness (t) of a steel plate with a decarburized layer is large, the cross-sectional area of the weld heat-affected zone becomes large, so when a tensile load is applied to the weld, the fracture occurs within the nugget instead of in the weld heat-affected zone. more likely to occur. As a result, even if the surface layer decarburization of the weld heat affected zone is significant, the strength of the weld is less likely to decrease. Therefore, the larger the thickness (t) of the steel plate, the smaller the preferable lower limit value of tw/tb becomes.
  • the difference in structure and/or hardness between the soft layer on the surface of the steel sheet and the inside of the steel sheet becomes large, and the concentration of strain on the soft part of the surface layer of the steel sheet becomes significant, and the strength of the weld is likely to decrease.
  • the higher the tensile strength (TS) of the steel plate the larger the preferable lower limit value of tw/tb becomes.
  • tw/tb satisfy the formula (4).
  • the lower limit of formula (4) is preferably ⁇ 2 ⁇ (1000 ⁇ t/TS) ⁇ 0.25 ⁇ /35+0.3 or more.
  • the upper limit of formula (4) is preferably 2 ⁇ (1000 ⁇ t/TS) ⁇ 0.25 ⁇ /35+0.7. Note that, for the above-mentioned reasons, it is more preferable to further satisfy equation (5).
  • the lower limit of formula (5) is preferably 0.50 or more, and the upper limit of formula (5) is preferably 3.00 or less.
  • the tensile strength of the steel plate having a decarburized layer is preferably TS ⁇ 980 (MPa). This is because the effects of the present invention can be obtained even more effectively in the case of a high-strength steel plate that satisfies this relationship.
  • At least one of the two or more steel plates to be stacked is a steel plate having a decarburized layer on the surface layer of the steel plate.
  • a steel plate having a decarburized layer on the surface layer of the steel plate will be described.
  • FIG. 4 shows an example of a steel plate having a decarburized layer on the surface layer of the steel plate.
  • the steel sheet having this decarburized layer include a galvanized steel sheet having a galvanized layer on the decarburized layer, and a steel sheet having a Si internal oxidation layer in the outermost layer within the decarburized layer.
  • FIG. 4 shows, as an example, a steel sheet having a structure including a decarburized layer, a Si internal oxidation layer, a galvanized layer, and an Fe-based pre-plated layer to be described later.
  • the galvanized steel sheet may have an Fe-based pre-plating layer between the decarburized layer and the galvanized layer.
  • an Fe-based pre-plating layer By forming an Fe-based pre-plating layer with a low C content, the C content in the surface layer of the steel sheet can be reduced.
  • the C content in the Fe-based pre-plating layer is preferably 0.20% by mass or less.
  • the C content is more preferably 0.10% by mass or less, still more preferably 0.05% by mass or less.
  • This pre-plating layer is preferably an Fe-based electroplating layer.
  • Fe-based electroplating layers include Fe-B alloy, Fe-C alloy, Fe-P alloy, Fe-N alloy, Fe-O alloy, Fe-Ni alloy, Fe-Mn alloy, Fe- An alloy plating layer such as Mo alloy or Fe-W alloy can be used.
  • the composition of the Fe-based electroplated layer is not particularly limited, but in the present invention, a group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V, and Co is used.
  • the composition contains one or more elements selected from the following in a total amount of 10% by mass or less, with the remainder consisting of Fe and unavoidable impurities.
  • the amount of the Fe-based electroplated layer deposited on one side is preferably 0.5 g/m 2 or more.
  • the amount of adhesion is more preferably 1.0 g/m 2 or more.
  • the upper limit of the amount of the Fe-based electroplated layer per side is not particularly limited, but from the viewpoint of cost, it is preferable that the amount of the Fe-based electroplated layer applied per side is 60 g/m 2 or less.
  • the amount of adhesion is preferably 50 g/m 2 or less, more preferably 40 g/m 2 or less, even more preferably 30 g/m 2 or less.
  • the thickness of the Fe-based electroplated layer is measured as follows. A 10 ⁇ 15 mm sample is taken from an alloyed high-strength hot-dip galvanized steel sheet after hot-dip galvanizing and embedded in resin to form a cross-sectional embedded sample. Three arbitrary locations on the same cross section are observed using a scanning electron microscope (SEM) at an acceleration voltage of 15 kV and a magnification of 2,000 to 10,000 times depending on the thickness of the Fe-based electroplated layer. Next, by multiplying the average value of the thicknesses of the three visual fields by the specific gravity of iron, it is converted into the amount of deposited Fe-based electroplating layer per side.
  • SEM scanning electron microscope
  • Fe-based electroplating treatment it is preferable to perform Fe-based electroplating treatment on the surface of a high-strength pre-annealed cold-rolled steel sheet to obtain a pre-annealed Fe-based electroplated steel sheet.
  • the Fe-based electroplating method is not particularly limited.
  • a sulfuric acid bath, a hydrochloric acid bath, or a mixture of both can be used as the Fe-based electroplating bath.
  • a sulfuric acid bath a hydrochloric acid bath, or a mixture of both can be used.
  • the Fe ion content in the Fe-based electroplating bath before the start of current application is preferably 1.0 mol/L or more as Fe 2+ . If the Fe ion content in the Fe-based electroplating bath is 1.0 mol/L or more as Fe 2+ , a sufficient amount of Fe deposition can be obtained. By using such a steel plate, the effects of the present invention can be obtained more effectively. In particular, it is even more effective in the case of an alloyed hot-dip galvanized steel sheet that is pre-plated before forming a galvanized layer and alloyed after hot-dip galvanizing.
  • Si internal oxide layer For example, it is known that when the amount of Si in steel increases, LME cracking tends to occur.
  • Si lowers the solidus temperature at the same Zn concentration and shifts the solidus concentration toward the Fe side. Therefore, when the zinc-based plating on the surface of the steel sheet melts and Zn diffuses into the steel sheet during resistance spot welding, in steel sheets with a high Si content, the steel sheet and liquid Zn remain in contact for a long time, even at lower temperatures and in low Zn concentration regions. Therefore, it is thought that LME cracking became more likely to occur.
  • Si internal oxide layer specifically refers to a region in which Si oxide is formed within a crystal grain and/or at a part of a crystal grain boundary.
  • the welded member of the present invention is manufactured through a manufacturing process that includes a preparation process of stacking two or more steel plates to form a plate assembly, and a welding process of resistance spot welding the plate assembly.
  • FIG. 1 shows an example of resistance spot welding of two steel plates.
  • two steel plates 1 and 2 are overlapped to form a plate assembly.
  • a welding process is performed.
  • the welding process includes an energization process and an electrode holding process, which will be described later.
  • the plate sets prepared in the preparation process are joined.
  • the plate assembly is held between a pair of welding electrodes 4 and 5 arranged on the lower side and the upper side of the plate assembly, and a predetermined position is applied while applying pressure with the pair of welding electrodes 4 and 5.
  • the current is controlled so that the welding conditions are met.
  • the steel plates can be joined together by forming the above-mentioned welded portion 6 of the present invention between the steel plates serving as the steel plate mating surfaces 7 of the steel plates 1 and 2 (see FIG. 2).
  • a steel plate with a decarburized layer and a steel plate without a decarburized layer are used to form a plate set, they are stacked so that the side with the decarburized layer becomes the mating surface of the steel plates.
  • the steel sheet having a decarburized layer is a galvanized steel sheet (GI steel sheet, GA steel sheet, EG steel sheet) having a galvanized layer
  • the steel sheets are stacked so that the side with the galvanized layer becomes the mating surface of the steel sheets.
  • the present invention can be applied to either a direct current or an alternating current welding power source.
  • current means "effective current.”
  • the pressurizing mechanism air cylinder, servo motor, etc.
  • type stationary type, robot gun, etc.
  • electrode shape, etc. of the welding device are not particularly limited.
  • Examples of the format of the electrode tip include DR type (dome radius type), R diameter (radius type), D type (dome type), etc. described in JIS C 9304:1999. Further, the tip diameter of the electrode is, for example, 4 mm to 16 mm.
  • the plate assembly is sandwiched between a pair of welding electrodes, and when joining is performed by applying current while applying pressure, at least one welding point is immediately before applying pressure with the welding electrodes as shown below ( One or more of the conditions a) to (e) are satisfied, and when the distance from the welding point center to the end surface of the steel plate is Xe, the condition Xe: 3 to 30 mm is satisfied, and the welding point and If there is a previously welded point adjacent to the welded point, the distance between the welded point and the previously welded point is Xn, the condition of Xn: 6 mm or more is satisfied, and the energization is applied with a pressure of: The energization process performed at 2.0 to 10.0 kN, welding current: 4.0 to 15.0 kA, energization time: 0.1 to 2.0 S, and the holding time of pressure after energization is Th (S). and an electrode holding step in which Th satisfies the relationship of equation (6).
  • the welding current is preferably 5.0 kA or more, and preferably 12.0 kA or less.
  • the current application time is less than 0.1 S, the diffusion of alloying elements in the weld heat affected zone becomes insufficient, and the thickness of the decarburized layer in the weld heat affected zone may hardly change from the thickness of the decarburized layer in the base metal. At this time, a coarse ferrite-centered structure is formed on the surface layer of the weld heat affected zone. As a result, this surface layer tissue easily causes necking when a tensile load is applied, resulting in a decrease in TSS. On the other hand, if the energization time exceeds 2.0 seconds, the takt time of the automobile assembly process becomes long and productivity decreases.
  • the current application time is preferably 0.10S or more.
  • the current application time is more preferably 0.12S or more, and preferably 1.5S or less.
  • resistance spot welding may be performed using multiple levels of pressure and current values, or a specific pattern that combines energization and non-energization.
  • the minimum value of the pressing force during energization is set to 2.0 kN or more, and the maximum value of the pressing force during energization is set to 10.0 kN or less.
  • the current value during energization is set to multiple levels, the minimum value of the current value during energization excluding the non-energizing period is set to 4.0 kA or more, and the maximum value of the current value is set to 15.0 kA or less.
  • the total energization time excluding the non-energization period is set to 0.1S or more and 2.0S or less.
  • (a) A state in which the angle of attack between the welding electrode and the superimposed steel plate is 0.2 degrees or more.
  • the angle of attack is the angle at which the electrode is inclined with respect to the steel plate, i.e., the angle between the electrode pressure direction and the steel plate thickness direction.
  • "The angle formed by” If the striking angle is large, bending stress is applied to the welded part, causing localized large compressive plastic deformation, which increases the tensile stress after the electrode is released, making LME cracking more likely to occur. The effects of the present invention can be effectively obtained when the hitting angle is 0.2 degrees or more. If the striking angle is too large, nugget formation becomes unstable and may cause scattering, so it is preferable that the striking angle is 10 degrees or less.
  • the striking angle is more preferably 1 degree or more, and even more preferably 8 degrees or less.
  • Misalignment means a state in which the center axes of a pair of welding electrodes are not aligned. Similar to the above-mentioned strike angle, if the misalignment is large, bending stress is applied to the welded part, making LME cracking more likely to occur. When the amount of misalignment is 0.1 mm or more, the effects of the present invention can be effectively obtained. If the amount of misalignment is too large, the nugget formation becomes unstable and may cause scattering, so it is preferable that the amount of misalignment is 5 mm or less. The amount of misalignment is more preferably 0.2 mm or more, and even more preferably 3 mm or less.
  • this gap amount is 0.5 mm or more, the effects of the present invention can be effectively obtained. If the amount of this gap is too large, the nugget formation becomes unstable and causes the occurrence of scattering, so it is preferable that the amount of this gap is 5 mm or less.
  • the amount of gap is more preferably 1 mm or more, and even more preferably 3 mm or less.
  • gap between one or more sets of steel plates refers to the gap between one or more sets of steel plates when two or more steel plates arranged in the vertical direction constitute one set of two or more stacked steel plates. This means that there is a gap.
  • this shortest distance is 3 mm or more.
  • This shortest distance is preferably 4 mm or more, and more preferably 8 mm or less.
  • distance (Xe) from the center of the welding point to the end surface of the steel plate refers to the distance from the center of the welding point 8 to the end surface of the steel plate that is closest to the center of the welding point 8, as shown in FIG.
  • distance between the welding point and the already welded point tube (Xn) refers to the distance between the centers of adjacent welding points (the welding point 8 and the already welded point 9), as shown in FIG.
  • FIGS. 8 and 9 are top views (views of the member viewed from above) showing the vicinity of the welded portion of the member.
  • the distance (Xe) is preferably 3.0 mm or more, more preferably 4.0 mm or more.
  • the distance (Xn) between a welding point and an existing welding point adjacent to the welding point is less than 6 mm, the welding point will be constrained by the existing welding point, increasing residual stress and making LME cracking more likely to occur.
  • the distance (Xn) is preferably 200 mm or less.
  • the distance (Xn) is preferably 6.0 mm or more, more preferably 10.0 mm or more. Further, the distance (Xn) is more preferably 40.0 mm or less.
  • the energization time (Ts) preferably satisfies the relationship Ts ⁇ 0.02 ⁇ t all ⁇ L ⁇ (TSm) ⁇ /F, more preferably Ts ⁇ 0.014 ⁇ t It is more effective to satisfy the relationship: all ⁇ L ⁇ (TSm) ⁇ /F.
  • the energization time is more preferably [0.13 ⁇ t all ⁇ (1-tb) ⁇ ] S or more, and even more preferably [0.17 ⁇ t all ⁇ (1-tb) ⁇ ].
  • the electrode holding process is a process aimed at suppressing the occurrence of blowholes by holding the welding electrode with a constant pressure after the completion of energization.
  • the pressurizing force holding time (Th) is too small, the temperature when the electrode is released increases, making it easy for LME cracking to occur.
  • the pressurizing force holding time (Th) is excessive, the takt time per welding point increases, resulting in a decrease in productivity.
  • the structure of the weld becomes brittle, resulting in a decrease in joint strength and a tendency for delayed fracture to occur in the weld.
  • the decarburized layer thickness (tb) of the base material the greater the susceptibility to LME and delayed fracture, so the range that satisfies the upper and lower limits of the pressurizing force holding time (Th) becomes narrower.
  • the pressurizing force holding time is set to a time that satisfies equation (6).
  • the lower limit of formula (6) is more preferably -(tb/15)+0.050 or more.
  • the upper limit of formula (6) is more preferably (tb/1.5)+0.8 or less. Note that, for the above reasons, it is more preferable that formula (7) is further satisfied.
  • the lower limit of formula (7) is more preferably 0.02 or more, more preferably 0.17 or more.
  • the lower limit of formula (7) is more preferably 1.0 or less.
  • welded joints were produced under the welding conditions shown in Table 3.
  • the plate set was arranged in the order of steel plate 1, steel plate 2, and steel plate 3 shown in Table 1 from above and overlapped.
  • "None” shown in the "Type of galvanizing” column in Table 1 refers to a steel sheet (cold-rolled steel sheet) that does not have a plating layer.
  • the codes shown in the "state immediately before pressurization" column of Table 3 correspond to (a) to (e) shown in the above-mentioned welding disturbance.
  • the welding device used was a single-phase AC (50 Hz) resistance welding machine with a pressurized servo motor attached to a welding gun.
  • the pair of electrode tips used were DR type electrodes made of chromium copper and having a tip radius of curvature R of 40 mm and a tip diameter of 6 mm.
  • the "Tensile Strength” column in Table 1 shows the tensile strength (MPa) measured by taking JIS No. 5 tensile test pieces from each steel plate in the rolling direction and conducting a tensile test in accordance with JIS Z 2241.
  • each thickness (tb, tw, t all ) and surface layer hardness (Hn, Hws) of the welded joint were measured by the following methods.
  • the produced welded joint was cut with a micro cutter passing through the center of the weld, and the cross section in the plate thickness direction was observed.
  • the total plate thickness (t all ) of the plate assembly was determined by measuring the plate thickness of the steel plates before welding, and determining the sum of the thicknesses as the total plate thickness.
  • the thicknesses of the decarburized layers (tb, tw) in the weld heat-affected zone and base material were measured.
  • the carbon content was measured by electron beam microanalysis as described in JIS G 0558, and the thicknesses of the decarburized layers were measured in the weld heat-affected zone at a position 400 ⁇ m away from the base material and the nugget end of the resistance spot weld in parallel to the steel plate mating surface toward the base material.
  • the measurement position in the base material was 5000 ⁇ m away from the intersection of the outer edge of the weld heat-affected zone and the steel plate mating surface 7 in the direction of the base material.
  • the hardness of the nugget was measured as follows. Specifically, as shown in FIG. 2, on the steel plate side having a decarburized layer (lower plate 2 side in the example shown in FIG. 2), from the nugget end 6c of the welded part parallel to the steel plate mating surface 7, in the nugget inner direction. The hardness (Hn) of the nugget was measured at a position 200 ⁇ m away.
  • the surface hardness of the weld heat affected zone was measured as follows. Specifically, as shown in FIG. 2, from the nugget end 6c of the weld on the steel plate side having a decarburized layer (lower plate 2 side in the example shown in FIG. 2), in parallel with the steel plate mating surface 7, toward the base material.
  • the hardness (Hws) was measured at a position 400 ⁇ m away and on the steel plate mating surface 7 as a starting point A, and at a position 20 ⁇ m away from the starting point A in the plate thickness direction.
  • TSS evaluation The tensile shear strength (TSS) was evaluated based on the tensile shear test method (JIS Z3136). For the tensile shear test, a shear tensile test piece was cut out from each steel plate shown in Table 1, and a welded joint (test piece) was prepared by resistance spot welding under the plate assembly shown in Table 1 and the welding conditions shown in Table 3. Using.
  • test specimen shape for the TSS evaluation was in accordance with JIS Z3136, but for three-ply plate assemblies (such as plate assembly No. H in Table 1), an evaluation was performed by applying a tensile load between steel plate 2 and steel plate 3, as shown in Figure 7.
  • the direction of the thick arrow in Figure 7 was designated the "tensile load direction.”
  • TSS was evaluated based on the following criteria.
  • the evaluation result was A or B, it was evaluated as passing (having excellent shear tensile strength).
  • Welding member 1 1, 2, 3 Steel plate 4, 5 Welding electrode 6 Welding part 6a Nugget 6b Weld heat affected zone 6c Nugget end 7 Steel plate mating surface 8 Welding point 9 Already welded point 10 Welding member

Abstract

溶接部材およびその製造方法の提供を目的とする。本発明は、2枚以上の鋼板を重ね合わせた板組が抵抗スポット溶接された溶接部材であって、溶接打点中心から鋼板の端面までの最短距離の平均値が3.0mm以上であり、かつ、複数の溶接打点がある場合には、隣り合う溶接打点同士の打点中心間の平均距離が6.0mm以上であり、2枚以上の鋼板のうち少なくとも1枚は鋼板表層に脱炭層を有する鋼板であり、かつ、脱炭層を有する鋼板側では母材部と溶接熱影響部との脱炭層厚さが式(1)を満たす。 tw/tb<1.0 …(1)

Description

溶接部材およびその製造方法
 本発明は、鋼板を抵抗スポット溶接した溶接部材に関し、特に、自動車などの構造部品の部材として好適な抵抗スポット溶接部を有する溶接部材およびその製造方法に関する。
 近年、環境問題の高まりからCO2排出規制が厳格化しており、自動車分野においては燃費向上に向けた車体の軽量化が課題となっている。そのために自動車部品への高強度鋼板の適用による薄肉化が進められており、引張強度(TS)が980MPa以上の鋼板の適用が進められている。また、耐食性の観点から、雨水に曝される部位には亜鉛等の防錆能を有するめっき鋼板が使用される。
 また、自動車の組み立てでは、コストや製造効率の観点から、プレス成形された自動車部品を抵抗スポット溶接により組み合わせることが多い。一般に、重ね合わせた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接方法が用いられている。この溶接方法は、重ね合わせた2枚以上の鋼板をその上下から一対の溶接電極で挟み、当該溶接電極で加圧しつつ、上下電極間に高電流の溶接電流を短時間通電して接合する方法である。図1には、重ね合わせた2枚の鋼板1、2を溶接電極4、5で挟んで抵抗スポット溶接する一例を示す。この方法によれば、高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部6を得る。この点状の溶接部6はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板1、2が溶融し、凝固した部分である。これにより鋼板同士が点状に接合される。
 衝突安全性を確保するために、鋼板の強度を向上させるとともに溶接部における強度を向上させることが求められる。抵抗スポット溶接部の強度を評価する試験方法は様々であるが、一般的な評価方法のひとつとして、JIS Z3136に規定される引張せん断試験が挙げられる。これは、溶接継手を引張せん断方向に引張荷重を負荷して引張せん断強度(以下、「TSS」と称する)を測定する試験法である。
 表面処理鋼板を含む複数の鋼板を重ね合わせた板組の抵抗スポット溶接においては、図10に示すように、溶接部に割れが生じることがあるという問題がある。ここで、表面処理鋼板とは、電気亜鉛めっきおよび溶融亜鉛めっき(合金化溶融亜鉛めっきを含む)に代表される亜鉛めっきや、亜鉛の他にアルミニウムやマグネシウムなどの元素を含んだ亜鉛合金のめっきなどの金属めっき層を、母材(下地鋼板)の表面上に有する鋼板を言う。亜鉛めっきや亜鉛合金めっきの融点は、表面処理鋼板の母材の融点よりも低いため以下のような問題がある。
 すなわち、溶接部の割れは、溶接中に鋼板表面の低融点の金属めっき層が溶融し、電極の加圧力や、鋼板の熱膨張および収縮による引張応力が溶接部に加わった際に、溶融した低融点金属が表面処理鋼板の母材の結晶粒界に侵入して粒界強度を低下させ、割れを引き起こす、いわゆる液体金属脆性に起因する割れであると考えられている(以下、「LME割れ」と称する)。LME割れの発生位置は、図10に示すように、溶接電極4、5と接する側の鋼板1、2の表面や、鋼板同士が接する側の鋼板1、2の表面など、様々である。
 このようなLME割れの対策として、例えば特許文献1~特許文献4の技術が挙げられる。特許文献1では、板組である鋼板の組成を特定範囲の組成、具体的には、重量%で、C:0.003~0.01%、Mn:0.05~0.5%、P:0.02%以下、sol.Al:0.1%以下、Ti:48×(N/14)~48×{(N/14)+(S/32)}%、Nb:93×(C/12)~0.1%、B:0.0005~0.003%、N:0.01%以下、Ni:0.05%以下、残部:Feおよび不可避的不純物からなる組成とすることが提案されている。
 特許文献2には、高強度めっき鋼板の抵抗スポット溶接において、以下の条件式(A)および(B)を満足させるように、溶接通電時間および溶接通電後の保持時間を設定して抵抗スポット溶接を行う、高強度めっき鋼板のスポット溶接方法が提案されている。
0.25×(10×t+2)/50≦WT≦0.50×(10×t+2)/50 …(A)
300-500×t+250×t2≦HT …(B)
ただし、条件式(A)および(B)において、t:板厚(mm)、WT:溶接通電時間(ms)、HT:溶接通電後の保持時間(ms)とする。
 また、特許文献2では、鋼板の板厚に応じて通電時間および通電後の電極の保持時間を適切に設定し、かつ鋼板中の合金元素量が一定以下となる高張力亜鉛めっき鋼板を用いて、溶接を行うことも提案されている。
 特許文献3では、通電パターンを3段以上の多段通電とし、適正電流範囲(ΔI)が1.0kA以上、好ましくは2.0kA以上となるように、通電時間および溶接電流等の溶接条件を調整し、各段の間に冷却時間を設ける方法が提案されている。上記の適正電流範囲とは、所望のナゲット径以上で、かつ溶融残厚が0.05mm以上であるナゲットを、安定して形成できる電流範囲である。
 特許文献4に開示される、接合構造体および接合構造体の製造方法では、抵抗溶接される複数の鋼板のうち、少なくとも1枚の鋼板は、炭素当量Ceqが0.53%以上となる化学成分を有し、引張強度が590MPa以上である高張力鋼板である。この高張力鋼板は、重ね合わせ面側と溶接電極側の少なくとも一方の鋼板表面に形成される亜鉛系めっき層と母材との間、又は、重ね合される亜鉛系めっき鋼板の亜鉛系めっき層と隣り合う重ね合わせ面に、脱炭層を有することが提案されている。
特開平10-195597号公報 特開2003-103377号公報 特開2003-236676号公報 特開2020-82102号公報
 しかしながら、特許文献1では鋼板の合金元素量を限定する必要があるため、要求性能を満たす鋼板の使用が制限されるなどの課題がある。特に、最近の鋼板における、高強度化に伴って高合金化が進んでいる状況下では、特許文献1の技術の適用は極めて制限される。
 特許文献2では、散りが発生するような過大な溶接電流を設定した際の割れ抑制方法のみが提案されており、散りが発生しない状態での割れについては言及されていない。
 特許文献3では、溶接条件の適正化に多くの工数が必要であり、また適正電流範囲の確保が困難な鋼板および板組に対しては適用できないという課題がある。加えて、特許文献2および3では、電極の打角による影響については検討されていないため、自動車組立て時の実施工を考慮すると、対策としては不十分な場合がある。
 特許文献4では、鋼板表層に脱炭層を設けることでLME割れを抑止しているものの、溶接時に割れが発生しやすい。引張試験時に応力集中部となる溶接部における脱炭層については検討されていない。
 継手強度の観点も加えて特許文献1~4の共通の課題をまとめると、高強度鋼板の溶接部の強度を確保しつつ、LME割れ発生も抑止する技術は提案されていない。
 本発明は、上記のような事情に鑑みてなされたものであり、高強度鋼板における抵抗スポット溶接部の強度の確保と、LME割れの抑止とを両立可能な抵抗スポット溶接部を有する、溶接部材およびその製造方法を提供することを目的とする。
 本発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。
 溶接時に発生する割れ(LME割れ)に対する本発明の効果は、種々の因子が複雑に影響しているため単純には説明できない。しかし、抵抗スポット溶接部のLME割れは、溶接時の施工外乱などによって、抵抗スポット溶接部に過大な引張残留応力が発生した際に生じやすい。特に、鋼板同士が接する鋼板合わせ面側においては、抵抗スポット溶接での通電および加圧終了後であって、一対の溶接電極を開放した際に、局所的に引張応力が大きい領域でLME割れが発生しやすいことが知られている。
 そのため、溶接打点から鋼板端面までの距離、および複数の溶接打点がある場合には溶接打点同士の間隔を、それぞれ一定以上とすることで、電極解放時の温度および応力を低下させる。このことが、LME割れ発生の抑止に有効となる。加えて、鋼板の表層に脱炭層を有する鋼板を用いることで、抵抗スポット溶接部の引張残留応力を低減することができ、結果としてLME割れを抑止することができると考えられる。
 しかし、鋼板表層に脱炭層を有したとしても、溶接熱影響部の表面、特に鋼板同士の鋼板合わせ面側の鋼板表層の脱炭が顕著の場合、抵抗スポット溶接部の強度が低下してしまう。すなわち、母材部と溶接熱影響部における鋼板表層の脱炭層の厚さの比を一定の範囲に制御することで、抵抗スポット溶接部の強度の確保と、LME割れの抑止とを両立可能であるとの着想を得た。
 図3(A)~図3(C)に示すように、鋼板表層に脱炭層を有する鋼板を含む板組を抵抗スポット溶接した溶接部材は、鋼板合わせ面7側の下板の表層に脱炭層を有する。図3(A)~図3(C)に示す例では、下板に上記脱炭層を有する鋼板を用いる。脱炭層は、溶接熱影響部(HAZ)および母材部の領域に存在する。溶接熱影響部の領域における脱炭層は、図3(A)に示すように、基本的にはナゲット6aに近づくほど減少する。しかし、溶接時の熱影響に伴って、図3(B)に示すように、Cなどの元素拡散に起因して溶接熱影響部の脱炭層の一部が完全に消失したり、あるいは、図3(C)に示すように、溶接熱影響部の脱炭層がほとんど消失せずに残存した状態となることもある。本発明では、図3(A)~図3(C)に示す状態を含む溶接熱影響部領域に存在する脱炭層を、「溶接熱影響部における鋼板表層の脱炭層」と称する。
 本発明は、以上の知見に立脚するものであり、要旨は次のとおりである。
[1] 2枚以上の鋼板を重ね合わせた板組が抵抗スポット溶接された抵抗スポット溶接部を有する溶接部材であって、
 溶接打点中心から前記鋼板の端面までの最短距離の平均値が3.0mm以上であり、
かつ、複数の溶接打点がある場合には、隣り合う溶接打点同士の打点中心間の平均距離が6.0mm以上であり、
 前記2枚以上の鋼板のうち、少なくとも1枚は鋼板表層に脱炭層を有する鋼板であり、
かつ、前記脱炭層を有する鋼板側では、前記抵抗スポット溶接部のナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置における溶接熱影響部での鋼板表面から板厚方向の前記脱炭層の厚さをtw(mm)とし、前記ナゲット端部から鋼板合わせ面と平行に母材方向へ離れた位置における母材部での鋼板表面から板厚方向の前記脱炭層の厚さをtb(mm)としたとき、
twおよびtbが式(1)を満たす、溶接部材。
tw/tb<1.0 …(1)
[2] 前記脱炭層を有する鋼板は、
前記ナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置における溶接熱影響部の鋼板表層での前記脱炭層の硬さをHwsとし、前記ナゲット端部から鋼板合わせ面と平行にナゲット内部方向へ200μm離れた位置でのナゲットの硬さをHnとしたとき、
Hws、Hn、前記tw、および前記tbが式(2)および式(3)を満たす、[1]に記載の溶接部材。
tw/tb<{(Hws/Hn)-0.1}/7+0.8 …(2)
0.1≦Hws/Hn≦1.5 …(3)
ここで、式(2)におけるtw(mm)は前記ナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置での前記溶接熱影響部の前記脱炭層の厚さであり、tb(mm)は前記ナゲット端部から鋼板合わせ面と平行に離れた位置での前記母材部の前記脱炭層の厚さである。
[3] 前記鋼板の板厚をt(mm)、前記鋼板の引張強度をTS(MPa)としたとき、
前記脱炭層を有する鋼板が、式(4)を満たす、[1]または[2]に記載の溶接部材。
-2×{(1000×t/TS)-0.25}/35+0.2<tw/tb<2×{(1000×t/TS)-0.25}/35+0.8 …(4)
ここで、式(4)におけるtw(mm)は前記ナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置での前記溶接熱影響部の前記脱炭層の厚さであり、tb(mm)は前記ナゲット端部から鋼板合わせ面と平行に離れた位置での前記母材部の前記脱炭層の厚さである。
[4] 前記脱炭層を有する鋼板は、Fe系のプレめっき層および/またはSi内部酸化層を有する、[1]~[3]のいずれか1つに記載の溶接部材。
[5] [1]~[4]のいずれか1つに記載の溶接部材の製造方法であって、
 2枚以上の鋼板を重ね合わせて板組とする準備工程と、前記板組を抵抗スポット溶接する溶接工程と、を有し、
 前記溶接工程は、
 前記板組を一対の溶接電極で挟持し、加圧しながら通電して接合を行う際に、
少なくとも1箇所の溶接打点については、前記溶接電極による加圧を行う直前に、(a)~(e)の1つまたは2つ以上の状態を満たし、
かつ、溶接打点については、溶接打点中心から前記鋼板の端面までの距離をXeとしたとき、Xe:3~30mmの状態を満たし、および溶接打点に隣接する既溶接打点が存在する場合には、当該溶接打点と当該既溶接打点間の距離をXnとしたとき、Xn:6mm以上の状態を満たし、
かつ、前記通電については、加圧力:2.0~10.0kN、溶接電流:4.0~15.0kA、通電時間:0.1~2.0Sで行う、通電工程と、
 通電終了後の加圧力保持時間をTh(S)としたとき、Thが式(6)の関係を満たす電極保持工程と、
を有する、溶接部材の製造方法。
(a)溶接電極と重ね合わせた鋼板との打角が0.2度以上である状態
(b)一対の溶接電極の芯ずれ量が0.1mm以上である状態
(c)いずれかの溶接電極と重ね合わせた鋼板との間に隙間が0.5mm以上ある状態
(d)重ね合わせた鋼板のうち、少なくとも1組以上の鋼板間に隙間が0.5mm以上ある状態
(e)溶接打点中心から重ね合わせた鋼板における鋼板端面までの最短距離が10mm以下である状態
-(tb/15)+0.025<Th<(tb/1.5)+1 …(6)
ここで、式(6)における、tb(mm)は前記ナゲット端部から鋼板合わせ面と平行に離れた位置での前記母材部の前記脱炭層の厚さである。
[6] 前記通電工程では、
前記板組を構成する鋼板のうち、最も強度が高い鋼板の引張強度をTSm(MPa)とし、前記板組の総板厚をtall(mm)とし、前記通電工程の前記通電時間をTs(S)とし、前記通電工程の前記加圧力をF(kN)とし、前記板組の上下側に配置された前記溶接電極中に流れる冷却水の流量の平均値をL(l/min)としたとき、
Tsが式(8)を満たす、[5]に記載の溶接部材の製造方法。
Ts≦{0.03×tall×L×√(TSm)}/F …(8)
 本発明によれば、高強度鋼板を用いた抵抗スポット溶接であっても、鋼板表層の脱炭に起因する抵抗スポット溶接部の強度低下を防ぎつつ、LME割れも発生しない、溶接部材およびその製造方法を提供することができる。
図1は、本発明の抵抗スポット溶接の一例を模式的に示す断面図である。 図2は、本発明の一実施形態に係る溶接部材における、抵抗スポット溶接部およびその周辺を模式的に示す断面図である。 図3(A)~図3(C)は、溶接熱影響部における鋼板表層の脱炭層を説明する拡大断面図である。 図4は、本発明に用いる、鋼板表層に脱炭層を有する鋼板の一例を説明する板厚方向断面図である。 図5は、本発明の溶接部材における、溶接打点中心から鋼板端面までの最短距離(H1)を説明する図である。 図6は、本発明の溶接部材における、隣り合う溶接打点中心間の距離(H2)を説明する図である。 図7は、本発明の実施例における、3枚板組の場合の引張試験の一例を説明する断面図である。 図8は、本発明の製造方法における、溶接工程での溶接打点中心間(溶接打点および既溶接打点の中心間)の距離(Xn)を説明する図である。 図9は、本発明の製造方法における、溶接工程での溶接打点中心から鋼板端面までの距離(Xe)を説明する図である。 図10は、従来の抵抗スポット溶接時の割れの発生例を模式的に示す断面図である。
 以下、図1~図9を参照して、本発明の一実施形態である溶接部材およびその製造方法について説明する。なお、本発明はこの実施形態に限定されない。
 まず、本発明の溶接部材について説明する。
 図2は、本発明の溶接部材の一例を示す板厚方向断面図であり、当該溶接部材における抵抗スポット溶接部およびその周辺の一部を拡大した断面図である。この拡大断面図に示す個所は、図2中の四角枠で囲った領域である。図3(A)~図3(C)は、溶接熱影響部の脱炭層を説明する断面図であり、図2中の四角枠で囲った領域を示す。図4には、本発明に用いる脱炭層を有する鋼板の板厚方向断面図を示す。図5および図6には、溶接部材の抵抗スポット溶接部周辺を示す上面図(すなわち、溶接部材を上方からみた図)を示す。
 本発明は、図2に示すように、2枚以上の鋼板を重ね合わせた板組が抵抗スポット溶接された抵抗スポット溶接部(以下、「溶接部」と称する)を有する溶接部材10である。
 本発明の溶接部材10は、図5および図6に示すように、溶接部の溶接打点中心から鋼板の端面までの最短距離の平均値(H1)が3.0mm以上であり、かつ、複数の溶接打点がある場合には、隣り合う溶接打点同士の打点中心間の平均距離(H2)が6.0mm以上である。
 上記の「溶接打点中心から鋼板の端面までの最短距離の平均値(H1)」とは、図5に示すように溶接打点8の中心から最も近い鋼板端面を設定し、その距離を打点毎に測定することで求める。溶接部材中の溶接打点数が5点以上である場合は、適宜選択した5打点の平均値を「最短距離の平均値」とし、溶接部材中の溶接打点数が5点未満の場合は、全打点の平均値を「最短距離の平均値」とする。
 この最短距離の平均値(H1)が3.0mm未満の場合、鋼板端面側におけるナゲット周囲の板-板間の加圧が不十分となり、溶融金属が板-板間から鋼板端面側に飛散しやすくなる。そのため、溶接時の散り発生が顕著となり、ナゲット径がばらつきやすくなることで、溶接部の強度が不安定化する。一般的な形状の溶接ガンで溶接可能とするためには、この最短距離の平均値(H1)は1000mm以下とすることが好ましい。
この最短距離の平均値(H1)は、4.0mm以上とすることが好ましい。また、この最短距離の平均値(H1)は、100.0mm以下とすることがより好ましく、30.0mm以下とすることがさらに好ましく、20.0mm以下とすることがさらに一層好ましい。
 また、上記の「隣り合う溶接打点同士の打点中心間の平均距離(H2)」とは、図6に示すように、隣り合う各溶接打点8の中心間の距離をそれぞれ測定することで求める。この打点中心間の平均距離(H2)が6.0mm未満の場合、溶接時に既溶接点への分流が発生して溶接部の電流密度が低下するため、ナゲット径が縮小し、溶接部の強度が低下しやすくなる。また、既溶接点によって溶接部が拘束され、引張残留応力が増加することでLME割れも発生しやすくなる。この打点中心間の平均距離の上限は規定しない。溶接部材の強度および剛性確保の観点からは、この打点中心間の平均距離(H2)は100mm以下とすることが好ましい。
この打点中心間の平均距離(H2)は、10.0mm以上とすることが好ましい。また、この打点中心間の平均距離(H2)は、60.0mm以下とすることがより好ましく、40.0mm以下とすることがさらに好ましい。
 なお、本発明の溶接部材には、溶接打点数が1点だけの場合も含む。この場合には、上述の溶接打点の条件のうち、「溶接部の溶接打点中心から鋼板端面までの最短距離(H1)の平均値が3.0mm以上」であることを満たせばよい。
 また、本発明の溶接部材は、後述するように、重ね合わせた2枚以上の鋼板のうち少なくとも1枚は、鋼板表層に脱炭層を有する鋼板である(図4を参照)。重ね合わせた鋼板の枚数は特に限定されず、2枚以上であればよい。好ましくは3枚以上である。なお、上記鋼板の枚数の上限は特に規定しないが、5枚以下とすることが好ましい。
 図2には、重ね合わせた2枚の鋼板が溶接された溶接部材10の一例を示す。下側に配置される鋼板2(下板)および上側に配置される鋼板1(上板)の両方またはいずれか1方が、上記脱炭層を有する鋼板である。鋼板1、2が接する鋼板合わせ面7に、以下に説明する溶接部6が形成される。
 図2に示す例の溶接部材の場合、下板2のみが脱炭層を有する鋼板とし、上板1は脱炭層を有しない鋼板とする。この場合、下板2の鋼板合わせ面7側のみに、本発明の溶接部6が形成される。なお、上板1および下板2の両方に本発明の脱炭層を有する鋼板を用いた場合には、鋼板合わせ面7に対して上板1側および下板2側の両方に、本発明の溶接部6が形成される。
 図示は省略するが、3枚以上の鋼板を重ね合わせて溶接した場合には、最も下側に配置される鋼板(すなわち下板)、最も上側に配置される鋼板(すなわち上板)、およびそれらの間に配置される鋼板(すなわち中板)の全部または少なくとも1枚が、上記脱炭層を有する鋼板となる。各鋼板間の鋼板合わせ面を含むように、本発明の溶接部が形成される。
例えば、3枚の鋼板からなる板組の場合、下板と中板、および中板と上板が接する2つの鋼板合わせ面を含むように、本発明の溶接部が形成される。3枚の鋼板の全てに上記脱炭層を有する鋼板を用いた場合には、各鋼板合わせ面に対して上下側にある鋼板表層の脱炭層の厚さの比が一定の範囲となるようにそれぞれ制御される。
 <溶接部>
 本発明の溶接部について、詳細に説明する。なお、2枚の鋼板を重ね合わせた板組の場合でも、3枚以上の鋼板を重ね合わせた板組の場合でも、同様の溶接部が形成されるため、以降の説明には図2を用いる。
 図2に示すように、本発明の溶接部6は、脱炭層を有する鋼板側(図2に示す例では、下板2側)の母材部と溶接熱影響部6bとにおける鋼板表層の脱炭層厚さの比を規定している。
具体的には、脱炭層を有する鋼板側では、抵抗スポット溶接部のナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置における溶接熱影響部の鋼板表面から板厚方向の脱炭層の厚さをtw(mm)とし、ナゲット端部から鋼板合わせ面と平行に母材方向へ離れた位置における母材部の鋼板表面から板厚方向の脱炭層の厚さをtb(mm)としたとき、溶接熱影響部の脱炭層の厚さ(tw)および母材部の脱炭層の厚さ(tb)が以下の式(1)を満たす。
tw/tb<1.0 …(1)
 式(1)に示す溶接熱影響部および母材部の脱炭層厚さの比(tw/tb)が1.0以上となる状態、すなわち母材部の脱炭層厚さに対して、溶接熱影響部の脱炭層厚さが大きい状態にある場合、粗大なフェライト中心の組織が溶接熱影響部表層に形成する。その結果、引張荷重が付与された際にこの表層組織が容易にネッキングを引き起こすため、継手強度が低下する。よって、上記脱炭層厚さの比は、1.0未満とする。
 一方、炭素の拡散によって溶接熱影響部の脱炭層が消失すると、LME抑止効果が得られない懸念がある。そのため、上記脱炭層厚さの比の下限値は、0.1とすることが好ましい。上記脱炭層厚さの比は、より好ましくは0.1<tw/tb<0.9の関係を満たすことが有効であり、さらに好ましくは0.2<tw/tb<0.8の関係を満たすことがさらに有効である。
 なお、上記の脱炭層厚さ(tw、tb)は、後述する実施例に記載の方法で、測定することができる。
 以上の構成により、溶接部の強度の確保とLME割れの抑止を両立できる。
 本発明では、溶接部の強度の確保とLME割れの抑止の効果をより有効に向上させる観点から、上述の構成に加えて、さらに、以下の構成を有していてもよい。
 溶接部の強度および破断位置は、ナゲットと溶接熱影響部の硬さの影響を受ける。そのため、上記脱炭層厚さの比(tw/tb)を、ナゲットと溶接熱影響部の表層硬さに応じて適正に制御することで、本発明の効果をより有効に得ることができる。
 具体的には、図2に示すように、脱炭層を有する鋼板は、ナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置における溶接熱影響部の鋼板表層での脱炭層の硬さをHwsとし、ナゲット端部から鋼板合わせ面と平行にナゲット内部方向へ200μm離れた位置でのナゲットの硬さをHnとしたとき、ナゲットおよび溶接熱影響部の表層硬さ(HnおよびHws)と溶接熱影響部および母材部の脱炭層厚さ(twおよびtb)とが以下の式(2)および式(3)を満たすことが好ましい。
tw/tb<{(Hws/Hn)-0.1}/7+0.8 …(2)
0.1≦Hws/Hn≦1.5 …(3)
 ここで、図2に示すように、上記の「溶接熱影響部の鋼板表層」とは、ナゲット端部6cから鋼板合わせ面7と平行に母材方向へ400μm離れた位置で、かつ、鋼板合わせ面7上の位置を始点Aとし、始点Aから脱炭層を有する鋼板2側の板厚方向に20μm離れた位置を指す。
 ナゲットおよび溶接熱影響部の表層硬さの比(Hws/Hn)、すなわち鋼板合わせ面側でのナゲットの硬さに対する溶接熱影響部の脱炭層硬さの比が大きいほど、ナゲットのひずみが相対的に大きくなり、溶接熱影響部へのひずみ集中が低減する。これにより、溶接熱影響部での脱炭が顕著であったとしても、ナゲット内破断が生じやすくなる。そのため、上記脱炭層厚さの比(tw/tb)の上限は大きくなる。
 また、上記脱炭層の過度な軟化は溶接部の強度低下の原因となり、逆に上記脱炭層の過度な硬化は残留応力の増加によるLME割れ発生の原因となる。そのため、上記表層硬さの比(Hws/Hn)には適切な上下限を設けることが好ましい。
 式(3)に示す上記表層硬さの比(Hws/Hn)が0.1未満の場合、ナゲットに対して熱影響部の硬さが過度に低下することで、熱影響部へのひずみ集中が大きくなり、溶接部の強度が低下する。一方、上記表層硬さの比(Hws/Hn)が1.5を超える場合、溶接熱影響部の高温残留応力が過大となることで、LME割れが発生しやすくなる。上記表層硬さの比は、より好ましくは0.3以上とし、より好ましくは1.0以下とする。
 以上のような理由から、ナゲットおよび溶接熱影響部の表層硬さの比と、溶接熱影響部および母材部の脱炭層厚さの比とは、式(2)および式(3)を満たすことが好ましい。
式(2)の下限は特に規定しない。脱炭層厚さを熱影響部において適切に確保することで、LME割れを抑止する観点から、式(2)の下限は0.15以上とすることが好ましい。
式(2)に示す上記脱炭層厚さの比(tw/tb)の下限は0.20以上とすることがより好ましく、上記脱炭層厚さの比の上限は0.80以下とすることがより好ましい。
 なお、上述の表層硬さ(単位:GPa)は、後述の実施例に記載のように、ナノインデーション硬さ試験によって測定できる。ナノインデーション硬さ試験方法については本発明では制限しないが、例えば、ナノインデンテーション装置(Hysitron社製 TI-950 TriboIndenter)を用いて、ISO 14577に準拠して行えばよい。
 <鋼板>
 [板厚、引張強度]
 溶接部の強度や残留応力は、重ね合わせる鋼板の板厚や引張強度の影響を受ける。そのため、本発明では、上記の溶接熱影響部および母材部の脱炭層厚さの比(tw/tb)を板厚および引張強度に応じて適正に制御することが好ましい。これにより、本発明の効果をより一層有効に得ることができる。
 具体的には、鋼板の板厚をt(mm)、鋼板の引張強度をTS(MPa)としたとき、脱炭層を有する鋼板は、以下の式(4)を満たすことが好ましい。
-2×{(1000×t/TS)-0.25}/35+0.2<tw/tb<2×{(1000×t/TS)-0.25}/35+0.8 …(4)
ここで、式(4)におけるtw(mm)はナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置での溶接熱影響部の脱炭層の厚さであり、tb(mm)はナゲット端部から鋼板合わせ面と平行に離れた位置での母材部の脱炭層の厚さである。
なお、上記脱炭層硬さの比(Hws/Hwt)をより適切に制御する観点から、この条件式((式)4)に加えて、以下の式(5)を満たすことが、より好ましい。
0.25≦1000×t/TS≦3.75 …(5)
 脱炭層を有する鋼板の板厚(t)が大きい場合、溶接熱影響部の断面積が大きくなるため、溶接部に引張荷重が付与された際に溶接熱影響部ではなくナゲット内での破断が生じやすくなる。その結果、溶接熱影響部の表層脱炭が顕著であっても、溶接部の強度は低下しにくくなる。そのため、鋼板の板厚(t)が大きいほど、好適なtw/tbの下限値は小さくなる。
 一方、脱炭層を有する鋼板の引張強度(TS)が大きい場合、溶接時の熱影響によるマルテンサイト変態が生じるため、一般的には溶接熱影響部は硬化しやすい。これは、鋼板内部では溶接熱影響部でマルテンサイトに変態するのに対し、鋼板表層では脱炭によってマルテンサイト変態が生じづらい、あるいはマルテンサイト変態したとしても転移密度が低い、という違いに因るものと考えられる。そのため、鋼板表面の軟質層と鋼板内部とにおける、組織および/または硬度差が大きくなることで、鋼板表層の軟質部へのひずみ集中が顕著となり、溶接部の強度は低下しやすくなる。つまり、鋼板の引張強さ(TS)が大きいほど、好適なtw/tbの下限値は大きくなる。
 また、tw/tbの上限値に着目すると、脱炭層を有する鋼板の板厚(t)が大きいほど、溶接後の冷却速度が小さく、溶接熱影響部の脆化が生じにくくなる。そのため、鋼板の板厚(t)が大きいほど、好適なtw/tbの上限値は大きくなる。
 一方、脱炭層を有する鋼板の引張強度(TS)が大きい場合で、かつ溶接施工外乱がある場合に、溶接部に生じる残留応力が大きくなりやすく、その結果、LME割れが生じやすい。そのため、鋼板の引張強度(TS)が大きいほど、好適なtw/tbの上限値は小さくなる。
 以上のような理由から、鋼板の板厚(t)および引張強度(TS)の観点からは、tw/tbは、式(4)を満足することが好ましい。
式(4)の下限は、好ましくは、-2×{(1000×t/TS)-0.25}/35+0.3以上である。式(4)の上限は、好ましくは、2×{(1000×t/TS)-0.25}/35+0.7 以下である。
なお、上述の理由から、さらに式(5)を満足することがより好ましい。式(5)の下限は好ましくは0.50以上であり、式(5)の上限は好ましくは3.00以下である。
 上述のように、一般的に、鋼板の高強度化および高合金成分化に伴って、LME割れは発生しやすい傾向にある。そのため、本発明では、脱炭層を有する鋼板の引張強度は、TS≧980(MPa)であることが好ましい。この関係を満たす高強度鋼板の場合に、本発明の効果をより一層有効に得ることが出来るからである。
 [脱炭層を有する鋼板]
 本発明では、上述のとおり、重ね合わせる2枚以上の鋼板のうち少なくとも1枚は、鋼板の表層に脱炭層を有する鋼板である。図4を参照して、鋼板表層に脱炭層を有する鋼板について説明する。図4には、鋼板の表層に脱炭層を有する鋼板の一例を示す。この脱炭層を有する鋼板として、例えば、脱炭層上に亜鉛めっき層を有する亜鉛めっき鋼板や、脱炭層内の最表層にSi内部酸化層を有する鋼板が挙げられる。
 本発明に用いた鋼板について、鋼板表層に脱炭層を付与する方法は特に制限しない。
 なお、図4には、一例として、脱炭層、Si内部酸化層、亜鉛めっき層および後述のFe系プレめっき層を有する構造の鋼板を示している。
  [亜鉛めっき鋼板]
 LME割れは、溶融亜鉛が鋼板と接した状態で引張応力が付与されることで生じる現象である。そのため、本発明において上記脱炭層を有する鋼板が亜鉛めっき鋼板である場合に、本発明の効果をより有効に得ることが出来る。特に、鋼板のプレス性や連続打点溶接性も含めて考慮すると、亜鉛めっき鋼板は、めっき層が合金化溶融亜鉛めっきである合金化溶融亜鉛めっき鋼板(GA鋼板)であること、めっき層が溶融亜鉛めっきである溶融亜鉛めっき鋼板(GI鋼板)であること、めっき層が電気亜鉛めっきである電気亜鉛めっき鋼板(EG鋼板)であることがさらに好ましい。
 図4に示すように、亜鉛めっき鋼板は、脱炭層と亜鉛めっき層との間に、Fe系のプレめっき層を有していてもよい。C含有量の少ないFe系のプレめっき層を形成するという方法によって、鋼板表層のC量を低下させることができる。Fe系のプレめっき層中のC含有量は、0.20質量%以下とすることが好ましい。当該C含有量は、より好ましくは0.10質量%以下、さらに好ましくは0.05質量%以下である。
 このプレめっき層は、Fe系電気めっき層であることが好ましい。Fe系電気めっき層としては、純Feの他、Fe-B合金、Fe-C合金、Fe-P合金、Fe-N合金、Fe-O合金、Fe-Ni合金、Fe-Mn合金、Fe-Mo合金、Fe-W合金等の合金めっき層が使用できる。Fe系電気めっき層の成分組成は特に限定されないが、本発明では、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、V及びCoからなる群から選ばれる1種または2種以上の元素を合計で10質量%以下含み、残部はFeおよび不可避的不純物からなる成分組成とすることが好ましい。Fe以外の元素の量を合計で10質量%以下とすることで、電解効率の低下を防ぎ、低コストでFe系電気めっき層を形成することができる。
 さらにFe系電気めっき層の片面当たりの付着量は、0.5g/m2以上が好ましい。当該付着量は、さらに好ましくは1.0g/m2以上である。Fe系電気めっき層の片面あたりの付着量の上限は特に限定されないが、コストの観点から、Fe系電気めっき層の片面あたりの付着量を60g/m2以下とすることが好ましい。当該付着量は、好ましくは50g/m2以下とし、より好ましくは40g/m2以下とし、さらに好ましくは30g/m2以下とする。
 なお、Fe系電気めっき層の厚みは、以下の通り測定する。溶融亜鉛めっき後の合金化した高強度溶融亜鉛めっき鋼板から10×15mmサイズのサンプルを採取して樹脂に埋め込み、断面埋め込みサンプルとする。同断面の任意の3か所を走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて加速電圧15kV、およびFe系電気めっき層の厚みに応じて倍率2000~10000倍で観察する。次いで、3視野の厚みの平均値に鉄の比重を乗じることによって、Fe系電気めっき層の片面あたりの付着量に換算する。
 本発明では、高強度焼鈍前冷延鋼板の表面にFe系電気めっき処理を施して、焼鈍前Fe系電気めっき処理鋼板とするのが好ましい。Fe系電気めっき処理方法は特に限定されない。例えば、Fe系電気めっき浴としては硫酸浴、塩酸浴あるいは両者の混合などが適用できる。なお、冷間圧延後の高強度焼鈍前冷延鋼板に対して予熱炉等における酸化処理を行なわずに、Fe系電気めっき処理を施すこともできる。
 通電開始前のFe系電気めっき浴中のFeイオン含有量は、Fe2+として1.0mol/L以上とすることが好ましい。Fe系電気めっき浴中のFeイオン含有量が、Fe2+として1.0mol/L以上であれば、十分なFe付着量を得ることができる。
 このような鋼板を用いることで、本発明の効果をより有効に得ることができる。特に、亜鉛めっき層を形成する前にプレめっきを施し、溶融亜鉛めっき後に合金化処理した合金化溶融亜鉛めっき鋼板である場合は、より一層有効である。
  [Si内部酸化層]
 例えば、鋼中のSi量が増加するとLME割れが生じやすいことが知られている。Siは、Fe-Zn系状態図において、同じZn濃度における固相線温度を低下させるとともに、固相線濃度をFe側へ遷移させる。そのため、抵抗スポット溶接時に鋼板表面の亜鉛系めっきが溶融してZnが鋼板へ拡散する際に、Si含有量が多い鋼板では鋼板と液体Znとが、より低温かつ低Zn濃度領域まで長時間接することとなり、LME割れが発生しやすくなったと考えられる。図4に示すように、脱炭層にSi内部酸化層を内包する鋼板の場合には、鋼板製造において焼鈍時の露点を上昇させることで、鋼板最表層にSiの内部酸化層を形成することができる。このような鋼板を用いることで、本発明の効果をより有効に得ることができる。Si内部酸化が生じると、SiとOを主成分としたSi系酸化物が生成し、鋼板表層付近における固溶Si量が減少する。そのため、LME割れの抑制に有効である。
 上記の「Si内部酸化層」とは、具体的には、結晶粒内およびまたは結晶粒界の一部に、Si酸化物が形成した領域を指す。
 次に、本発明の溶接部材の製造方法の一実施形態について説明する。
 本発明の溶接部材は、2枚以上の鋼板を重ね合わせて板組とする準備工程と、当該板組を抵抗スポット溶接する溶接工程と、を有する製造工程を経て、製造される。
 <準備工程>
 この工程では、少なくとも1枚の上記脱炭層を有する鋼板を含む、2枚以上の鋼板を準備し、当該2枚以上の鋼板を重ね合わせて板組とする。図1には、2枚の鋼板を抵抗スポット溶接している一例を示す。図1に示す例の場合、2枚の鋼板1、2を重ね合わせて板組とする。なお、鋼板については、上述しているため説明は省略する。次いで、溶接工程が行われる。
 <溶接工程>
 溶接工程は、後述する通電工程と電極保持工程とを有する。この溶接工程では、準備工程で準備した板組の接合を行う。この工程では、例えば図1に示すように、板組の下側および上側に配置される一対の溶接電極4、5で該板組を挟持し、一対の溶接電極4、5で加圧しながら所定の溶接条件となるように制御して通電を行う。これにより、鋼板1、2の鋼板合わせ面7となる鋼板間に上述の本発明の溶接部6を形成することによって、鋼板同士を接合できる(図2を参照)。
 なお、脱炭層を有する鋼板と、脱炭層を有しない鋼板とを用いて板組とする場合には、脱炭層を有する面側が鋼板合わせ面となるように重ね合わせる。脱炭層を有する鋼板が亜鉛めっき層を有する亜鉛めっき鋼板(GI鋼板、GA鋼板、EG鋼板)である場合には、亜鉛めっき層を有する面側が鋼板合わせ面となるように重ね合わせる。なお、電極と接する側の鋼板表面にも、脱炭層および/または亜鉛めっき層を有していても当然問題はない。
 本発明の抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能な溶接装置を用いることができる。また、直流、交流のいずれの溶接電源にも本発明を適用できる。交流の場合は、「電流」は「実効電流」を意味する。溶接装置の加圧機構(エアシリンダやサーボモータ等)、形式(定置式、ロボットガン等)、電極形状等はとくに限定されない。電極先端の形式としては、例えば、JIS C 9304:1999に記載されるDR形(ドームラジアス形)、R径(ラジアス形)、D形(ドーム形)等が挙げられる。また、電極の先端径は、例えば4mm~16mmである。
 続いて、本発明の溶接工程の溶接条件について説明する。
 溶接工程は、板組を一対の溶接電極で挟持し、加圧しながら通電して接合を行う際に、少なくとも1箇所の溶接打点については、溶接電極による加圧を行う直前に、以下に示す(a)~(e)の1つまたは2つ以上の状態を満たし、かつ、溶接打点中心から鋼板の端面までの距離をXeとしたとき、Xe:3~30mmの状態を満たし、および溶接打点と当該溶接打点に隣接する既溶接打点が存在する場合には、当該溶接打点と当該既溶接打点間の距離をXnとしたとき、Xn:6mm以上の状態を満たし、かつ、通電は、加圧力:2.0~10.0kN、溶接電流:4.0~15.0kA、通電時間:0.1~2.0Sで行う通電工程と、通電終了後の加圧力保持時間をTh(S)としたとき、Thが式(6)の関係を満たす電極保持工程と、を有する。
 [通電工程]
  [加圧力、溶接電流、通電時間]
 加圧力が2.0kN未満では、鋼板間の加圧が不十分となり、散りが発生しやすいため、LME割れ発生しやすくなる。一方、加圧力が10.0kN超えでは、高加圧仕様の特殊な溶接ガンが必要で、設備制約が大きい。それだけでなく、溶接部の減厚も顕著となるため、LME割れが発生したり、継手強度が低下したりする。加圧力は、好ましくは3.0kN以上とし、好ましくは7.0kN以下とする。
 溶接電流が4.0kA未満では、入熱が不足し、ナゲット径が確保できない。一方、溶接電流が15.0kA超えでは、入熱が過大で散りが発生しやすいため、LME割れが発生しやすくなる。溶接電流は、好ましくは5.0kA以上とし、好ましくは12.0kA以下とする。
 通電時間が0.1S未満では、溶接熱影響部の合金元素の拡散が不十分となり、溶接熱影響部の脱炭層の厚さが母材の脱炭層の厚さとほとんど変化しない場合がある。この際、粗大なフェライト中心の組織が溶接熱影響部表層に形成する。その結果、引張荷重が付与された際にこの表層組織が容易にネッキングを引き起こすため、TSSが低下してしまう。
一方、通電時間が2.0S超えでは、自動車組み立て工程のタクトタイムが長くなり、生産性が低下する。通電時間は、好ましくは0.10S以上とする。通電時間は、より好ましくは0.12S以上とし、また好ましくは1.5S以下とする。
 なお、抵抗スポット溶接は、加圧力や電流値を多段階としたり、通電と無通電を組合わせた特定のパターンとして、行なっても良い。例えば、通電中の加圧力を多段階とする場合、通電中の加圧力の最小値を2.0kN以上とし、加圧力の最大値を10.0kN以下とする。通電中の電流値を多段階とする場合、無通電期間を除いた通電中の電流値の最小値を4.0kA以上とし、電流値の最大値を15.0kA以下とする。また、無通電期間を除いた通電時間の総和を、0.1S以上、2.0S以下とする。
  [溶接施工外乱]
 本発明では、上記条件に加えて、溶接部材の製造時に、少なくとも1箇所の溶接打点については、溶接電極による加圧を行う直前に、以下の(a)~(e)の1つまたは2つ以上の状態を満たす場合、本発明の効果をより有効に得ることができる。
(a)溶接電極と重ね合わせた鋼板との打角が0.2度以上である状態
(b)一対の溶接電極の芯ずれ量が0.1mm以上である状態
(c)いずれかの溶接電極と重ね合わせた鋼板との間に隙間が0.5mm以上ある状態
(d)重ね合わせた鋼板のうち、少なくとも1組以上の鋼板間に隙間が0.5mm以上ある状態
(e)溶接打点中心から重ね合わせた鋼板における鋼板端面までの最短距離が10mm以下である状態
 これらの溶接施工外乱は、いずれも電極解放時における溶接部の温度および/または引張応力を、局所的に上昇させるため、LME割れが発生しやすい状態となる。しかし、本発明の溶接部の表層制御を行うことで、これらの溶接施工外乱がある状態であってもLME割れを抑制することができ、溶接部材製造時の施工外乱管理の裕度が向上する。以下、各施工外乱の詳細について説明する。
 (a)溶接電極と重ね合わせた鋼板との打角が0.2度以上である状態
 打角とは、鋼板に対して電極が傾く角度、すなわち、「電極加圧力方向と鋼板板厚方向との成す角度」を意味する。打角が大きいと、溶接部に曲げ応力が加わり、局所的に大きな圧縮塑性変形が生じることで、電極解放後の引張応力が増加し、LME割れが発生しやすくなる。打角は0.2度以上の場合に、本発明の効果を有効に得ることができる。打角が過大の場合はナゲット形成が不安定となり、散り発生の原因となるため、打角は10度以下とすることが好適である。打角は、さらに好ましくは1度以上とし、さらに好ましくは8度以下とする。
 (b)一対の溶接電極の芯ずれ量が0.1mm以上である状態
 芯ずれとは、一対の溶接電極の中心軸が揃っていない状態を意味する。上述した打角と同様、芯ずれが大きいと、溶接部に曲げ応力が加わることで、LME割れが発生しやすくなる。芯ずれ量が0.1mm以上の場合に、本発明の効果を有効に得ることができる。芯ずれ量が過大の場合はナゲット形成が不安定となり、散り発生の原因となるため、芯ずれ量は5mm以下とすることが好適である。芯ずれ量は、さらに好ましくは0.2mm以上とし、さらに好ましくは3mm以下とする。
 (c)いずれかの溶接電極と重ね合わせた鋼板との間に隙間が0.5mm以上ある状態
 加圧開始直前にいずれかの溶接電極と鋼板との間に隙間がある状態では、例えば片方の溶接電極が可動(以下、可動側電極)、もう片方の溶接電極が固定(以下、固定側電極)としたとき、固定側電極と鋼板との間に隙間がある状態では、可動側電極による加圧が開始される。その結果、鋼板に曲げ変形が生じるため、溶接部に曲げ応力が加わることで、LME割れが発生しやすくなる。この隙間量が0.5mm以上の場合に、本発明の効果を有効に得ることができる。この隙間量が過大の場合はナゲット形成が不安定となり、散り発生の原因となるため、この隙間量は5mm以下とすることが好適である。隙間量は、さらに好ましくは1mm以上とし、さらに好ましくは3mm以下とする。
 (d)重ね合わせた鋼板のうち、少なくとも1組以上の鋼板間に隙間が0.5mm以上ある状態
 上述の(c)と同様、加圧開始直前にいずれかの鋼板間に隙間がある状態では、鋼板が曲げ変形が生じるため、溶接部に曲げ応力が加わることで、LME割れが発生しやすくなる。この隙間量が0.5mm以上の場合に、本発明の効果を有効に得ることができる。この隙間量が過大の場合はナゲット形成が不安定となり、散り発生の原因となるため、この隙間量は4mm以下とすることが好適である。隙間量は、さらに好ましくは1mm以上とし、さらに好ましくは3mm以下とする。なお、上記の「1組以上の鋼板間の隙間」とは、重ね合わせた2枚以上の鋼板において、上下方向に配置された2枚の鋼板を1組とするとき、1組以上の鋼板間に隙間あることを意味する。
 (e)溶接打点の中心から重ね合わせた鋼板における鋼板端面までの最短距離が10mm以下である状態
 溶接打点の中心から鋼板端面までの最短距離が短いと、鋼板端面では溶接部からの熱伝導が阻害されるので、溶接部の冷却速度が低下する。そのため、電極解放時の温度が増加することで、LME割れが発生しやすくなる。溶接打点の中心から鋼板端面までの最短距離が10mm以下の場合に、本発明の効果を有効に得ることができる。また、上述したとおり、この最短距離が3mm未満の場合、溶接時の散り発生が顕著となり、ナゲット径がばらつきやすくなることで、溶接部の強度が不安定化する。そのため、この最短距離は3mm以上とするのが好適である。この最短距離は、好ましくは4mm以上とし、さらに好ましくは8mm以下とする。
  [溶接打点]
 さらに本発明では、上記の各条件に加えて、図8および図9に示すように、溶接打点中心から鋼板端面までの距離をXeとしたとき、Xe:3~30mmの状態を満たし、および溶接打点と当該溶接打点に隣接する既溶接打点が存在する場合には、当該溶接打点と当該既溶接打点間の距離をXnとしたとき、Xn:6mm以上の状態を満たすことも必要である。
 上記の「溶接打点中心から鋼板端面までの距離(Xe)」とは、図9に示すように、溶接打点8の中心から最も近い鋼板端面を設定し、その距離を指す。また、上記の「溶接打点と既溶接打点管の距離(Xn)」とは、図8に示すように、隣り合う溶接打点(溶接打点8と既溶接打点9)の中心間の距離を指す。
なお、図8および図9は部材の溶接部周辺を示す上面図(部材を上方からみた図)である。
 溶接打点中心から前記鋼板端面までの距離(Xe)が、3mm未満では、散りの発生が顕著となり、LMEが発生しやすくなる。一方、当該距離(Xe)が、30mm超えでは、小型の溶接ガンでは溶接そのものが困難となり、大型の溶接ガンが必要となることで設備制約が生じる。当該距離(Xe)は、3.0mm以上が好ましく、4.0mm以上がより好ましい。
 溶接打点と当該溶接打点に隣接する既溶接打点との距離(Xn)が、6mm未満では、既溶接打点によって当該溶接打点が拘束を受けることで残留応力が高まり、LME割れが発生しやすくなる。上記距離(Xn)の上限は設けないが、部品の強度および剛性を確保するためには、好ましくは上記距離(Xn)を200mm以下とする。上記距離(Xn)は、好ましくは6.0mm以上とし、より好ましくは10.0mm以上とする。また上記距離(Xn)は、より好ましくは40.0mm以下とする。
 本発明では、上記の通電工程の各条件に加えて、さらに次の条件を有していてもよい。
  [通電時間](好適条件)
 具体的には、溶接工程の通電工程では、板組を構成する鋼板のうち、最も強度が高い鋼板の引張強度をTSm(MPa)とし、板組の総板厚をtall(mm)とし、通電工程の通電時間をTs(S)とし、通電工程の加圧力をF(kN)とし、板組の上下側に配置された溶接電極中に流れる冷却水の流量の平均値をL(l/min)としたとき、Tsが以下の式(8)を満たすことが好ましい。これにより、本発明の効果をより一層有効に得ることが出来るからである。
Ts≦{0.03×tall×L×√(TSm)}/F …(8)
 式(8)を満たさない場合、溶接時の通電時間(Ts)が過大となり、溶接熱影響部の軟化や、炭素拡散による脱炭層の消失などが生じやすくなる。
 通電時間(Ts)は、好ましくはTs≦{0.02×tall×L×√(TSm)}/Fの関係を満たすことがより有効であり、より好ましくはTs≦{0.014×tall×L×√(TSm)}/Fの関係を満たすことが更に有効である。
 通電時間は、より好ましくは、[0.13×√{tall×(1-tb)}]S以上とし、さらに好ましくは、[0.17×√{tall×(1-tb)}]S以上とする。これは、総板厚が大きいほどナゲット径確保に必要な通電時間は増加すること、また、上記母材部の脱炭層の厚さであるtbが小さいほどLME割れが生じ易いため、コロナボンド部からのZnめっき排出および合金化促進に必要な通電時間が増加すること、に起因するためである。通電時間は、さらに一層好ましくは0.30S超えとする。
 [電極保持工程]
 上述の通電工程の後、電極保持工程を行う。電極保持工程とは、通電完了後に一定加圧力で溶接電極を保持することで、ブローホールの発生抑止を目的とする工程である。
  電極保持工程は、電極解放時の温度制御の観点から、通電終了後の加圧力保持時間をTh(S)としたとき、加圧力保持時間(Th)が以下の式(6)の関係を満たす。これにより、本発明の効果を有効に得られる。
-(tb/15)+0.025<Th<(tb/1.5)+1 …(6)
ここで、式(6)における、tb(mm)は前記ナゲット端部から鋼板合わせ面と平行に離れた位置での前記母材部の前記脱炭層の厚さである。
なお、より適切に温度制御する観点から、この条件式(すなわち(式)6)に加えて、以下の式(7)を満たすことが、より好ましい。
0<Th …(7)
 加圧力保持時間(Th)が過小であると、電極解放時の温度が増加してLME割れが発生しやすくなる。一方、加圧力保持時間(Th)が過大であると、溶接1打点あたりのタクトタイムが増加することで生産性が低下する。これとともに、溶接部の冷却速度が増加することで溶接部の組織が脆くなるため、継手強度が低下したり、溶接部の遅れ破壊が発生しやすくなったりする。
特に、母材部の脱炭層厚さ(tb)が小さいほど、LMEや遅れ破壊に対する感受性が大きくなるため、加圧力保持時間(Th)の上下限を満たす範囲は狭くなる。
 このような理由から、加圧力保持時間は、式(6)を満足する時間とする。式(6)の下限は、より好ましくは、-(tb/15)+0.050 以上とする。式(6)の上限は、より好ましくは、(tb/1.5)+0.8以下とする。
なお、上記理由から、さらに式(7)を満足することがより好ましい。式(7)の下限は、より好ましくは0.02以上とし、より好ましくは0.17以上とする。式(7)の下限は、より好ましくは1.0以下とする。
 以下、本発明の作用および効果について、実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。
 表1に示す板組を用いて、表3に示す溶接条件で溶接継手(溶接部材)を作製した。なお、板組は、表1に示す鋼板1、鋼板2、鋼板3の順に、上側から配置して重ね合わせた。表1の「亜鉛めっきの種類」欄に示す「無し」とはめっき層を有しない鋼板(冷延鋼板)を指すものとした。また、表3の「加圧直前の状態」欄に示す符号は、上述の溶接施工外乱に示した(a)~(e)に対応するものとした。また、溶接装置には、溶接ガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いた。使用した1対の電極チップは、先端の曲率半径R40mm、先端径6mmを有するクロム銅のDR型電極とした。
 また、表1の「引張強度」欄には、各鋼板から圧延方向にJIS 5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行い測定した引張強度(MPa)を示す。
 以下に示す方法で、溶接継手のTSSおよびLME割れの有無を評価した。また、以下の方法で、溶接継手における各厚さ(tb、tw、tall)および表層硬さ(Hn、Hws)を測定した。
 [各厚さの測定]
 作製した溶接継手は、溶接部中心を通るようにマイクロカッターで切断し、板厚方向断面を観察した。板組の総板厚(tall)は、溶接前の鋼板の板厚を測定し、その総和を総板厚として求めた。
 また、この断面を用いて、溶接熱影響部および母材部における脱炭層の厚さ(tb、tw)を測定した。具体的には、JIS G 0558に記載の電子線マイクロアナリシスによって炭素含有率を測定することとし、母材部および前記抵抗スポット溶接部のナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置における溶接熱影響部で脱炭層の厚さを測定した。また、母材部の測定位置は、溶接熱影響部の外縁と鋼板合わせ面7との交点から母材方向へ5000μm離れた位置で行った。
 得られた各値を用いて、各溶接継手における脱炭層厚さ比を示す値として、「tw/tbの値を求めた。ここでは、表2の「評価鋼板」欄に記載した鋼板の「tw/tb」の値を、代表値として表2に記載した。
 [表層硬さの測定]
 作製した溶接継手の溶接部中心を通るようにマイクロカッターで切断し、溶接熱影響部およびナゲットにおける硬さ試験をおこなった。硬さ試験は、ナノインデンテーション硬さ試験をおこなった。ナノインデーション硬さ試験は、三角錐形のダイヤモンド圧子を押込み荷重500μNとして測定位置に押込み、負荷開始から除荷完了までの荷重-変位曲線を取得した後、Oliver-Pharrの解析法を用いて硬さを求めた。
 ナゲットの硬さは、次のように測定した。具体的には、図2に示すように、脱炭層を有する鋼板側(図2に示す例では下板2側)において、溶接部のナゲット端部6cから鋼板合わせ面7と平行にナゲット内部方向へ200μm離れた位置でのナゲットの硬さ(Hn)を測定した。
 また、溶接熱影響部の表層硬さは、次のように測定した。具体的には、図2に示すように、脱炭層を有する鋼板側(図2に示す例では下板2側)の溶接部のナゲット端部6cから鋼板合わせ面7と平行に母材方向へ400μm離れた位置で、かつ鋼板合わせ面7上の位置を始点Aとし、始点Aから板厚方向に20μm離れた位置での硬さ(Hws)を測定した。
 得られた各値を用いて、各溶接継手における硬度差を示す値として、「Hws/Hn」の値を求めた。ここでは、表2の「評価鋼板」欄に記載した鋼板の「Hws/Hn」の値を、代表値として表2に記載した。
 [TSSの評価]
 引張せん断強度(TSS)の評価は、引張せん断試験方法(JIS Z3136)に基づき評価した。引張せん断試験には、表1に示す各鋼板から、せん断引張試験片を切り出し、表1に示す板組および表3に示す溶接条件で抵抗スポット溶接を施して作製した溶接継手(試験片)を用いた。
 また、得られた各試験片(本発明の溶接方法で作製された溶接継手)と比較するために、溶接部の表層性状を制御していない比較用継手(すなわち、脱炭層厚さ比を制御していない溶接継手)も作製した。比較用継手も、同様の引張せん断試験方法に基づき、TSSを評価した。
 TSS評価時の試験片形状はJIS Z3136に準拠したが、3枚重ねの板組(表1の板組No.Hなど)においては、図7に示すように、鋼板2-鋼板3間に引張負荷を与える評価を実施した。図7中に示す太矢印の方向を「引張負荷方向」とした。
 なお、TSSを評価する溶接継手の作製においては、溶接打点は1点のみとし、表2および3に示す打角・板間隙などの溶接施工外乱は設けなかった。
 そして、以下の基準でTSSを評価した。
<評価基準>
A:(本発明の溶接方法で作製された溶接継手のTSS)/(比較用継手のTSS)≧0.9
B:0.9>(本発明の溶接方法で作製された溶接継手のTSS)/(比較用継手のTSS)≧0.8
F:0.8>(本発明の溶接方法で作製された溶接継手のTSS)/(比較用継手のTSS)
 ここでは、評価結果がA、Bの場合に、合格(優れたせん断引張強度を有する)と評価した。
 [LME割れの評価]
 上述した(a)~(e)の溶接施工外乱のうち、1つまたは2つ以上を有する状態で溶接を行い、得られた溶接継手の溶接部中央を通るようにマイクロカッターで切断した後、溶接部の板厚方向の断面観察を行った。その観察結果から、以下の基準でLME割れの有無を評価した。具体的には、表3に示す各溶接条件でそれぞれ10体の溶接継手を作製し、鋼板間の鋼板合わせ面側で断面観察を行い、LME割れを確認した。なお、表2の「評価鋼板」欄に記載の鋼板の溶接部において断面観察を行い、評価した。
 特に、表3の「既溶接点」欄が「あり」となっている溶接試験においては、上述した(a)~(e)の溶接施工外乱に加えて、図8のように溶接点(溶接打点8)の周囲に2点の既溶接点9がある状態で、隣り合う2点間の打点間隔(Xn(mm))が表3に示す値となるようにして、溶接を行った。なお、本溶接試験では、テストピースに対して溶接打点数を1点あるいは3点として評価をおこなっているが、例えば自動車部材等の溶接部材に対して多数の溶接打点を行う場合と同様であると見做してよい。
<評価基準>
A:10体すべて割れ無し
B:割れ発生した溶接継手が2体以下、かつ割れ深さの最大値が100μm未満
F:割れ発生した溶接継手が3体以上、または割れ深さの最大値が100μm以上
 ここでは、評価結果がAおよびBの場合に、合格と評価した。
 得られた各値および評価結果を、表2および表3にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、発明例となる溶接継手(溶接部材)の評価結果は、すべてAまたはBであった。本発明によれば、溶接部の強度の確保と、LME割れの抑止とを両立をできることがわかった。
  1、2、3  鋼板
  4、5  溶接電極
  6    溶接部
  6a   ナゲット
  6b   溶接熱影響部
  6c   ナゲット端部
  7    鋼板合わせ面
  8    溶接打点
  9    既溶接打点
 10    溶接部材

Claims (6)

  1.  2枚以上の鋼板を重ね合わせた板組が抵抗スポット溶接された抵抗スポット溶接部を有する溶接部材であって、
     溶接打点中心から前記鋼板の端面までの最短距離の平均値が3.0mm以上であり、
    かつ、複数の溶接打点がある場合には、隣り合う溶接打点同士の打点中心間の平均距離が6.0mm以上であり、
     前記2枚以上の鋼板のうち、少なくとも1枚は鋼板表層に脱炭層を有する鋼板であり、
    かつ、前記脱炭層を有する鋼板側では、前記抵抗スポット溶接部のナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置における溶接熱影響部での鋼板表面から板厚方向の前記脱炭層の厚さをtw(mm)とし、前記ナゲット端部から鋼板合わせ面と平行に母材方向へ離れた位置における母材部での鋼板表面から板厚方向の前記脱炭層の厚さをtb(mm)としたとき、
    twおよびtbが式(1)を満たす、溶接部材。
    tw/tb<1.0 …(1)
  2.  前記脱炭層を有する鋼板は、
    前記ナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置における溶接熱影響部の鋼板表層での前記脱炭層の硬さをHwsとし、前記ナゲット端部から鋼板合わせ面と平行にナゲット内部方向へ200μm離れた位置でのナゲットの硬さをHnとしたとき、
    Hws、Hn、前記tw、および前記tbが式(2)および式(3)を満たす、請求項1に記載の溶接部材。
    tw/tb<{(Hws/Hn)-0.1}/7+0.8 …(2)
    0.1≦Hws/Hn≦1.5 …(3)
    ここで、式(2)におけるtw(mm)は前記ナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置での前記溶接熱影響部の前記脱炭層の厚さであり、tb(mm)は前記ナゲット端部から鋼板合わせ面と平行に離れた位置での前記母材部の前記脱炭層の厚さである。
  3.  前記鋼板の板厚をt(mm)、前記鋼板の引張強度をTS(MPa)としたとき、
    前記脱炭層を有する鋼板が、式(4)を満たす、請求項1または2に記載の溶接部材。
    -2×{(1000×t/TS)-0.25}/35+0.2<tw/tb<2×{(1000×t/TS)-0.25}/35+0.8 …(4)
    ここで、式(4)におけるtw(mm)は前記ナゲット端部から鋼板合わせ面と平行に母材方向へ400μm離れた位置での前記溶接熱影響部の前記脱炭層の厚さであり、tb(mm)は前記ナゲット端部から鋼板合わせ面と平行に離れた位置での前記母材部の前記脱炭層の厚さである。
  4.  前記脱炭層を有する鋼板は、Fe系のプレめっき層および/またはSi内部酸化層を有する、請求項1~3のいずれか1項に記載の溶接部材。
  5.  請求項1~4のいずれか1項に記載の溶接部材の製造方法であって、
     2枚以上の鋼板を重ね合わせて板組とする準備工程と、前記板組を抵抗スポット溶接する溶接工程と、を有し、
     前記溶接工程は、
     前記板組を一対の溶接電極で挟持し、加圧しながら通電して接合を行う際に、
    少なくとも1箇所の溶接打点については、前記溶接電極による加圧を行う直前に、(a)~(e)の1つまたは2つ以上の状態を満たし、
    かつ、溶接打点については、溶接打点中心から前記鋼板の端面までの距離をXeとしたとき、Xe:3~30mmの状態を満たし、および溶接打点に隣接する既溶接打点が存在する場合には、当該溶接打点と当該既溶接打点間の距離をXnとしたとき、Xn:6mm以上の状態を満たし、
    かつ、前記通電については、加圧力:2.0~10.0kN、溶接電流:4.0~15.0kA、通電時間:0.1~2.0Sで行う、通電工程と、
     通電終了後の加圧力保持時間をTh(S)としたとき、Thが式(6)の関係を満たす電極保持工程と、
    を有する、溶接部材の製造方法。
    (a)溶接電極と重ね合わせた鋼板との打角が0.2度以上である状態
    (b)一対の溶接電極の芯ずれ量が0.1mm以上である状態
    (c)いずれかの溶接電極と重ね合わせた鋼板との間に隙間が0.5mm以上ある状態
    (d)重ね合わせた鋼板のうち、少なくとも1組以上の鋼板間に隙間が0.5mm以上ある状態
    (e)溶接打点中心から重ね合わせた鋼板における鋼板端面までの最短距離が10mm以下である状態
    -(tb/15)+0.025<Th<(tb/1.5)+1 …(6)
    ここで、式(6)における、tb(mm)は前記ナゲット端部から鋼板合わせ面と平行に離れた位置での前記母材部の前記脱炭層の厚さである。
  6.  前記通電工程では、
    前記板組を構成する鋼板のうち、最も強度が高い鋼板の引張強度をTSm(MPa)とし、前記板組の総板厚をtall(mm)とし、前記通電工程の前記通電時間をTs(S)とし、前記通電工程の前記加圧力をF(kN)とし、前記板組の上下側に配置された前記溶接電極中に流れる冷却水の流量の平均値をL(l/min)としたとき、
    Tsが式(8)を満たす、請求項5に記載の溶接部材の製造方法。
    Ts≦{0.03×tall×L×√(TSm)}/F …(8)
PCT/JP2023/033591 2022-09-21 2023-09-14 溶接部材およびその製造方法 WO2024063010A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023572736A JP7435935B1 (ja) 2022-09-21 2023-09-14 溶接部材およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-150136 2022-09-21
JP2022150136 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024063010A1 true WO2024063010A1 (ja) 2024-03-28

Family

ID=90454392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033591 WO2024063010A1 (ja) 2022-09-21 2023-09-14 溶接部材およびその製造方法

Country Status (1)

Country Link
WO (1) WO2024063010A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291338A (ja) * 1996-04-26 1997-11-11 Kobe Steel Ltd 耐溶融亜鉛めっき割れ性に優れた高張力鋼板
WO2016171237A1 (ja) * 2015-04-22 2016-10-27 新日鐵住金株式会社 めっき鋼板
JP2020082102A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291338A (ja) * 1996-04-26 1997-11-11 Kobe Steel Ltd 耐溶融亜鉛めっき割れ性に優れた高張力鋼板
WO2016171237A1 (ja) * 2015-04-22 2016-10-27 新日鐵住金株式会社 めっき鋼板
JP2020082102A (ja) * 2018-11-19 2020-06-04 株式会社神戸製鋼所 接合構造体及び接合構造体の製造方法

Similar Documents

Publication Publication Date Title
KR101805284B1 (ko) 스폿 용접 조인트 및 스폿 용접 방법
JP6194765B2 (ja) 高強度鋼板のスポット溶接方法
JP6278154B2 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP5572046B2 (ja) 異材接合方法
WO2017038981A1 (ja) スポット溶接方法
JP6108017B2 (ja) スポット溶接方法
JP2018039019A (ja) スポット溶接方法
JP2017047476A (ja) スポット溶接方法
JP6168246B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
KR102197434B1 (ko) 저항 스폿 용접 방법
KR102491219B1 (ko) 저항 스폿 용접 부재 및 그 제조 방법
EP3862123B1 (en) Joined structure and method for manufacturing joined structure
WO2020105325A1 (ja) 接合構造体及び接合構造体の製造方法
JP4640995B2 (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
JP7435935B1 (ja) 溶接部材およびその製造方法
WO2024063010A1 (ja) 溶接部材およびその製造方法
WO2024063009A1 (ja) 溶接部材およびその製造方法
JP7485242B1 (ja) 溶接部材およびその製造方法
WO2024063011A1 (ja) 溶接部材およびその製造方法
JP2007277717A (ja) アルミニウム系材料とのロウ付け接合用鋼板、その鋼板を用いた接合方法および接合継手
WO2024063012A1 (ja) 溶接部材およびその製造方法
JP7364113B2 (ja) 抵抗スポット溶接部材およびその抵抗スポット溶接方法
JP7355282B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP7347716B1 (ja) 抵抗スポット溶接継手および抵抗スポット溶接方法
JP7355281B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868131

Country of ref document: EP

Kind code of ref document: A1