WO2024183659A1 - 极片复合粘结剂、其制备方法及应用 - Google Patents

极片复合粘结剂、其制备方法及应用 Download PDF

Info

Publication number
WO2024183659A1
WO2024183659A1 PCT/CN2024/079715 CN2024079715W WO2024183659A1 WO 2024183659 A1 WO2024183659 A1 WO 2024183659A1 CN 2024079715 W CN2024079715 W CN 2024079715W WO 2024183659 A1 WO2024183659 A1 WO 2024183659A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
electrode sheet
aromatic polyamide
composite adhesive
fluorine
Prior art date
Application number
PCT/CN2024/079715
Other languages
English (en)
French (fr)
Inventor
易江平
冯雪冰
郝飞祥
关利
冯楠
文娟•刘•麦蒂斯
吴扬
Original Assignee
微宏动力系统(湖州)有限公司
微宏公司
微宏先进膜公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微宏动力系统(湖州)有限公司, 微宏公司, 微宏先进膜公司 filed Critical 微宏动力系统(湖州)有限公司
Publication of WO2024183659A1 publication Critical patent/WO2024183659A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09J127/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium-ion batteries, and in particular to a composite adhesive for pole pieces, a preparation method thereof, and applications thereof.
  • the binder accounts for a relatively small proportion, but it plays a vital role. First, it can tightly attach the active material and the conductive agent to the current collector to form a complete electrode, preventing the active material from falling off and peeling off during the charge and discharge process; second, it can evenly disperse the active material and the conductive agent to form a good electron and ion transmission network, and achieve efficient transmission of electrons and lithium ions.
  • PVDF has been widely used in the production of lithium-ion battery pole pieces due to its good thermodynamic and electrochemical stability, but PVDF also has problems such as low bonding strength, insufficient stability, and high cost.
  • the electrochemical stability of PVDF binder is significantly reduced under high temperature conditions, and the C-F in its structure decomposes at high temperatures, which will cause side reactions in the electrode.
  • Chinese patent CN 101432830 A discloses a method for manufacturing an electrode sheet that can cope with high-temperature drying and high-voltage charging and discharging using meta-aramid as a binder.
  • Chinese patent CN 112805855 A discloses a non-aqueous secondary battery binder containing aromatic polyamide fibrids, which has little powder shedding and does not completely cover the surface of active material particles when used as a binder in the electrode layer.
  • the above inventions all use aramid alone as a binder, which may cause problems such as easy moisture absorption of the electrode sheet and high internal resistance of the battery cell.
  • the main purpose of the present application is to provide a pole piece composite adhesive, a preparation method and application thereof, so as to solve the problems of low pole piece bonding strength, easy moisture absorption of pole pieces and high internal resistance of battery cells in the prior art.
  • a pole piece composite adhesive comprising a fluorine-containing polymer and aromatic polyamide.
  • the mass ratio of the fluorine-containing polymer to the aromatic polyamide is (15:1)-(1:10).
  • the pole piece composite adhesive also includes a non-aqueous solvent, and the total mass percentage of the fluorine-containing polymer and the aromatic polyamide is 1-6.25%.
  • the fluorine-containing polymer includes one or more of polyvinylidene fluoride, polytetrafluoroethylene and polychlorotrifluoroethylene.
  • the weight average molecular weight of the aromatic polyamide is 10,000-500,000.
  • the aromatic polyamide includes one or more of polyparaphenylene terephthalamide, polymetaphenylene isophthalamide, and polyparaphenylene terephthalamide.
  • a method for preparing the above-mentioned pole piece composite adhesive comprising the following steps: step S1, adding aromatic polyamide to a solvent to obtain a first solution; step S2, adding a fluorine-containing polymer to the solvent to obtain a second solution; step S3, mixing the first solution and the second solution to obtain the pole piece composite adhesive.
  • the solvent is a non-aqueous solvent.
  • the mass percentage of aromatic polyamide is 1-6.25%.
  • the mass percentage of the fluorine-containing polymer is 1-6.25%. Furthermore, the solid content of the pole piece composite adhesive is 1-6.25%.
  • a slurry comprising the pole piece composite adhesive of the present invention.
  • the slurry also includes a conductive agent and an active material.
  • the conductive agent includes one or more of SP, VGCF, CNT, acetylene black, conductive graphite and graphene;
  • the active material includes one or more of lithium iron phosphate, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium manganese iron phosphate and lithium titanate.
  • an electrochemical device including an electrode sheet, wherein the electrode sheet includes a current collector and a material coating, and the material coating includes the electrode sheet composite binder of the present invention.
  • the total mass percentage of the fluorine-containing polymer and the aromatic polyamide is 0.5-5%.
  • the electrochemical device includes a secondary battery and/or a capacitor
  • the secondary battery includes a lithium ion battery and/or a sodium ion battery.
  • the pole piece composite binder of the present application uses fluorinated polymer and aromatic polyamide at the same time. Compared with using fluorinated polymer alone, the strength of the composite binder of the present application is increased, the peeling strength of the battery pole piece is higher, and the electrolyte infiltration effect is better; compared with using aromatic polyamide alone, the battery pole piece has lower moisture, reduced moisture absorption, and lower internal resistance of the battery cell. That is, the pole piece composite binder of the present application can have the advantages of good electrochemical performance of fluorinated polymer and high bonding strength of aromatic polyamide, while also reducing the cost of using the binder.
  • FIG1 shows photos of the results of the crawling liquid test according to Comparative Example 1 and Example 5 of the present application
  • FIG. 2 shows the cycle performance test results according to Comparative Example 1 and Examples 1 and 2 of the present application.
  • a composite electrode adhesive including a fluorine-containing polymer and an aromatic polyamide.
  • Fluoropolymers have good electrochemical properties and humidity stability, but their use cost is high, and their bonding strength is insufficient when used alone as a binder; aromatic polyamides have high bonding strength, but using them alone as a binder will make the pole piece easy to absorb moisture and increase the internal resistance of the battery cell.
  • the pole piece composite binder of the present application uses both fluoropolymers and aromatic polyamides. Compared with using fluoropolymers alone, the strength of the composite binder of the present application is increased, the battery pole piece peeling strength is higher, and the electrolyte infiltration effect is better; compared with using aromatic polyamides alone, the battery pole piece has lower moisture, reduced moisture absorption, and lower internal resistance of the battery cell. It can have the advantages of good electrochemical properties of fluoropolymers and high bonding strength of aromatic polyamides, while also reducing the use cost of the binder.
  • the mass ratio of fluoropolymer to aromatic polyamide is (15:1)-(1:10); preferably (10:1)-(1:5); more preferably (8:1)-(1:2).
  • the mass ratio of fluoropolymer to aromatic polyamide includes but is not limited to the above range. When it is in the above range, it can better take into account the high strength of the pole piece composite binder, the good humidity stability used for the pole piece and the lower internal resistance of the battery cell.
  • the mass ratio of fluoropolymer to aromatic polyamide is 15:1, 14:1, 13:1, 12:1, 11:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1.3:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10 or a range between any two of them.
  • the pole piece composite binder further includes a non-aqueous solvent
  • the total mass percentage of the fluorinated polymer and the aromatic polyamide is 1-6.25%; including but not limited to 1%, 1.4%, 1.5%, 2%, 2.5%, 2.9%, 3%, 3.1%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.25% or a range value composed of any two of them.
  • the present application limits the proportion of the non-aqueous solvent in the pole piece composite binder to the above range, so that it can be better mixed and dispersed evenly with other functional substances in the pole piece slurry, and those skilled in the art can adjust the range according to preparation needs.
  • the fluorine-containing polymer includes one or more of polyvinylidene fluoride, polytetrafluoroethylene and polychlorotrifluoroethylene.
  • the above fluorine-containing polymer has better electrochemical properties and humidity stability, and can further improve the comprehensive performance of the electrode composite adhesive.
  • the weight average molecular weight of the aromatic polyamide is 10,000-500,000; preferably, the aromatic polyamide includes one or more of polyparabenzamide, polyisophthalamide and polyparaphenylene terephthalamide, and the above aromatic polyamide can further improve the bonding strength of the pole piece composite adhesive.
  • the present application has no special requirements for the type of non-aqueous solvent, as long as it can dissolve the fluorine-containing polymer and aromatic polyamide well, for example, the non-aqueous solvent is NMP.
  • the weight average molecular weight of the aromatic polyamide is 10,000, 20,000, 30,000, 40,000, 50,000, 100,000, 150,000, 200,000, 250,000, 300,000, 350,000, 400,000, 450,000, 500,000, or a range between any two of these values.
  • a method for preparing the pole piece composite adhesive of the present application comprising the following steps: step S1, adding aromatic polyamide to a solvent to obtain a first solution; step S2, adding a fluorine-containing polymer to a solvent to obtain a second solution; step S3, mixing the first solution and the second solution to obtain a pole piece composite adhesive.
  • the fluorine-containing polymer and the aromatic polyamide are first dissolved separately, and then the dissolved solutions are mixed to obtain the pole piece composite binder of the present application.
  • the preparation method is simple and easy, and the obtained composite binder can take into account good bonding strength, humidity stability and electrochemical performance.
  • the fluorine-containing polymer and the aromatic polyamide can be added to the solvent in sequence to obtain the pole piece composite binder.
  • the order of addition is not limited, and those skilled in the art can select according to their needs.
  • the solvent is a non-aqueous solvent, which can further improve the dissolution of the fluoropolymer and the aromatic polyamide.
  • the mass percentage of aromatic polyamide in the first solution is 1-6.25%; preferably, the mass percentage of fluoropolymer in the second solution is 1-6.25%; preferably, the solid content of the pole piece composite binder is 1-6.25%, which is more convenient for the practical application of the pole piece composite binder of the present application.
  • the solid content refers to the total content of fluoropolymer and aromatic polyamide in the solution of the pole piece composite binder.
  • the mass percentage of aromatic polyamide in the first solution is 1%, 1.4%, 1.5%, 2%, 2.5%, 2.9%, 3%, 3.1%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.25% or a range between any two of them;
  • the mass percentage of fluoropolymer in the second solution is 1%, 1.4%, 1.5%, 2%, 2.5%, 2.9%, 3%, 3.1%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.25% or a range between any two of them.
  • the solid content of the pole piece composite adhesive is 1%, 1.4%, 1.5%, 2%, 2.5%, 2.9%, 3%, 3.1%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.25% or the range between any two of them.
  • a slurry is also provided, including the pole piece composite adhesive of the present application, which can take into account good bonding strength, humidity stability and electrochemical performance, and is suitable for pole piece use.
  • the slurry further includes a conductive agent and an active substance; as long as the conductive agent has the function of improving the conductivity of the electrode sheet, there is no particular restriction on its material; as long as the active substance can function as an electrode, there is no particular restriction on its material.
  • the conductive agent includes one or more of SP, VGCF, CNT, acetylene black, conductive graphite and graphene; and/or the active substance includes one or more of lithium iron phosphate, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium manganese iron phosphate and lithium titanate.
  • the above conductive agent and active substance are more suitable for compounding with the electrode composite binder of the present application. They are used together to further disperse evenly in it, thus forming a better electron and ion transport network and achieving more efficient transmission of electrons and lithium ions.
  • an electrochemical device including an electrode sheet, the electrode sheet including a current collector and a material coating, the material coating including the electrode sheet composite adhesive of the present application, both of which can evenly disperse the active substance and the conductive agent and tightly adhere to the current collector, so that the electrochemical device has higher electrode sheet peeling strength, lower electrode sheet moisture and lower battery cell internal resistance at the same time.
  • the total mass percentage of fluoropolymer and aromatic polyamide in the material coating is 0.5-5%; preferably 0.5-3%; more preferably 1-2%; when the binder content is lower than that of conventional adhesives, the cost of the binder is further reduced, and the electrode peel strength is greater after using the electrode composite adhesive of the present application.
  • the total weight percentage of fluoropolymer and aromatic polyamide is 0.5%, 0.8%, 1%, 1.2%, 1.4%, 1.6%, 1.8%, 2%, 2.2%, 2.4%, 2.6%, 2.8%, 3%, 3.2%, 3.4%, 3.6%, 3.8%, 4%, 4.2%, 4.4%, 4.6%, 4.8%, 5% or a range between any two of them.
  • the electrochemical device includes a secondary battery and/or a capacitor
  • the secondary battery includes a lithium-ion battery and/or a sodium-ion battery.
  • aromatic polyamide (aramid) used in the following examples and comparative examples of the present application is poly(meta-phenylene isophthalamide) (meta-aramid) having a molecular weight of 200,000-300,000.
  • the lithium nickel cobalt manganese oxide used in the following examples and comparative examples of the present application is NCM811, the electrolyte solvent used in the injection process is EC+DEC+EMC, and the lithium salt is LiPF 6 .
  • the slurry is coated on aluminum foil, dried, rolled and die-cut to obtain a positive electrode sheet, and the liquid creeping performance of the positive electrode sheet is tested.
  • Pole peel strength test carried out in accordance with standard GB/T 8808-1988.
  • Pole moisture test Use Karl Fischer moisture tester to test the moisture of the positive electrode.
  • the instrument model is Mettler-Toledo C30S, and the heating temperature of the cassette furnace is 150°C.
  • Capacity test (1) Stand for 10 minutes; (2) 17.16A constant current and constant voltage charging, cut-off voltage 4.2V, cut-off current 2.6A; (3) Stand for 10 minutes; (4) 17.16A constant current discharge, cut-off voltage 2.7V; (5) Stand for 10 minutes; (6) 17.16A constant current and constant voltage charging, cut-off voltage 4.2V, cut-off current 2.6A.
  • Test temperature 25 ⁇ 3°C, instrument model is Xinwei 30A test cabinet CT-4032-5V30A-NTFA.
  • the instrument model is Suzhou Rongfang BT3554, and the test frequency is 1000Hz.
  • the test results of the electrode peeling strength, electrode moisture, cell capacity, and cell AC internal resistance of the above embodiments and comparative examples are shown in Table 1.
  • the liquid creep test results of Embodiment 5 and Comparative Example 1 are shown in Figure 1, and the box shows the liquid creep height.
  • Example 1 the batteries prepared in Example 1, Example 2 and Comparative Example 1 were tested for liquid retention and cycle life.
  • Liquid retention test When the battery cell is finally sealed, the weight of the battery cell before and after final sealing is weighed on a balance. The weight before final sealing minus the weight after final sealing is the liquid loss, and the liquid injection amount minus the liquid loss is the liquid retention amount.
  • the liquid retention amounts of Example 1, Example 2 and Comparative Example 1 are 156.7g, 158.6g and 144.9g respectively.
  • the cycle test process is as follows: (1) stand for 10 minutes; (2) discharge at a constant current of 52A, with a cut-off voltage of 2.7V; (3) stand for 10 minutes; (4) charge at a constant current and voltage of 52A to 4.2V, with a cut-off current of 5.2A; (5) stand for 10 minutes; (6) repeat steps (2) to (5). Cycle 4000 times; (7) 52A constant current discharge, cut-off voltage 2.7V.
  • a Xinwei 100A test cabinet, model CT-4016-5V100A-NTFA was used.
  • the model of this specific test cabinet is not to be construed as a limitation of the present invention, and other models of test machines may be used in specific cycle tests.
  • the cycle performance test results of Example 1, Example 2 and Comparative Example 1 are shown in Figure 2.
  • aramid mixed with PVDF is used as the composite adhesive for the pole piece.
  • the moisture content of the pole piece is lower and the internal resistance of the battery cell is lower; compared with the comparative example 1, since the aramid adhesive performance is higher than that of PVDF, even if the adhesive content is lower than that of the comparative example 1, the pole piece peeling strength is still higher than that of the comparative example 1; compared with the comparative example 2, since the total amount of adhesive is higher than that of the comparative example 2, the pole piece peeling strength is also higher than that of the comparative example 2.
  • the pole piece composite adhesive of the present application can significantly improve the electrolyte wetting performance of the pole piece.
  • the electrode composite adhesive of the present application can have the advantages of good electrochemical performance of fluorinated polymer and high bonding strength of aromatic polyamide, while also reducing the use cost of the adhesive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种极片复合粘结剂、其制备方法及应用。该极片复合粘结剂包括含氟聚合物和芳族聚酰胺。本申请的极片复合粘结剂同时使用含氟聚合物和芳族聚酰胺,相比于单独使用含氟聚合物,本申请的复合粘结剂的强度增加,电池极片剥离强度更高,电解液浸润效果更好;相比于单独使用芳族聚酰胺,电池极片水分更低,吸湿下降,电芯内阻也更低;即本申请的极片复合粘结剂可以同时具有含氟聚合物电化学性能佳、以及芳族聚酰胺粘结强度高的优点,同时也降低了粘结剂的使用成本。

Description

极片复合粘结剂、其制备方法及应用
本申请要求申请日为2023年03月03日的美国临时专利申请第63/449,627号的优先权。本申请引用上述美国临时专利申请的全文。
技术领域
本申请涉及锂离子电池技术领域,具体而言,涉及一种极片复合粘结剂、其制备方法及应用。
背景技术
粘结剂作为电极材料的一部分,占比较少,却发挥着至关重要的作用,其一可将活性物质和导电剂紧密附着在集流体上,形成完整的电极,防止活性物质在充放电过程中发生脱落、剥离;其二能够均匀分散活性物质和导电剂,从而形成良好的电子和离子传输网络,实现电子和锂离子的高效传输。PVDF因具有良好的热力学和电化学稳定性,已被广泛应用于锂离子电池极片制作中,但PVDF也存在粘结强度偏低、稳定性不足、成本较高的问题,高温条件下PVDF粘结剂电化学稳定性显著降低,其结构中的C-F在高温时产生分解,会导致电极内发生副反应。
中国专利CN 101432830 A公开了使用间位芳族聚酰胺作为粘合剂,制造能应对高温干燥、高电压下的充放电的电极片材的方法。中国专利CN 112805855 A公开了一种含有芳香族聚酰胺的纤条体的非水系二次电池用粘合剂,其粉末脱落少,并且当在电极层中作为粘合剂使用时不会完全包覆活性物质粒子的表面。然而,以上发明均是将芳纶单独用作粘结剂,会存在极片易吸湿、电芯内阻较高等问题。
发明内容
本申请的主要目的在于提供一种极片复合粘结剂、其制备方法及应用,以解决现有技术中极片粘结强度低、极片易吸湿、电芯内阻高的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种极片复合粘结剂,包括含氟聚合物和芳族聚酰胺。
进一步地,含氟聚合物与芳族聚酰胺的质量比为(15:1)-(1:10)。
进一步地,极片复合粘结剂还包括非水溶剂,含氟聚合物和芳族聚酰胺的总质量百分含量为1-6.25%。
进一步地,含氟聚合物包括聚偏二氟乙烯、聚四氟乙烯和聚三氟氯乙烯的一种或多种。
进一步地,芳族聚酰胺的重均分子量为10000-500000。
进一步地,芳族聚酰胺包括聚对苯甲酰胺、聚间苯二甲酰间苯二胺和聚对苯二甲酰对苯二胺的一种或多种。
根据本申请的另一方面,提供了一种上述极片复合粘结剂的制备方法,包括以下步骤:步骤S1,将芳族聚酰胺加入到溶剂中,得到第一溶液;步骤S2,将含氟聚合物加入到溶剂中,得到第二溶液;步骤S3,将第一溶液和第二溶液混合,得到极片复合粘结剂。
进一步地,溶剂为非水溶剂。
进一步地,第一溶液中,芳族聚酰胺的质量百分含量为1-6.25%。
进一步地,第二溶液中,含氟聚合物的质量百分含量为1-6.25%。进一步地,极片复合粘结剂的固含量为1-6.25%。
根据本申请的另一方面,提供了一种浆料,包括本发明的极片复合粘结剂。
进一步地,浆料还包括导电剂和活性物质。
进一步地,导电剂包括SP、VGCF、CNT、乙炔黑、导电石墨和石墨烯的一种或多种;活性物质包括磷酸铁锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂、磷酸锰铁锂和钛酸锂的一种或多种。
根据本申请的另一方面,提供了一种电化学装置,包括电极片,电极片包括集流体和材料涂层,材料涂层包括本发明的极片复合粘结剂。
进一步地,材料涂层中,含氟聚合物和芳族聚酰胺的总质量百分含量为0.5-5%。
进一步地,电化学装置包括二次电池和/或电容器,二次电池包括锂离子电池和/或钠离子电池。
本申请的极片复合粘结剂同时使用含氟聚合物和芳族聚酰胺,相比于单独使用含氟聚合物,本申请的复合粘结剂的强度增加,电池极片剥离强度更高,电解液浸润效果更好;相比于单独使用芳族聚酰胺,电池极片水分更低,吸湿下降,电芯内阻也更低。即本申请的极片复合粘结剂可以同时具有含氟聚合物电化学性能佳、以及芳族聚酰胺粘结强度高的优点,同时也降低了粘结剂的使用成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据对比例1和本申请实施例5的爬液测试结果照片;
图2示出了根据对比例1和本申请实施例1、实施例2的循环性能测试结果。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
正如本申请背景技术中所述,现有技术中存在极片粘结强度低、极片易吸湿、电芯内阻高的问题。为了解决上述问题,在本申请一种典型的实施方式中,提供了一种极片复合粘结剂,包括含氟聚合物和芳族聚酰胺。
含氟聚合物的电化学性能和湿度稳定性佳,但是使用成本较高,而且单独用作粘结剂时粘结强度不足;芳族聚酰胺粘结强度高,但是单独用作粘结剂会使得极片易吸湿、电芯内阻升高。本申请的极片复合粘结剂同时使用含氟聚合物和芳族聚酰胺,相比于单独使用含氟聚合物,本申请的复合粘结剂的强度增加,电池极片剥离强度更高,电解液浸润效果更好;相比于单独使用芳族聚酰胺,电池极片水分更低,吸湿下降,电芯内阻也更低,可以同时具有含氟聚合物电化学性能佳、以及芳族聚酰胺粘结强度高的优点,同时也降低了粘结剂的使用成本。
本申请的极片复合粘结剂中,含氟聚合物的使用比例过小、芳族聚酰胺的使用比例过大时,会导致复合粘结剂用于极片的湿度稳定性较差,电芯内阻升高,含氟聚合物的使用比例过大、芳族聚酰胺的使用比例过小时,又会导致复合粘结剂的强度不足,同时成本也会进一步增加;因此在一种可选的实施方式中,含氟聚合物与芳族聚酰胺的质量比为(15:1)-(1:10);优选为(10:1)-(1:5);更优选为(8:1)-(1:2)。含氟聚合物与芳族聚酰胺的质量比包括但不限于上述范围,当处于上述范围时能够更好地兼顾极片复合粘结剂的高强度、用于极片的良好湿度稳定性和较低的电芯内阻。
典型的但非限定性的,含氟聚合物与芳族聚酰胺的质量比为15:1、14:1、13:1、12:1、11:1、10:1、9:1、8:1、7:1、6:1、5:1、4:1、3:1、2:1、1.3:1、1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10或其任意两个比值之间的范围值。
在一种可选的实施方式中,极片复合粘结剂还包括非水溶剂,含氟聚合物和芳族聚酰胺的总质量百分含量为1-6.25%;包括但不限于1%、1.4%、1.5%、2%、2.5%、2.9%、3%、3.1%、3.5%、4%、4.5%、5%、5.5%、6%、6.25%或其任意两个数值组成的范围值;。本申请限定极片复合粘结剂中非水溶剂的比例在上述范围,可以使其更好地与极片浆料中的其他功能性物质进行均匀混合和分散,本领域技术人员可以根据制备需要对该范围进行调整。
在一种可选的实施方式中,含氟聚合物包括聚偏二氟乙烯、聚四氟乙烯和聚三氟氯乙烯的一种或多种,上述含氟聚合物具有更佳的电化学性能和湿度稳定性,能够进一步提高极片复合粘结剂的综合性能。
在一种可选的实施方式中,芳族聚酰胺的重均分子量为10000-500000;优选地,芳族聚酰胺包括聚对苯甲酰胺、聚间苯二甲酰间苯二胺和聚对苯二甲酰对苯二胺的一种或多种,上述芳族聚酰胺能够进一步提高极片复合粘结剂的粘结强度。
本申请对于非水溶剂的种类没有特殊要求,只要其能使得含氟聚合物和芳族聚酰胺良好溶解即可,比如非水溶剂为NMP。
典型的但非限定性的,芳族聚酰胺的重均分子量为10000、20000、30000、40000、50000、100000、150000、200000、250000、300000、350000、400000、450000、500000或其任意两个数值之间的范围值。
在本申请又一种典型的实施方式中,还提供了本申请的极片复合粘结剂的制备方法,包括以下步骤:步骤S1,将芳族聚酰胺加入到溶剂中,得到第一溶液;步骤S2,将含氟聚合物加入到溶剂中,得到第二溶液;步骤S3,将第一溶液和第二溶液混合,得到极片复合粘结剂。
本申请先将含氟聚合物和芳族聚酰胺各自溶解,然后将其溶解液进行混合即得本申请的极片复合粘结剂,该制备方法简便易行,得到的复合粘结剂可以兼顾良好的粘结强度、湿度稳定性和电化学性能。或者也可以依次将含氟聚合物和芳族聚酰胺将入到溶剂中获得极片复合粘结剂,添加顺序不收限制,本领域技术人员可根据需要进行选择。
在一种可选的实施方式中,溶剂为非水溶剂,可以进一步改善含氟聚合物和芳族聚酰胺的溶解。
出于在保证极片复合粘结剂具有良好的粘结强度、湿度稳定性和电化学性能的同时,进一步增加复合粘结剂的延展性,并使其更好地与极片浆料中的其他功能性物质进行均匀混合和分散的目的,在一种可选的实施方式中,第一溶液中,芳族聚酰胺的质量百分含量为1-6.25%;优选地,第二溶液中,含氟聚合物的质量百分含量为1-6.25%;优选地,极片复合粘结剂的固含量为1-6.25%,更便于本申请的极片复合粘结剂的实际应用。其中,固含量是指极片复合粘结剂的溶液中含氟聚合物和芳族聚酰胺的总含量。
典型的但非限定性的,第一溶液中芳族聚酰胺的质量百分含量为1%、1.4%、1.5%、2%、2.5%、2.9%、3%、3.1%、3.5%、4%、4.5%、5%、5.5%、6%、6.25%或其任意两个数值之间的范围值;第二溶液中含氟聚合物的质量百分含量为1%、1.4%、1.5%、2%、2.5%、2.9%、3%、3.1%、3.5%、4%、4.5%、5%、5.5%、6%、6.25%或其任意两个数值之间的范围值;极片复合粘结剂的固含量为1%、1.4%、1.5%、2%、2.5%、2.9%、3%、3.1%、3.5%、4%、4.5%、5%、5.5%、6%、6.25%或其任意两个数值之间的范围值。
在本申请又一种典型的实施方式中,还提供了一种浆料,包括本申请的极片复合粘结剂,其可以兼顾良好的粘结强度、湿度稳定性和电化学性能,适合于极片使用。
在一种可选的实施方式中,浆料还包括导电剂和活性物质;只要导电剂具有可提高电极片导电度的功能,则对其材料没有特别限制,只要活性物质能作为电极而发挥功能,则对其材料没有特别限制,优选地,导电剂包括SP、VGCF、CNT、乙炔黑、导电石墨和石墨烯的一种或多种;和/或活性物质包括磷酸铁锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂、磷酸锰铁锂和钛酸锂的一种或多种,上述导电剂和活性物质更适合于与本申请的极片复合粘结剂进行配 合使用,在其中进一步均匀分散,从而形成更好的电子和离子传输网络,实现电子和锂离子的更高效传输。
在本申请又一种典型的实施方式中,还提供了一种电化学装置,包括电极片,电极片包括集流体和材料涂层,材料涂层包括本申请的极片复合粘结剂,均可将活性物质和导电剂均匀分散并紧密附着在集流体上,使得电化学装置同时具有更高的极片剥离强度、更低的极片水分和更低的电芯内阻。
为进一步增加电化学装置的极片剥离强度,同时降低极片水分和电芯内阻,在一种可选的实施方式中,材料涂层中,含氟聚合物和芳族聚酰胺的总质量百分含量为0.5-5%;优选为0.5-3%;更优选为1-2%;在粘结剂含量低于常规粘合剂,进一步降低了粘结剂成本的情况下,使用本申请的极片复合粘结剂后极片剥离强度更大。
典型的但非限定性,含氟聚合物和芳族聚酰胺的总质量百分含量为0.5%、0.8%、1%、1.2%、1.4%、1.6%、1.8%、2%、2.2%、2.4%、2.6%、2.8%、3%、3.2%、3.4%、3.6%、3.8%、4%、4.2%、4.4%、4.6%、4.8%、5%或其任意两个数值之间的范围值。
具体地,在一种可选的实施方式中,电化学装置包括二次电池和/或电容器,二次电池包括锂离子电池和/或钠离子电池。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
如无特殊说明,本申请下列实施例和对比例中使用的芳族聚酰胺(芳纶)为聚间苯二甲酰间苯二胺(间位芳纶),分子量为20万-30万。
如无特殊说明,本申请下列实施例和对比例中使用的镍钴锰酸锂为NCM811,注液过程中使用的电解液溶剂为EC+DEC+EMC,锂盐为LiPF6
实施例1
(1)将0.021Kg芳纶加入到2.079Kg NMP中,搅拌均匀得到芳纶胶液;
(2)将0.169Kg PVDF加入到2.535Kg NMP中,搅拌均匀得到PVDF胶液;
(3)将上述芳纶胶液和PVDF胶液混合并搅拌均匀,再加入0.211Kg SP(超导炭黑)和0.158Kg VGCF,搅拌均匀得到导电胶;
(4)在上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(6)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(7)将上述裸电芯组装、烘烤、注液、化成和分容,制成容量为52Ah的电芯。注液前测试正极片水分,分容后测试电芯交流内阻。
实施例2
(1)将0.042Kg芳纶加入到4.158Kg NMP中,搅拌均匀得到芳纶胶液;
(2)将0.126Kg PVDF加入到1.89Kg NMP中,搅拌均匀得到PVDF胶液;
(3)将上述芳纶胶液和PVDF胶液混合并搅拌均匀,再加入0.211Kg SP和0.158Kg VGCF,搅拌均匀得到导电胶;
(4)上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(6)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(7)将上述裸电芯组装、烘烤、注液、化成和分容,制成容量为52Ah的电芯。注液前测试正极片水分,分容后测试电芯交流内阻。
实施例3
(1)将0.063Kg芳纶加入到5.0Kg NMP中,搅拌均匀得到芳纶胶液;
(2)将0.084Kg PVDF加入到1.26Kg NMP中,搅拌均匀得到PVDF胶液;
(3)将上述芳纶胶液和PVDF胶液混合并搅拌均匀,再加入0.211Kg SP和0.158Kg VGCF,搅拌均匀得到导电胶;
(4)上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(6)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(7)将上述裸电芯组装、烘烤、注液、化成和分容,制成容量为52Ah的电芯。注液前测试正极片水分,分容后测试电芯交流内阻。
实施例4
(1)将0.084Kg芳纶加入到6.0Kg NMP中,搅拌均匀得到芳纶胶液;
(2)将0.042Kg PVDF加入到0.63Kg NMP中,搅拌均匀得到PVDF胶液;
(3)将上述芳纶胶液和PVDF胶液混合并搅拌均匀,再加入0.211Kg SP和0.158Kg VGCF,搅拌均匀得到导电胶;
(4)上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(6)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(7)将上述裸电芯组装、烘烤、注液、化成和分容,制成容量为52Ah的电芯。注液前测试正极片水分,分容后测试电芯交流内阻。
实施例5
(1)将0.042Kg芳纶加入到4.158Kg NMP中,搅拌均匀得到芳纶胶液;
(2)将0.169Kg PVDF加入到2.535Kg NMP中,搅拌均匀得到PVDF胶液;
(3)将上述芳纶胶液和PVDF胶液混合并搅拌均匀,再加入0.211Kg SP和0.158Kg VGCF,搅拌均匀得到导电胶;
(4)上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片爬液性能。
实施例6
(1)将0.011Kg芳纶加入到1.089Kg NMP中,搅拌均匀得到芳纶胶液;
(2)将0.158Kg PVDF加入到2.37Kg NMP中,搅拌均匀得到PVDF胶液;
(3)将上述芳纶胶液和PVDF胶液混合并搅拌均匀,再加入0.211Kg SP(超导炭黑)和0.158Kg VGCF,搅拌均匀得到导电胶;
(4)在上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(6)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(7)将上述裸电芯组装、烘烤、注液、化成和分容,制成容量为52Ah的电芯。注液前测试正极片水分,分容后测试电芯交流内阻。
实施例7
(1)将0.105Kg芳纶加入到7Kg NMP中,搅拌均匀得到芳纶胶液;
(2)将0.010Kg PVDF加入到0.15Kg NMP中,搅拌均匀得到PVDF胶液;
(3)将上述芳纶胶液和PVDF胶液混合并搅拌均匀,再加入0.211Kg SP(超导炭黑)和0.158Kg VGCF,搅拌均匀得到导电胶;
(4)在上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(6)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(7)将上述裸电芯组装、烘烤并测试正极片水分。
实施例8
(1)将0.21Kg芳纶加入到7Kg NMP中,搅拌均匀得到芳纶胶液;
(2)将0.314Kg PVDF加入到1.57Kg NMP中,搅拌均匀得到PVDF胶液;
(3)将上述芳纶胶液和PVDF胶液混合并搅拌均匀,再加入0.211Kg SP(超导炭黑)和0.158Kg VGCF,搅拌均匀得到导电胶;
(4)在上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(6)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(7)将上述裸电芯组装、烘烤并测试正极片水分。
实施例9
(1)将0.052Kg芳纶加入到5.148Kg NMP中,搅拌均匀得到芳纶胶液;
(2)将0.052Kg PVDF加入到0.78Kg NMP中,搅拌均匀得到PVDF胶液;
(3)将上述芳纶胶液和PVDF胶液混合并搅拌均匀,再加入0.211Kg SP(超导炭黑)和0.158Kg VGCF,搅拌均匀得到导电胶;
(4)在上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(6)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(7)将上述裸电芯组装、烘烤并测试正极片水分。
对比例1
(1)将0.212Kg PVDF加入到3.18Kg NMP中,搅拌均匀得到PVDF胶液;
(2)上述PVDF胶液中加入0.211Kg SP和0.158Kg VGCF,再加入2.5KgNMP,搅拌均匀得到导电胶;
(3)上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(4)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度和爬液性能;
(5)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(6)将上述裸电芯组装、烘烤、注液、化成和分容,制成容量为52Ah的电芯。注液前测试正极片水分,分容后测试电芯交流内阻。
对比例2
(1)将0.105Kg芳纶加入到7.0Kg NMP中,搅拌均匀得到芳纶胶液;
(2)上述芳纶胶液中加入0.211Kg SP和0.158Kg VGCF,搅拌均匀得到导电胶;
(3)上述导电胶中加入10Kg镍钴锰酸锂,搅拌均匀得到浆料;
(4)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(5)将上述浆料涂覆在铝箔上,烘干、辊压模切得到正极片,测试正极片剥离强度;
(6)将上述正极片与石墨负极片和隔膜叠片,得到裸电芯;
(7)将上述裸电芯组装、烘烤、注液、化成和分容,制成容量为52Ah的电芯。注液前测试正极片水分,分容后测试电芯交流内阻。
性能测试:
极片剥离强度测试:按照标准GB/T 8808-1988进行。
极片水分测试:使用卡尔费休水分测试仪测试正极片水分,仪器型号为梅特勒-托利多C30S,卡式炉加热温度150℃。
分容测试:(1)搁置10min;(2)17.16A恒流恒压充电,截止电压4.2V,截止电流2.6A;(3)搁置10min;(4)17.16A恒流放电,截止电压2.7V;(5)搁置10min;(6)17.16A恒流恒压充电,截止电压4.2V,截止电流2.6A。测试温度:25±3℃,仪器型号为新威30A测试柜CT-4032-5V30A-NTFA。
内阻测试:仪器型号为苏州融方BT3554,测试频率1000Hz。
电解液浸润效果测试:爬液测试,取一方形容器,将其一段抬起使之与水平呈30°,加入适量电解液(1M LiPF6、EC/EMC=3/7)。将需对比测试的极片裁剪成宽度为10mm的条形,同时放入到容器中,极片初始浸液液面需保持一致,10分钟后将待测极片同时取出,观察爬液高度。
上述各实施例和对比例的极片剥离强度、极片水分、电芯分容容量、电芯交流内阻测试结果见表1。实施例5和对比例1的爬液测试结果照片见图1,方框内所示为爬液高度。
此外,将实施例1、实施例2和对比例1制备的电池测试保液量和循环寿命。
保液量测试:电芯终封时,用天平称量电芯终封前后的重量,终封前重量减终封后重量为失液量,注液量减失液量为保液量。实施例1、实施例2和对比例1保液量分别为156.7g、158.6g和144.9g。
循环测试流程如下:(1)搁置10min;(2)52A恒流放电,截止电压为2.7V;(3)搁置10min;(4)52A恒流恒压充至4.2V,截止电流5.2A;(5)搁置10min;(6)将工步(2)-(5) 循环4000次;(7)52A恒流放电,截止电压2.7V。在上述循环测试中,使用的是新威100A测试柜,型号为CT-4016-5V100A-NTFA。该具体测试柜的型号并不解释为对本发明的限制,在具体循环测试中可采用其他型号的测试机。实施例1、实施例2和对比例1的循环性能测试结果见图2。
表1
由上可知,本申请各实施例中使用芳纶混合PVDF作为极片复合粘结剂,相比于对比例2单独使用芳纶作粘接剂,极片水分更低,电芯内阻更低;相比于对比例1,由于芳纶粘结性能高于PVDF,即使粘结剂含量低于对比例1,极片剥离强度仍高于对比例1;相比于对比例2,因粘结剂总量高于对比例2,极片剥离强度同样高于对比例2。此外,对比图1中实施例5和对比例1的爬液性能,可以看出本申请的极片复合粘结剂能明显提升极片的电解液浸润性能。
对比实施例1、实施例2和对比例1的循环性能,实施例1的循环性能明显优于对比例1,可能原因是用0.2%芳纶替代0.4%PVDF后,提升了极片的电解液浸润性能,从而提高了保液量,进而提升了循环性能;实施例2虽然保液量相比实施例1更高,但交流内阻有所增高,降低了电芯的动力学性能,因此循环性能差于实施例1,与对比例1接近,但粘合剂的使用量明显低于对比例1。
可见,本申请的极片复合粘结剂可以同时具有含氟聚合物电化学性能佳、以及芳族聚酰胺粘结强度高的优点,同时也降低了粘结剂的使用成本。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种极片复合粘结剂,其特征在于,包括含氟聚合物和芳族聚酰胺。
  2. 根据权利要求1所述的极片复合粘结剂,其特征在于,所述含氟聚合物与所述芳族聚酰胺的质量比为(15∶1)-(1∶10)。
  3. 根据权利要求1所述的极片复合粘结剂,其特征在于,所述极片复合粘结剂还包括非水溶剂,所述含氟聚合物和所述芳族聚酰胺的总质量百分含量为1-6.25%。
  4. 根据权利要求1所述的极片复合粘结剂,其特征在于,所述含氟聚合物包括聚偏二氟乙烯、聚四氟乙烯和聚三氟氯乙烯的一种或多种。
  5. 根据权利要求1所述的极片复合粘结剂,其特征在于,所述芳族聚酰胺的重均分子量为10000-500000。
  6. 根据权利要求5所述的极片复合粘结剂,其特征在于,所述芳族聚酰胺包括聚对苯甲酰胺、聚间苯二甲酰间苯二胺和聚对苯二甲酰对苯二胺的一种或多种。
  7. 一种权利要求1所述的极片复合粘结剂的制备方法,其特征在于,包括以下步骤:
    步骤S1,将芳族聚酰胺加入到溶剂中,得到第一溶液;
    步骤S2,将含氟聚合物加入到所述溶剂中,得到第二溶液;
    步骤S3,将所述第一溶液和所述第二溶液混合,得到所述极片复合粘结剂。
  8. 根据权利要求7所述的制备方法,其特征在于,所述溶剂为非水溶剂。
  9. 根据权利要求7所述的制备方法,其特征在于,所述第一溶液中,所述芳族聚酰胺的质量百分含量为1-6.25%;和/或所述第二溶液中,所述含氟聚合物的质量百分含量为1-6.25%。
  10. 根据权利要求7所述的制备方法,其特征在于,所述极片复合粘结剂的固含量为1-6.25%。
  11. 一种浆料,其特征在于,包括权利要求1所述的极片复合粘结剂。
  12. 根据权利要求11所述的浆料,其特征在于,所述浆料还包括导电剂和活性物质。
  13. 根据权利要求12所述的浆料,其特征在于,所述导电剂包括SP、VGCF、CNT、乙炔黑、导电石墨和石墨烯的一种或多种;所述活性物质包括磷酸铁锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂、磷酸锰铁锂和钛酸锂的一种或多种。
  14. 一种电化学装置,包括电极片,所述电极片包括集流体和材料涂层,其特征在于,所述材料涂层包括权利要求1所述的极片复合粘结剂。
  15. 根据权利要求14所述的电化学装置,其特征在于,所述材料涂层中,含氟聚合物和芳族聚酰胺的总质量百分含量为0.5-5%。
  16. 根据权利要求14所述的电化学装置,其特征在于,所述电化学装置包括二次电池和/或电容器,所述二次电池包括锂离子电池和/或钠离子电池。
PCT/CN2024/079715 2023-03-03 2024-03-01 极片复合粘结剂、其制备方法及应用 WO2024183659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202363449627P 2023-03-03 2023-03-03
US63/449,627 2023-03-03

Publications (1)

Publication Number Publication Date
WO2024183659A1 true WO2024183659A1 (zh) 2024-09-12

Family

ID=92674099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/079715 WO2024183659A1 (zh) 2023-03-03 2024-03-01 极片复合粘结剂、其制备方法及应用

Country Status (1)

Country Link
WO (1) WO2024183659A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862850A (zh) * 2005-06-06 2006-11-15 松下电器产业株式会社 非水电解质二次电池
CN101578676A (zh) * 2006-12-22 2009-11-11 杜邦帝人先进纸有限公司 蓄电器电极用粘结剂
CN104364079A (zh) * 2012-06-29 2015-02-18 圣戈班性能塑料帕姆普斯有限公司 包含底漆体系作为粘附促进剂的滑动轴承
CN106118515A (zh) * 2016-07-08 2016-11-16 姚华鹏 防潮型热熔胶
WO2017107436A1 (zh) * 2015-12-22 2017-06-29 沧州明珠隔膜科技有限公司 一种复合涂层锂离子电池隔膜及其制备方法
WO2019114692A1 (en) * 2017-12-12 2019-06-20 Shanghai Energy New Materials Technology Co., Ltd. Separators, electrochemical devices comprising the separator, and methods for making the separator
CN109950456A (zh) * 2017-12-20 2019-06-28 微宏动力系统(湖州)有限公司 一种芳族聚酰胺浆料、多孔隔膜及其制备方法
CN110521029A (zh) * 2017-02-09 2019-11-29 株式会社村田制作所 二次电池、电池包、电动车辆、电动工具以及电子设备
CN110931794A (zh) * 2019-11-25 2020-03-27 中国乐凯集团有限公司 粘合剂及制备方法、浆料及其应用
CN111063887A (zh) * 2019-11-25 2020-04-24 中国乐凯集团有限公司 粘合剂及制备方法、浆料
KR20200126673A (ko) * 2019-04-30 2020-11-09 한국기계연구원 나트륨/금속-탄소 이차 전지
CN114583173A (zh) * 2022-03-15 2022-06-03 湖北亿纬动力有限公司 一种负极浆料组合物和应用
US20220200098A1 (en) * 2019-06-04 2022-06-23 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN115216245A (zh) * 2021-04-15 2022-10-21 恒大新能源技术(深圳)有限公司 粘结剂、电池极片及其制备方法、二次电池
CN217848224U (zh) * 2022-05-05 2022-11-18 广东卓高新材料科技有限公司 一种高粘结性复合涂覆隔膜
WO2022268147A1 (zh) * 2021-06-23 2022-12-29 中国第一汽车股份有限公司 一种锂离子电池及其制备方法
WO2023005520A1 (zh) * 2021-07-28 2023-02-02 苏州清陶新能源科技有限公司 一种粘结剂及其制备方法和应用

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862850A (zh) * 2005-06-06 2006-11-15 松下电器产业株式会社 非水电解质二次电池
CN101578676A (zh) * 2006-12-22 2009-11-11 杜邦帝人先进纸有限公司 蓄电器电极用粘结剂
CN104364079A (zh) * 2012-06-29 2015-02-18 圣戈班性能塑料帕姆普斯有限公司 包含底漆体系作为粘附促进剂的滑动轴承
WO2017107436A1 (zh) * 2015-12-22 2017-06-29 沧州明珠隔膜科技有限公司 一种复合涂层锂离子电池隔膜及其制备方法
CN106118515A (zh) * 2016-07-08 2016-11-16 姚华鹏 防潮型热熔胶
CN110521029A (zh) * 2017-02-09 2019-11-29 株式会社村田制作所 二次电池、电池包、电动车辆、电动工具以及电子设备
WO2019114692A1 (en) * 2017-12-12 2019-06-20 Shanghai Energy New Materials Technology Co., Ltd. Separators, electrochemical devices comprising the separator, and methods for making the separator
CN109950456A (zh) * 2017-12-20 2019-06-28 微宏动力系统(湖州)有限公司 一种芳族聚酰胺浆料、多孔隔膜及其制备方法
KR20200126673A (ko) * 2019-04-30 2020-11-09 한국기계연구원 나트륨/금속-탄소 이차 전지
US20220200098A1 (en) * 2019-06-04 2022-06-23 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN111063887A (zh) * 2019-11-25 2020-04-24 中国乐凯集团有限公司 粘合剂及制备方法、浆料
CN110931794A (zh) * 2019-11-25 2020-03-27 中国乐凯集团有限公司 粘合剂及制备方法、浆料及其应用
CN115216245A (zh) * 2021-04-15 2022-10-21 恒大新能源技术(深圳)有限公司 粘结剂、电池极片及其制备方法、二次电池
WO2022268147A1 (zh) * 2021-06-23 2022-12-29 中国第一汽车股份有限公司 一种锂离子电池及其制备方法
WO2023005520A1 (zh) * 2021-07-28 2023-02-02 苏州清陶新能源科技有限公司 一种粘结剂及其制备方法和应用
CN114583173A (zh) * 2022-03-15 2022-06-03 湖北亿纬动力有限公司 一种负极浆料组合物和应用
CN217848224U (zh) * 2022-05-05 2022-11-18 广东卓高新材料科技有限公司 一种高粘结性复合涂覆隔膜

Similar Documents

Publication Publication Date Title
CN109546080B (zh) 一种正极极片、及其制备方法和用途
Cao et al. Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator
JP2020064866A (ja) 電池電極用水性スラリー
WO2022041702A1 (zh) 一种凝胶电解质前驱体及其应用
US20170040639A1 (en) Electrolyte and lithium-ion battery comprising said electrolyte
EP3493303A1 (en) Negative electrode material and preparation method thereof, negative electrode, and all-solid-state lithium ion battery
CN112713266B (zh) 负极浆料及其应用
BR102018074749A2 (pt) Método para a produção de uma bateria de estado sólido de sulfeto
WO2024114774A1 (zh) 电池及电池的制备方法
US20230131127A1 (en) Electrolyte suitable for lithium-ion battery of silicon-carbon system and lithium-ion battery
JP2002260634A (ja) リチウム二次電池
KR101882975B1 (ko) 리튬 일차전지의 양극 제조방법
US20180226635A1 (en) Lithium ion battery positive electrode composition and preparation method thereof
CN110335996A (zh) 一种高容量锂离子电池负极及其应用
US11081700B2 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
Wu et al. Comparative analysis of different separators for the electrochemical performances and long-term stability of high-power lithium-ion batteries
JP2000011991A (ja) 有機電解液二次電池
US20170222218A1 (en) Lithium ion secondary battery
WO2024183659A1 (zh) 极片复合粘结剂、其制备方法及应用
CN102237525A (zh) 一种正极材料及其制备方法
CN108987705B (zh) 一种电极材料组合物、锂离子电池正极片和锂离子电池
JP2001210318A (ja) 非水電解液二次電池用負極板の製造法
Gao et al. Li 3 V 2 (PO 4) 3 as a cathode additive for the over-discharge protection of lithium ion batteries
JP2002184458A (ja) リチウム二次電池
CN114597415A (zh) 一种负极片和锂离子电池