WO2024159355A1 - 除铁装置、浆料制作系统及金属杂质去除方法 - Google Patents

除铁装置、浆料制作系统及金属杂质去除方法 Download PDF

Info

Publication number
WO2024159355A1
WO2024159355A1 PCT/CN2023/073823 CN2023073823W WO2024159355A1 WO 2024159355 A1 WO2024159355 A1 WO 2024159355A1 CN 2023073823 W CN2023073823 W CN 2023073823W WO 2024159355 A1 WO2024159355 A1 WO 2024159355A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron removal
magnetic
chamber
cleaning
slurry
Prior art date
Application number
PCT/CN2023/073823
Other languages
English (en)
French (fr)
Inventor
张波
许立勇
李源昕
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2023/073823 priority Critical patent/WO2024159355A1/zh
Publication of WO2024159355A1 publication Critical patent/WO2024159355A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated

Definitions

  • the present application relates to the technical field of automation equipment, and in particular to an iron removal device, a slurry preparation system and a method for removing metal impurities.
  • the metal impurities in the slurry are removed by the magnetic attraction of the magnetic bar. After working for a long time, the magnetic bar needs to be replaced regularly or cleaned manually, which makes the automation of the iron removal device for removing metal impurities in the slurry low, resulting in low work efficiency.
  • the purpose of the embodiments of the present application is to provide an iron removal device, a slurry preparation system and a metal impurity removal method, which can improve the technical problems of low automation and low work efficiency.
  • an iron removal device comprising:
  • the cleaning mechanism comprises an iron removal chamber and a cleaning chamber, wherein the iron removal chamber is used for the slurry to pass through;
  • the iron removal mechanism comprises a magnetic attraction member which can be moved alternately into the iron removal chamber and the cleaning chamber.
  • the magnetic attraction member can magnetically attract metal impurities in the slurry in the iron removal chamber and can also perform cleaning in the cleaning chamber.
  • the magnetic element can be moved alternately into the iron removal chamber and the cleaning chamber.
  • the magnetic element when working, the magnetic element can be moved into the iron removal chamber first, so that the magnetic element can magnetically absorb the metal impurities in the slurry in the iron removal chamber, and then the magnetic element can be moved from the iron removal chamber to the cleaning chamber, so that the magnetic element can be cleaned in the cleaning chamber to remove the metal impurities on the magnetic element.
  • the magnetic element can alternately absorb the metal impurities and clean the metal impurities without replacing the magnetic element after the magnetic element absorbs more metal impurities, which reduces the replacement of the magnetic element and does not require excessive manual intervention, so that the iron removal device has higher automation performance, thereby improving the working efficiency of the iron removal device.
  • the cleaning mechanism further includes a scraper, which is used to scrape metal impurities on the magnetic element into the cleaning chamber.
  • the magnetic element is cleaned by the scraper, making the cleaning of the magnetic element very simple and easy to implement. This helps to improve the cleaning efficiency of the magnetic element, thereby improving the cleaning efficiency and production capacity of the slurry.
  • the scraper includes multiple scraping parts; the multiple scraping parts can move toward each other to hold the magnetic part; the magnetic part can move in and out of the cleaning chamber so that the scraping parts can scrape off metal impurities when moving out of the cleaning chamber; the multiple scraping parts can also move in opposite directions.
  • a plurality of scraping portions define a through groove for holding the magnetic attraction member, and a protruding structure is provided on the inner circumference of the through groove, and the scraping portion supports the magnetic attraction member through the protruding structure.
  • the friction between the scraper and the magnetic attraction member can be improved.
  • the friction between the two parts can increase the force with which the scraper scrapes off the metal impurities on the surface of the magnetic element, thereby improving the cleaning effect of the magnetic element.
  • the protruding structure is a microstructure provided on the scraping portion, or the protruding structure is a buffer structure.
  • the cleaning mechanism further comprises a first driving structure, and the first driving structure is used to drive the plurality of scraping parts to move toward each other or away from each other.
  • the iron removal device can automatically clean the magnetic attraction part, thereby improving the cleaning efficiency of the magnetic attraction part and further improving the working efficiency of the iron removal device.
  • the first driving structure includes a first driver and a driving seat; the driving seat is provided with a plurality of sliding grooves, and the plurality of scraping parts can slide along the plurality of sliding grooves correspondingly to move toward or away from each other; the first driver is used to drive the driving seat to move so that the scraping parts slide along the sliding grooves.
  • the iron removal device can automatically clean the magnetic attraction part, thereby improving the working efficiency of the iron removal device.
  • it can enable multiple scraping parts to flexibly move toward or away from each other, thereby improving the working flexibility of the iron removal device.
  • the iron removal device further includes a sewage discharge pipe connected to the cleaning chamber, and the sewage discharge pipe is used to discharge the metal impurities in the cleaning chamber.
  • the metal impurities in the clean chamber can be discharged through the sewage pipe.
  • the clean chamber can have a larger space to accommodate metal impurities, and the clean chamber can be used repeatedly.
  • the metal impurities in the clean chamber are discharged through the sewage pipe, which means that the cleaning work of the clean chamber is realized, so that the cleaning work of the clean chamber can be repeatedly used without excessive human intervention.
  • the automation performance of the iron removal device is also improved, which saves time and effort, and also improves the working efficiency of the iron removal device.
  • the inner cavity of the iron removal chamber is cylindrical
  • the magnetic attraction component is shaft-shaped
  • the difference between the inner diameter of the iron removal chamber and the diameter of the magnetic attraction component is less than 50 mm.
  • the slurry in the iron removal chamber will not be too much, so that the magnetic suction parts can fully contact the slurry to fully magnetically absorb the metal impurities in the slurry, thereby effectively improving the cleaning effect of the magnetic suction parts 21 on the slurry.
  • the iron removal chamber has a first feed port, which is arranged at the end of the iron removal chamber along the direction in which the magnetic suction piece enters and exits the iron removal chamber, and the first feed port can allow slurry to enter.
  • the slurry when the magnetic attraction component is extended into the iron removal chamber, when the slurry flows in the iron removal chamber along a direction parallel to the direction in which the magnetic attraction component enters and exits the iron removal chamber, the slurry can better flow to the end of the magnetic attraction component entering the iron removal chamber along direction Y, and flow to the outer peripheral surface of the magnetic attraction component around the first axis, thereby reducing the magnetic blind area of the magnetic attraction component and improving the magnetic attraction efficiency for metal impurities.
  • the iron removal chamber also has a second feed port, and the first feed port and the second feed port are respectively arranged at both ends of the iron removal chamber along the direction in which the magnetic suction part enters and exits the iron removal chamber, and any one of the first feed port and the second feed port is used for allowing slurry to enter, and the other is used for allowing slurry to flow out.
  • the flow direction of the slurry in the iron removal chamber can be made roughly parallel to the distribution direction of the first material outlet and the second material outlet, so that the adsorption blind area of the magnetic suction part can be reduced.
  • the iron removal chamber has a first opening for the magnetic attraction member to enter and exit;
  • the magnetic attraction member includes a magnetic attraction body for magnetically attracting metal impurities and a sealing member arranged on the magnetic attraction body, and the sealing member is used to seal the first opening when the magnetic attraction body enters the iron removal chamber.
  • the sealing member of the magnetic attraction member seals the first opening of the iron removal chamber, which can improve the problem of slurry in the iron removal chamber overflowing from the first opening.
  • the seal and/or the magnetic body is provided with a first lock
  • the iron removal chamber is provided with a second lock
  • the first lock can be locked with the second lock to restrict the magnetic body from moving out of the iron removal chamber
  • the first lock can also be released with the second lock Lock to allow the magnetic body to move out of the iron removal chamber.
  • the first lock buckle on the magnetic element can be locked with the second lock buckle on the iron removal chamber, thereby limiting the magnetic element main body from moving out of the iron removal chamber and limiting the seal from opening the first opening.
  • the state in which the magnetic element main body is extended into the iron removal chamber can be better maintained to maintain the magnetic attraction work of the magnetic element main body on metal impurities in the iron removal chamber.
  • the sealing state of the seal to the first opening can also be maintained, thereby improving the problem of the seal opening the first opening under the pressure of the slurry, causing the slurry to overflow.
  • the second lock buckle is provided with a lock slot, and the magnetic body can rotate around the first rotation axis so that the first lock buckle can be rotated in and limited in the lock slot or rotated out of the lock slot along the first direction; the first direction is parallel to the direction of the magnetic body entering and exiting the iron removal chamber, and is parallel to the first rotation axis.
  • the structures of the first lock buckle and the second lock buckle are very simple and easy to process.
  • the first lock buckle and the second lock buckle can be locked or unlocked, so that the operation of switching the first lock buckle and the second lock buckle between the locked state and the unlocked state is very simple and convenient, and easy to implement.
  • the iron removal mechanism further includes a second driving structure, and the second driving structure is used to drive the magnetic attraction body to move, so as to drive the first lock to lock or unlock relative to the second lock.
  • the second driving structure is used to drive the locking or unlocking between the first lock buckle and the second lock buckle, so that the automation degree of the iron removal device can be improved, and then the working efficiency of the iron removal device can be improved.
  • the iron removal chamber has a first opening for the magnetic attraction member to enter and exit, and the cleaning chamber has a second opening for the magnetic attraction member to enter and exit;
  • the iron removal mechanism also includes a third driving structure, and the iron removal device also includes a fourth driving structure; the third driving structure is used to drive the magnetic attraction component to move, so as to drive the magnetic attraction component to move between one side of the first opening and one side of the second opening; the fourth driving structure is used to drive the magnetic attraction component in and out of the iron removal chamber or in and out of the cleaning chamber.
  • the third driving structure and the fourth driving structure can alternately drive the magnetic suction member to move, thereby realizing the effect of the magnetic suction member moving between the iron removal chamber and the cleaning chamber, and can make the movement of the magnetic suction member more automated, that is, improve the automation performance of the iron removal device, which helps to improve the working efficiency of the iron removal device.
  • the iron removal device further includes a receiving tray, which can be located on one side of the first opening and one side of the second opening at the same time to receive the slurry and/or metal impurities flowing out of the magnetic attraction member.
  • the receiving plate can receive the slurry and/or metal impurities on the magnetic element when the magnetic element is moved out of the iron removal chamber and the cleaning chamber. This can improve the problem of the slurry and/or metal impurities on the magnetic element being thrown out of the iron removal device, thereby maintaining the cleanliness of the iron removal device during operation.
  • the receiving tray can move between a first position and a second position; when the receiving tray is in the first position, it is used to receive slurry and/or metal impurities, and when the receiving tray is in the second position, it can allow the magnetic suction component to enter and exit the iron removal chamber or the cleaning chamber.
  • the slurry or metal impurities flowing out of the magnetic element can be better received during the movement of the magnetic element, and the problem of interference of the receiving tray with the movement of the magnetic element can also be improved.
  • the cleaning mechanism includes multiple iron removal chambers and multiple cleaning chambers, and the iron removal chambers and the cleaning chambers are alternately distributed along the circumferential direction;
  • the iron removal mechanism includes multiple magnetic components, and each magnetic component can rotate around the second rotation axis to alternately rotate to the side of the corresponding iron removal chamber along the first direction and the side of the corresponding cleaning chamber along the first direction; the magnetic component can enter and exit the iron removal chamber or enter and exit the cleaning chamber along the first direction, and the second rotation axis is parallel to the first direction.
  • multiple cleaning chambers, multiple iron removal chambers and multiple magnetic suction parts are set up, so that the iron removal device can complete the removal of metal impurities in the slurry in multiple iron removal chambers at one time, and can also complete the cleaning work of multiple magnetic suction parts at one time, thereby improving the working efficiency of the iron removal device.
  • the iron removal chamber has a first feed port and a second feed port, either of which is used for allowing slurry to enter, and the other is used for allowing slurry to flow out;
  • the cleaning mechanism also includes a first confluence pipe and a second confluence pipe, and the first feed ports of multiple iron removal chambers are connected to the first confluence pipe, and the second feed ports of multiple iron removal chambers are connected to the second confluence pipe.
  • the slurry in multiple iron removal chambers can be converged through the first confluence pipe and the second confluence pipe, without the need for each iron removal chamber to be connected to an external device for inputting and outputting slurry through its own pipe.
  • the first conduit is annular and is disposed outside the iron removal chamber and the cleaning chamber.
  • the first confluence pipe is arranged in a ring outside multiple cleaning chambers and multiple iron removal chambers, so that the first confluence pipe, the second confluence pipe, the cleaning chamber, the iron removal chamber, etc. can be made more compact, thereby improving the structural compactness of the iron removal device to achieve a miniaturized design of the iron removal device.
  • the iron removal device further includes a pressure relief pipe connected to the iron removal chamber, and the pressure relief pipe is used for pressure relief.
  • the pressure relief pipe can achieve a pressure relief effect on the iron removal chamber, so that the pressure difference between the iron removal chamber and the external environment is not large, which is conducive to the flexible flow of slurry in the iron removal chamber, so that the magnetic suction part can magnetically attract the metal impurities in the slurry in the iron removal chamber. Based on this, the problem that the slurry is difficult to flow due to excessive pressure in the iron removal chamber, and the magnetic suction part cannot smoothly perform the magnetic attraction work of the metal impurities, can be improved.
  • the slurry can be passed into the iron removal chambers of multiple cleaning mechanisms in sequence, so as to remove metal impurities through the magnetic suction parts in sequence, thereby improving the metal impurity removal effect of the slurry.
  • an embodiment of the present application provides a slurry production system, including an iron removal device.
  • the iron removal device involved in the above embodiments is adopted, which also makes the iron removal device have higher automation performance, thereby improving the working efficiency of the iron removal device. Accordingly, the slurry making system has higher automation performance and higher working efficiency.
  • an embodiment of the present application provides a method for removing metal impurities, which is applied to an iron removal device; the method comprises the following steps:
  • the magnetic attraction member is driven from the iron removal chamber into the cleaning chamber to clean the magnetic attraction member.
  • the metal impurity removal method is applied to the iron removal device involved in the above embodiments, the metal impurity removal method can have higher automation performance and work efficiency.
  • the method further includes:
  • the magnetic attraction piece is removed from the cleaning chamber, and the metal impurities on the magnetic attraction piece are scraped off into the cleaning chamber by a scraper.
  • the magnetic element By scraping the metal impurities on the magnetic element into the cleaning chamber with a scraper, the magnetic element can be effectively cleaned, making the cleaning of the magnetic element very simple and easy to achieve. This helps to improve the cleaning efficiency of the magnetic element, thereby improving the cleaning efficiency and production capacity of the slurry.
  • FIG1 is a perspective schematic diagram of an iron removal device provided in some embodiments of the present application.
  • FIG2 is a schematic diagram of the coordination of the cleaning mechanism and the iron removal mechanism of the iron removal device provided in FIG1 ;
  • FIG3 is a top view of the cleaning mechanism of the iron removal device provided in FIG1 ;
  • FIG4 is a front view of the cleaning mechanism of the iron removal device provided in FIG1 ;
  • FIG5 is an enlarged view of point A in FIG2;
  • FIG6 is an enlarged view of point B in FIG3 ;
  • FIG7 is an enlarged view of point C in FIG4 ;
  • FIG8 is an enlarged view of point D in FIG2 ;
  • FIG9 is a cross-sectional view of the magnetic attraction member and the iron removal chamber of the iron removal device provided in FIG1 ;
  • FIG10 is a schematic diagram of the magnetic attraction member and the iron removal chamber of the iron removal device provided in FIG1 in a state where the first lock and the second lock are unlocked;
  • FIG11 is an enlarged view of point E in FIG10 ;
  • FIG12 is a schematic diagram of the magnetic attraction member and the iron removal chamber of the iron removal device provided in FIG1 in a locked state of a first lock buckle and a second lock buckle;
  • FIG13 is an enlarged view of point F in FIG12;
  • FIG14 is a partial schematic diagram of the iron removal mechanism of the iron removal device provided in FIG2 ;
  • FIG15 is a partial schematic diagram of the iron removal device provided in FIG1 when the receiving tray is located at the first position;
  • FIG16 is a partial enlarged view of FIG15 ;
  • FIG17 is a partial schematic diagram of the iron removal device provided in FIG1 when the receiving tray is located at the second position;
  • FIG18 is a partial enlarged view of FIG17
  • FIG19 is a second perspective schematic diagram of an iron removal device provided in some embodiments of the present application.
  • FIG20 is an enlarged view of point G in FIG19;
  • FIG21 is a schematic diagram of a slurry production system provided in an embodiment of the present application.
  • Figure 22 is a flow chart of the metal impurity removal method provided in an embodiment of the present application.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • plural means more than two, and unless otherwise clearly and specifically defined, “more than two” includes two. Accordingly, “multiple groups” means more than two groups, including two groups.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • the metal impurities in the slurry are removed by the magnetic attraction of the magnetic bar. After working for a long time, the magnetic bar needs to be replaced regularly or cleaned manually. Therefore, the removal of metal impurities in the slurry requires more manual intervention, which makes the degree of automation of the iron removal device used to remove metal impurities in the slurry low, and thus causes low efficiency in the removal of metal impurities in the slurry.
  • the first aspect of the embodiment of the present application provides an iron removal device, which can be moved into the iron removal chamber or the cleaning chamber through a magnetic suction member.
  • the magnetic suction member can be first moved into the iron removal chamber to allow the magnetic suction member to magnetically absorb metal impurities in the slurry in the iron removal chamber, and then the magnetic suction member can be moved from the iron removal chamber to the cleaning chamber to allow the magnetic suction member to clean in the cleaning chamber to remove the metal impurities on the magnetic suction member.
  • the magnetic suction work of the magnetic suction member on metal impurities and the cleaning work of the magnetic suction member can be alternately realized without the need to replace the magnetic suction member after the magnetic suction member has magnetically absorbed more metal impurities, that is, the replacement of the magnetic suction member is reduced, and there is no need for excessive manual intervention, so that the iron removal device has higher automation performance, thereby improving the working efficiency of the iron removal device.
  • the iron removal device provided in the embodiment of the present application is mainly used for but not limited to iron removal, that is, the iron removal device can be used to remove other metal impurities in the slurry in addition to iron in the slurry.
  • the slurry can be a slurry for making pole pieces, and of course it can also be a slurry for forming other parts of the battery, and it can even be a slurry in other fields.
  • the iron removal device provided in the embodiment of the present application can be applied to the field of battery production, and of course it can also be applied to other fields besides the battery field.
  • Figure 1 shows a schematic diagram of the iron removal device 100 provided in an embodiment of the present application
  • Figure 2 shows a schematic diagram of the coordination of the cleaning mechanism 10 and the iron removal mechanism
  • Figure 3 shows a top view of the cleaning mechanism 10
  • Figure 4 shows a front view of the cleaning mechanism 10.
  • the iron removal device 100 provided in an embodiment of the present application includes a cleaning mechanism 10 and an iron removal mechanism 20.
  • the cleaning mechanism 10 includes an iron removal chamber 11 and a cleaning chamber 12, and the iron removal chamber 11 is used for slurry to pass through.
  • the iron removal mechanism 20 includes a magnetic suction member 21, and the magnetic suction member 21 can move alternately into the iron removal chamber 11 and the cleaning chamber 12.
  • the magnetic suction member 21 can magnetically attract metal impurities in the slurry in the iron removal chamber 11, and the magnetic suction member 21 can also clean in the cleaning chamber 12.
  • both the iron removal chamber 11 and the cleaning chamber 12 are solid structures with inner cavities.
  • the magnetic member 21 can move between the iron removal chamber 11 and the cleaning chamber 12 to alternately move to the iron removal chamber 11 and the cleaning chamber 12. Specifically, the magnetic member 21 can be moved out of the inner cavity of the cleaning chamber 12 and extend into the inner cavity of the iron removal chamber 11. The magnetic member 21 can also be moved out of the inner cavity of the iron removal chamber 11 and extend into the inner cavity of the cleaning chamber 12. It can be understood that the magnetic member 21 can enter and exit the inner cavity of the iron removal chamber 11, and can also enter and exit the inner cavity of the cleaning chamber 12.
  • the direction in which the magnetic member 21 enters and exits the iron removal chamber 11 is the direction Y shown in the figure, and the direction in which the magnetic member 21 enters and exits the cleaning chamber 12 is also the direction Y shown in the figure.
  • the iron removal chamber 11 has a first opening 1101, which is connected to the inner cavity of the iron removal chamber 11, and the magnetic attraction member 21 can enter and exit the inner cavity of the iron removal chamber 11 through the first opening 1101.
  • the cleaning chamber 12 has a second opening 1201, which is connected to the inner cavity of the cleaning chamber 12, and the magnetic attraction member 21 can enter and exit the inner cavity of the cleaning chamber 12 through the second opening 1201.
  • the magnetic element 21 is a component that can magnetically attract metal. If the slurry in the iron removal chamber 11 is mixed with metal impurities, when the magnetic element 21 extends into the inner cavity of the iron removal chamber 11, the magnetic element 21 can magnetically attract the metal impurities in the slurry to achieve the removal of the metal impurities in the slurry, that is, to achieve the cleaning effect of the slurry.
  • the structure of the magnetic element 21 can be various.
  • the magnetic element 21 is a long strip structure.
  • the magnetic element 21 is arranged to extend in and out of the iron removal chamber 11. With such a configuration, the magnetic element 21 can extend into the inner cavity of the iron removal chamber 11 to a greater extent, thereby contacting more slurry, so that the metal impurities in the slurry can be magnetically attracted to a greater extent, so as to have a better cleaning effect on the slurry.
  • the magnetic element 21 is a magnetic rod.
  • the cross-section of the magnetic element 21 is circular, and can also be elliptical, triangular, or the like.
  • the cross-section of the magnetic element 21 is a cross-section of the magnetic element 21 that is perpendicular to its own length direction (extension direction).
  • the length of the magnetic element 21 itself is The length direction (extension direction) is parallel to the direction of the iron removal chamber 11 entering and exiting the iron removal chamber 11.
  • the length direction (extension direction) of the magnetic attraction member 21 is the direction Y shown in the figure.
  • the magnetic attraction member 21 can also be in other shapes besides a long strip.
  • the iron removal chamber 11 is used for the passage of slurry, specifically, the slurry can pass into the iron removal chamber 11, and can also flow out of the iron removal chamber 11. There can be multiple ways for the slurry to enter and exit the iron removal chamber 11. In some implementations, as shown in Figures 2 and 4, the iron removal chamber 11 has a first feed port 1102 and a second feed port 1103, and the first feed port 1102 and the second feed port 1103 are both connected to the inner cavity of the iron removal chamber 11, and the first feed port 1102 and the second feed port 1103 are spaced apart from the first opening 1101.
  • the first feed port 1102 is the inlet of the slurry, and the second feed port 1103 is the outlet of the slurry; or, the first feed port 1102 is the outlet of the slurry, and the second feed port 1103 is the outlet of the slurry.
  • the slurry can enter the inner cavity of the iron removal chamber 11 through any one of the first feed port 1102 and the second feed port 1103, and flow out of the iron removal chamber 11 through the other of the first feed port 1102 and the second feed port 1103.
  • the first feed port 1102 and the second feed port 1103 can be different openings.
  • the first feed port 1102 and the second feed port 1103 can also be the same opening.
  • the iron removal chamber 11 may be provided with the above-mentioned first feed port 1102, but not the above-mentioned second feed port 1103.
  • the first feed port 1102 is the inlet of the slurry, and the first opening 1101 of the iron removal chamber 11 is the outlet of the slurry; or, the first feed port 1102 is the outlet of the slurry, and the first opening 1101 of the iron removal chamber 11 is the inlet of the slurry.
  • the iron removal chamber 11 is not provided with the first feed port 1102 and the second feed port 1103. Based on this, the slurry can enter and exit the inner cavity of the iron removal chamber 11 through the first opening 1101 of the iron removal chamber 11, that is, the first opening 1101 can be used as the inlet and outlet of the slurry.
  • the magnetic member 21 can be cleaned in the cleaning chamber 12, specifically, the magnetic member 21 can remove metal impurities thereon in the cleaning chamber 12. It should be noted here that removing the metal impurities on the magnetic member 21 can facilitate the recovery of the magnetic attraction ability of the magnetic member 21, and then facilitate the magnetic member 21 to extend into the iron removal chamber 11 again to magnetically attract the metal impurities in the slurry, so that the magnetic member 21 can repeatedly remove the metal impurities, that is, can repeatedly clean the slurry.
  • the iron removal device 100 provided in the embodiment of the present application can first extend the magnetic element 21 into the iron removal chamber 11 when working, and pass the slurry into the iron removal chamber 11, so that the magnetic element 21 can magnetically attract the metal impurities in the slurry in the iron removal chamber 11, thereby achieving the effect of removing the metal impurities in the slurry. Then, the magnetic element 21 is removed from the iron removal chamber 11, and the magnetic element 21 is extended into the cleaning chamber 12, so that the magnetic element 21 is cleaned in the cleaning chamber 12, thereby removing the metal impurities on the magnetic element 21.
  • the magnetic element 21 is removed from the cleaning chamber 12, and the magnetic element 21 is extended into the iron removal chamber 11, the slurry in the iron removal chamber 11 is discharged, and new slurry is passed, so that the cleaned magnetic element 21 can remove the metal impurities from the new slurry. Then, the magnetic element 21 is removed from the iron removal chamber 11, and the magnetic element 21 is extended into the cleaning chamber 12 for cleaning work... and so on, so that the magnetic element 21 moves alternately into the iron removal chamber 11 and the cleaning chamber 12, thereby alternately removing metal impurities and cleaning the magnetic element 21.
  • the magnetic element 21 can alternately move into the iron removal chamber 11 and the cleaning chamber 12, and can alternately realize the magnetic attraction work of the magnetic element 21 on metal impurities or the cleaning work of the magnetic element 21. In this way, there is no need to replace the magnetic element 21 after the magnetic element 21 attracts more metal impurities, so that the magnetic element 21 can be inserted into the iron removal chamber 11 again.
  • the magnetic attraction work of the metal impurities can be performed again with better magnetic attraction ability, that is, the replacement process of the magnetic element 21 is reduced.
  • the iron removal device 100 can not only remove metal impurities from the slurry, but also take into account the cleaning function of the magnetic element 21.
  • the magnetic element 21 can be moved into the cleaning chamber 12 for cleaning.
  • the magnetic element 21 after the magnetic element 21 completes the cleaning work in the cleaning chamber 12, it can magnetically absorb the metal impurities with better magnetic absorption ability when it is extended into the iron removal chamber 11 again, so that the slurry in the iron removal chamber 11 can be continuously updated, so as to continuously remove metal impurities through the magnetic element 21, that is, the removal of metal impurities from the slurry can be continuously performed. In this way, it helps to improve the cleaning efficiency of the slurry, thereby increasing the production capacity of the slurry. Furthermore, the magnetic member 21 can alternately move into the iron removal chamber 11 and the cleaning chamber 12, thereby alternately realizing the magnetic attraction of the magnetic member 21 to the metal impurities or the cleaning of the magnetic member 21. The cleaning work makes the operation of the iron removal device 100 very simple, and also helps to improve the cleaning efficiency of the slurry to increase the production capacity of the slurry.
  • the slurry can be introduced into the iron removal chamber 11 after the magnetic suction member 21 moves into the iron removal chamber 11, that is, the magnetic suction member 21 first moves into the iron removal chamber 11, and the slurry is then introduced into the iron removal chamber 11.
  • the slurry can be discharged before the magnetic suction member 21 moves out of the iron removal chamber 11, or the slurry can be discharged after the magnetic suction member 21 moves out of the iron removal chamber 11 and before the magnetic suction member 21 completes the cleaning work and extends into the iron removal chamber 11 again, and even the slurry can be discharged after the magnetic suction member 21 completes the cleaning work and extends into the iron removal chamber 11 again, and then new slurry can be introduced after the magnetic suction member 21 moves into the iron removal chamber 11.
  • the slurry may also be introduced into the iron removal chamber 11 before the magnetic element 21 moves into the iron removal chamber 11, that is, the slurry is first introduced into the iron removal chamber 11, and the magnetic element 21 then moves into the iron removal chamber 11. Based on this, after the magnetic element 21 completes the magnetic attraction work on the metal impurities in the slurry in the iron removal chamber 11, the slurry may be discharged before the magnetic element 21 moves out of the iron removal chamber 11, or the slurry may be discharged after the magnetic element 21 moves out of the iron removal chamber 11 and before the magnetic element 21 completes the cleaning work and re-enters the iron removal chamber 11, and then new slurry is introduced before the magnetic element 21 moves into the iron removal chamber 11.
  • Figure 5 shows a partial enlarged view of Figure 2, specifically showing a three-dimensional view of the cleaning chamber 12 and the scraper 13
  • Figure 6 shows a partial enlarged view of Figure 3, specifically showing a top view of the cleaning chamber 12 and the scraper 13.
  • the cleaning mechanism 10 also includes a scraper 13, which is used to scrape metal impurities on the magnetic element 21 into the cleaning chamber 12.
  • the scraper 13 can move relative to the magnetic member 21 to scrape metal impurities on the magnetic member 21 into the cleaning chamber 12, thereby achieving the cleaning work of the magnetic member 21, that is, achieving the effect that the magnetic member 21 can be cleaned in the cleaning chamber 12.
  • the scraper 13 can move in various ways relative to the magnetic member 21.
  • the scraper 13 when the magnetic member 21 moves out of the cleaning chamber 12, the scraper 13 can be fixed relative to the cleaning chamber 12 along the direction in which the magnetic member 21 enters and exits the cleaning chamber 12, and abuts against the surface of the magnetic member 21, so that the metal impurities on the surface of the magnetic member 21 can be scraped into the cleaning chamber 12 by the scraper 13.
  • the scraper 13 when the magnetic member 21 extends into the cleaning chamber 12 or when the magnetic member 21 moves out of the cleaning chamber 12, the scraper 13 can move in the direction opposite to the direction in which the magnetic member 21 moves out of the cleaning chamber 12, and abuts against the surface of the magnetic member 21, so that the metal impurities on the surface of the magnetic member 21 can be scraped into the cleaning chamber 12.
  • the direction in which the magnetic element 21 enters and exits the cleaning chamber 12 is parallel to the direction Y shown in the figure.
  • the scraper 13 can scrape the metal impurities on the surface of the magnetic element 21 into the cleaning chamber 12 to clean the magnetic element 21, thereby restoring the magnetic attraction ability of the magnetic element 21, so that when the magnetic element 21 is extended into the iron removal chamber 11 again, the metal impurities can be removed again with better magnetic attraction ability.
  • the cleaning of the magnetic member 21 is realized by the scraper 13, so that the cleaning work of the magnetic member 21 is very simple and easy to realize. In this way, it is helpful to improve the cleaning efficiency of the magnetic member 21, and further improve the cleaning efficiency and production capacity of the slurry.
  • the magnetic member 21 can be cleaned by quickly extending the magnetic member 21 into the cleaning chamber 12 and moving out of the cleaning chamber 12. In this way, the magnetic member 21 does not need to stay in the cleaning chamber 12, and there is no need to spend too much extra time to clean the magnetic member 21, which can effectively improve the cleaning efficiency of the magnetic member 21, thereby improving the cleaning efficiency and production capacity of the slurry.
  • the scraper 13 includes a plurality of scraping parts 131.
  • the plurality of scraping parts 131 can move toward each other or move away from each other, and the plurality of scraping parts 131 can hold the magnetic member 21 after moving toward each other.
  • the magnetic member 21 can move relative to the scraping part 131 in the direction of entering and exiting the cleaning chamber 12, so that the scraping part 131 can scrape off metal impurities when moving out of the cleaning chamber 12.
  • each scraper 13 has two scraping parts 131, which can be more than three.
  • the scraping parts 131 can be plate-shaped or block-shaped, and the specific shape of the scraping parts 131 is not limited.
  • the plurality of scraping parts 131 move toward each other, as shown in FIG. 2 and FIG. 5 .
  • the multiple scraping parts 131 hold the magnetic member 21, so that the multiple scraping parts 131 are all against the surface of the magnetic member 21.
  • the magnetic member 21 moves out of the cleaning chamber 12, the magnetic member 21 moves relative to the scraping parts 131, so that the multiple scraping parts 131 can scrape the metal impurities on the surface of the magnetic member 21 into the cleaning chamber 12.
  • the scraping parts 131 can be fixed relative to the cleaning chamber 12 along the direction (direction Y) in which the magnetic member 21 enters and exits the cleaning chamber 12, and can also move in the direction opposite to the direction in which the magnetic member 21 moves out of the cleaning chamber 12.
  • the multiple scraping parts 131 can define a through groove 1301, which passes through the scraping part 13 along the direction in which the magnetic suction part 21 enters and exits the cleaning chamber 12.
  • the magnetic suction part 21 extends into the cleaning chamber 12
  • the magnetic suction part 21 is penetrated in the through groove 1301 along the direction in which it enters and exits the cleaning chamber 12, so that the multiple scraping parts 131 embrace the outer periphery of the magnetic suction part 21 around the first axis, so that the multiple scraping parts 131 are in contact with and abut against the outer peripheral surface of the magnetic suction part 21 around the first axis.
  • the first axis mentioned here is parallel to the direction in which the magnetic member 21 enters and exits the cleaning chamber 12, such as the direction Y shown in the figure.
  • the first axis mentioned here is the first rotation axis L1 involved in the following embodiments, specifically the axis L1 shown in Figure 8.
  • Figure 8 shows a partial enlarged view of Figure 2, specifically showing a schematic diagram of the structure of the magnetic member 21 and the iron removal chamber 11.
  • Figure 7 shows a partial enlarged view of Figure 4, specifically showing a front view of the cooperation between the scraper 13 and the cleaning chamber 12.
  • a plurality of scraping portions 131 are arranged at the second opening 1201 of the cleaning chamber 12. Before the magnetic element 21 is extended into the cleaning chamber 12, the plurality of scraping portions 131 can move backward to avoid the second opening 1201, so as to facilitate the magnetic element 21 to extend into the cleaning chamber 12. When the magnetic element 21 is extended into the cleaning chamber 12, the plurality of scraping portions 131 move toward each other and hold the magnetic element 21, and the through groove 1301 jointly defined by the plurality of scraping portions 131 is opposite to the second opening 1201 along the direction in which the magnetic element 21 enters and exits the cleaning chamber 12.
  • the multiple scraping parts 131 can first move backward to avoid the second opening 1201 of the cleaning chamber 12. Then, the magnetic member 21 extends into the cleaning chamber 12 through the second opening 1201. Subsequently, the multiple scraping parts 131 move toward each other to hold the magnetic member 21. Then, the magnetic member 21 moves out of the cleaning chamber 12 so that the multiple scraping parts 131 scrape the metal impurities on the magnetic member 21 into the cleaning chamber 12. After that, the magnetic member 21 extends into the iron removal chamber 11, and the multiple scraping parts 131 move backward so that the magnetic member 21 can move out of the iron removal chamber 11 again and extend into the cleaning chamber 12 after magnetically attracting the metal impurities in the iron removal chamber 11.
  • the multiple scrapers 131 can move in opposite directions before the magnetic member 21 is inserted into the cleaning chamber 12, and can move towards each other after the magnetic member 21 is inserted into the cleaning chamber 12 to hold the magnetic member 21, so that the movement of the multiple scrapers 131 can be very flexible, and can be set to hold the position of the magnetic member 21 without magnetic metal impurities after the magnetic member 21 is inserted into the cleaning chamber 12.
  • the multiple scrapers 131 can completely contact and resist the position of the magnetic member 21 with metal impurities, so that all the metal impurities on the magnetic member 21 can be scraped off as much as possible, thus reducing the cleaning blind area of the magnetic member 21 and improving the cleaning effect of the magnetic member 21.
  • the assembly requirements and motion control requirements for the scrapers 131 are relatively low, and there is no need to have too high requirements for the precise travel of the multiple scrapers 131 moving towards each other and moving back and forth.
  • the scraping portion 131 is located outside the cleaning chamber 12.
  • the plurality of scraping portions 131 embrace the portion of the magnetic element 21 outside the cleaning chamber 12 after moving toward each other.
  • the portion of the magnetic element 21 outside the cleaning chamber 12 can be set as the portion of the magnetic element 21 that is not used to magnetically absorb metal impurities.
  • the plurality of scraping portions 131 can completely contact and resist the position of the magnetic element 21 with metal impurities, thereby improving the cleaning rate of the magnetic element 21 and reducing the cleaning dead angle of the magnetic element 21.
  • the directions in which the scrapers 131 move toward each other and move away from each other may be perpendicular to the direction in which the magnetic element 21 enters and exits the cleaning chamber 12, so that the scrapers 131 can hold or release the magnetic element 21.
  • the directions of movement toward each other and the directions of movement away from each other of the two scraping parts 131 are both parallel to the direction X shown in the figure, and the direction X is perpendicular to the direction Y.
  • a plurality of scraping portions 131 define a through slot 1301 for holding the magnetic element 21 , a protruding structure 1311 is disposed on the inner circumference of the through slot 1301 , and the scraping portion 131 supports the magnetic element 21 via the protruding structure 1311 .
  • the through groove 1301 described in this embodiment is the same as the above-mentioned through groove 1301. Specifically, when the magnetic element 21 extends into the cleaning chamber 12, the multiple scraping portions 131 move toward each other to define the above-mentioned through groove 1301, and the magnetic element 21 is inserted into the through groove 1301 to achieve the effect of the multiple scraping portions 131 holding the magnetic element 21. At this time, the protruding structure 1311 abuts against and contacts the surface of the magnetic element 21. In the process of the magnetic element 21 moving out of the cleaning chamber 12, the protruding structure 1311 scrapes the metal impurities on the surface of the magnetic element 21 into the cleaning chamber 12, thereby achieving the cleaning of the magnetic element 21.
  • the protrusion structure 1311 may be a microstructure disposed on the scraping portion 131, and the microstructure is specifically disposed on the inner circumference of the through groove 1301.
  • the microstructure may be similar to a thread structure.
  • the protruding structure 1311 may also be a buffer structure. Specifically, the protruding structure 1311 has a certain buffering performance, for example, the protruding structure 1311 may be a rubber ring, a silicone ring, etc.
  • the cleaning mechanism 10 further includes a first driving structure 14 , and the first driving structure 14 is used to drive the plurality of scraping parts 131 to move toward each other or away from each other.
  • the first driving structure 14 refers to a component or assembly that can achieve a driving effect on the scraping portion 131 .
  • the first driving structure 14 drives the multiple scrapers 131 to move toward or away from each other, which can effectively reduce the manual intervention in the cleaning work of the magnetic member 21, improve the degree of automation of the cleaning work of the magnetic member 21 by the cleaning mechanism 10, and thus improve the working efficiency of the iron removal device 100.
  • the scraper 131 can clean the magnetic member 21 under the drive of the first driving structure 14, then when the magnetic member 21 is moved out of the iron removal chamber 11 and extends into the cleaning chamber 12, and the magnetic member 21 is moved out of the cleaning chamber 12, the iron removal device 100 can automatically clean the magnetic member 21, thereby improving the cleaning efficiency of the magnetic member 21, and then improving the working efficiency of the iron removal device 100.
  • the iron removal device 100 can also be used in conjunction with a control device.
  • the control device is electrically connected to the first drive structure 14, and the control device sends a control instruction to the first drive structure 14, and the first drive structure 14 executes the above-mentioned control instruction to drive multiple scraping parts 131 to move toward each other or move away from each other.
  • the control device refers to a device that can directly issue a control instruction and receive a signal, for example, it can be a computer that can issue a control instruction and receive data.
  • the control device sends a control instruction to the first drive structure 14 so that the first drive structure 14 drives multiple scraping parts 131 to move toward each other.
  • the first drive structure 14 sends a signal to the control device after multiple scraping parts 131 hold the magnetic suction part 21, and the control device receives the signal sent by the first drive structure 14 and stops controlling the first drive structure 14.
  • the control device and the first drive structure 14 can be connected by wired electricity or by radio. In this way, the automation of the cleaning work of the magnetic suction part 21 is improved, so that the cleaning work of the magnetic suction part 21 is very time-saving and labor-saving, which is conducive to improving the working efficiency of the iron removal device 100.
  • the first driving structure 14 includes a first driver 141 and a driving seat 142.
  • the driving seat 142 is provided with a plurality of slide grooves 1421, and the plurality of scraping parts 131 can slide along the plurality of slide grooves 1421 to move toward each other or move in opposite directions.
  • the first driver 141 is used to drive the driving seat 142 to move, so that the scraping parts 131 slide along the slide grooves 1421.
  • the plurality of scrapers 131 slide along the plurality of slide grooves 1421 one by one, thereby realizing the plurality of scrapers 131 moving toward each other or moving away from each other.
  • the plurality of slide grooves 1421 each have a first end and a second end opposite to each other, and the distance between two adjacent slide grooves 1421 gradually increases from the first end to the second end.
  • the plurality of scrapers 131 slide along the corresponding slide grooves 1421 toward the first end
  • the distance between the plurality of scraping parts 131 gradually decreases, that is, the plurality of scraping parts 131 move toward each other.
  • the plurality of scraping parts 131 slide along the corresponding slide groove 1421 toward the second end, the distance between the plurality of scraping parts 131 gradually increases, that is, the plurality of scraping parts 131 move in opposite directions.
  • the present embodiment is described by taking the case where there are two scraping portions 131. Accordingly, the number of the sliding grooves 1421 on the driving seat 142 is also two.
  • the direction in which the magnetic suction member 21 enters and exits the cleaning chamber 12 is first defined as the first direction Y, such as the direction Y shown in the figure.
  • the directions of the two scraping parts 131 moving toward each other and moving away from each other are defined as the second direction X, such as the direction X shown in the figure.
  • the scraping part 131 can move relative to the cleaning chamber 12 along the second direction X, so that the two scraping parts 131 can move toward each other or away from each other along the second direction X.
  • the scraping part 131 is fixed relative to the cleaning chamber 12 along the first direction Y, and the scraping part 131 is also fixed relative to the cleaning chamber 12 along the third direction Z.
  • the two slide grooves 1421 are spaced apart along the second direction X, and the distance between the two slide grooves 1421 along the second direction X gradually increases from the first end to the second end.
  • the third direction Z is any direction that intersects the first direction Y and the second direction X respectively.
  • the third direction Z can be the direction Z shown in Figure 6, and the third direction Z can be a straight line direction or a curved direction.
  • the driving seat 142 can move along the third direction Z, that is, the driving seat 142 moves along the direction intersecting the first direction Y and the second direction X.
  • the scraping portion 131 is fixed relative to the cleaning chamber 12 along the first direction Y and the third direction Z, and can only move along the second direction X, so the scraping portion 131 slides along the corresponding slide groove 1421, thereby realizing the two scraping portions 131 to move toward each other or move away from each other.
  • the first driver 141 refers to a component for driving the driving seat 142 to move, and the structure of the first driver 141 can be various.
  • the first driver 141 when the first driver 141 is used to drive the driving seat 142 to move in a curve, that is, when the third direction Z is a curve direction, the first driver 141 can be a rotating motor, a combined mechanism formed by a rotating motor and a transmission member, etc.
  • the first driving structure 14 further includes a turntable 143, which is disposed at the output end of the first driver 141, and the first driver 141 is used to drive the turntable 143 to rotate.
  • the driving seat 142 is disposed on the turntable 143, and can rotate synchronously with the turntable 143 when the turntable 143 rotates. In this way, when the turntable 143 rotates under the drive of the first driver 141, the driving seat 142 rotates synchronously with the turntable 143, thereby achieving the effect of curved motion, and further achieving the drive seat 142 to move in the third direction Z curved motion.
  • the rotation axis of the turntable 143 may be parallel to the first direction Y.
  • the first direction Y may also be perpendicular to the second direction X.
  • the first driver 141 can rotate by driving the turntable 143 to realize the movement of the driving seat 142 in the third direction Z, thereby realizing the toward or away movement of at least two scraping parts 131, so that the movement operation of the scraping part 131 is very stable.
  • the first driver 141 when the first driver 141 is used to drive the driving seat 142 to move linearly, that is, when the third direction Z is a linear direction, the first driver 141 can be a combined mechanism formed by a cylinder, an electric cylinder, a linear motor, a rotary motor and a screw mechanism.
  • the first driver 141 can drive the driving seat 142 to move, so that the multiple scraping parts 131 move toward each other to hold the magnetic member 21, so that in the process of the magnetic member 21 being moved out of the cleaning chamber 12, the multiple scraping parts 131 can clean the magnetic member 21.
  • the iron removal device 100 can automatically clean the magnetic member 21, thereby improving the working efficiency of the iron removal device 100.
  • the multiple scraping parts 131 can slide along the corresponding slide groove 1421, thereby achieving the motion guiding effect of the scraping part 131 and improving the motion stability of the scraping part 131, so that the multiple scraping parts 131 can flexibly move toward each other or move back to back, thereby improving the working flexibility of the iron removal device 100.
  • the scraper 131 is rotatably connected to a connecting shaft 144.
  • the connecting shaft 144 is inserted into a corresponding slide groove 1421 and can slide along the corresponding slide groove 1421. It can be understood that when the first driver 141 drives the driving seat 142 to move, the connecting shaft 144 slides along the corresponding slide groove 1421, thereby realizing the scraper 131, thereby realizing the movement of multiple scraping parts 131 toward each other or away from each other.
  • a protruding column may be provided on the scraping portion 131, and the protruding column is inserted into the corresponding slide groove 1421 and can slide along the corresponding slide groove 1421.
  • the protruding column may be arranged not to rotate relative to the scraping portion 131, that is, the scraping portion 131 and the protruding column are fixed to each other.
  • the cleaning mechanism 10 includes a plurality of cleaning chambers 12, each of which is provided with a scraper 13, that is, the cleaning mechanism 10 includes a plurality of scrapers 13, and the plurality of scrapers 13 correspond one-to-one to the plurality of cleaning chambers 12.
  • the driving seat 142 may also be provided in plurality, and the plurality of driving seats 142 correspond one-to-one to the plurality of scrapers 13.
  • multiple cleaning chambers 12 are distributed on the periphery of the turntable 143 around the rotation axis of the turntable 143, multiple drive seats 142 are all arranged on the turntable 143, and multiple drive seats 142 are circumferentially distributed on the outer peripheral edge of the turntable 143 around the rotation axis of the turntable 143, so that at least part of each drive seat 142 can be located in each cleaning chamber 12.
  • the turntable 143 rotates and drives the multiple drive seats 142 to move, thereby moving the scraping parts 131 of the multiple scrapers 13.
  • This arrangement allows the scrapers 13 at the multiple cleaning chambers 12 to move synchronously, so that when there are magnetic suction members 21 in the multiple cleaning chambers 12, the cleaning work of the magnetic suction members 21 in the multiple cleaning chambers 12 can be achieved simultaneously. In addition, this can also make the drive of the scraper 13 very simple, thereby making the overall structure of the iron removal device 100 simple.
  • the iron removal device 100 further includes a sewage pipe 40 .
  • the sewage pipe 40 is connected to the cleaning chamber 12 and is used to discharge the metal impurities in the cleaning chamber 12 .
  • the sewage discharge pipe 40 is connected to the cleaning chamber 12 and communicates with the inner cavity of the cleaning chamber 12 .
  • the metal impurities on the magnetic element 21 are removed and contained in the cleaning chamber 12.
  • the metal impurities in the cleaning chamber 12 generally refer to the metal impurities remaining in the cleaning chamber 12 after the magnetic element 21 is cleaned.
  • the metal impurities in the clean chamber 12 can be discharged through the sewage pipe 40.
  • the clean chamber 12 can have a larger space to accommodate metal impurities, and the clean chamber 12 can be repeatedly used.
  • the metal impurities in the clean chamber 12 are discharged through the sewage pipe 40, which means that the cleaning work of the clean chamber 12 is realized, so that there is no need for excessive manual intervention in the cleaning work of the clean chamber 12, and the clean chamber 12 can be repeatedly used.
  • the automation performance of the iron removal device 100 is also improved, which saves time and labor, and also improves the working efficiency of the iron removal device 100.
  • the sewage pipe 40 can be connected to the external environment or to an external waste collection device. In this way, when the metal impurities in the cleaning chamber 12 are discharged through the sewage pipe 40, they can be discharged to the external environment or to a designated location such as a waste collection device.
  • the sewage pipe 40 can be a single pipe or a plurality of pipes connected in sequence.
  • the metal impurities in the cleaning chamber 12 can be directly discharged through the sewage pipe 40 under the action of gravity.
  • the sewage pipe 40 can also be provided with a pumping device such as a pressure pump, which can pump the metal impurities in the cleaning chamber 12, so that the metal impurities in the cleaning chamber 12 are discharged through the sewage pipe 40.
  • a water supply device can be connected to the cleaning chamber 12. When it is necessary to clean the metal impurities in the cleaning chamber 12, the water supply device can supply water to the cleaning chamber 12, so that the water drives the metal impurities in the cleaning chamber 12 to be discharged through the sewage pipe 40.
  • the water can drive the metal impurities to be discharged through the sewage pipe 40 under the pumping action of the above-mentioned pumping device, or directly drive the metal impurities to be discharged through the sewage pipe 40 under the action of gravity.
  • the cleaning work of the cleaning chamber 12 can be made very simple, convenient and easy to implement, thereby being able to better improve the degree of automation of the iron removal device 100, without the need for manual intervention in the work of the cleaning chamber 12, thereby improving the working efficiency of the iron removal device 100.
  • each of the multiple cleaning chambers 12 may be connected to a separate sewage pipe 40.
  • the sewage pipe 40 may also be connected to multiple cleaning chambers 12, which can simplify the arrangement of the sewage pipe 40 and simplify the structure of the iron removal device 100.
  • Figure 9 shows a cross-sectional view of the magnetic member 21 entering the iron removal chamber 11, and the cross-sectional view is perpendicular to the direction in which the magnetic member 21 enters and exits the iron removal chamber 11.
  • the inner cavity of the iron removal chamber 11 is cylindrical, the magnetic member 21 is axial, and the difference between the diameter of the inner cavity of the iron removal chamber 11 and the diameter of the magnetic member 21 is less than 50 mm.
  • the inner cavity of the iron removal chamber 11 is cylindrical, and the magnetic member 21 is shaft-shaped. Based on this, when the magnetic member 21 enters the inner cavity of the iron removal chamber 11, on the cross section of the magnetic member 21 and the iron removal chamber 11 perpendicular to the axial direction of the magnetic member 21, the inner cavities of the magnetic member 21 and the iron removal chamber 11 are both circular, as shown in Figure 9. Among them, the diameter of the inner cavity of the iron removal chamber 11 is D1 as shown in the figure, and the diameter of the magnetic member 21 is D2 as shown in the figure.
  • the axial directions of the iron removal chamber 11 and the magnetic attraction member 21 are parallel to the direction in which the magnetic attraction member 21 enters and exits the iron removal chamber 11 .
  • the diameter of the inner cavity of the iron removal chamber 11 is greater than the diameter of the magnetic attraction member 21. Based on this, the difference between the diameter of the inner cavity of the iron removal chamber 11 and the diameter of the magnetic attraction member 21 is less than 50 mm, that is, D1-D2 is less than 50 mm, and can be specifically 40 mm, 30 mm, etc.
  • the difference between the diameter of the inner cavity of the iron removal chamber 11 and the diameter of the magnetic element 21 is within a predetermined range and is not too large.
  • the slurry in the iron removal chamber 11 is not too much, so that the magnetic element 21 can fully contact the slurry to fully magnetically absorb the metal impurities in the slurry, thereby effectively improving the cleaning effect of the magnetic element 21 on the slurry.
  • the iron removal chamber 11 has a first feed port 1102, which is located at the end of the iron removal chamber 11 along the direction in which the magnetic suction member 21 enters and exits the iron removal chamber 11, and the first feed port 1102 can allow slurry to enter.
  • the first feed port 1102 is connected to the inner cavity of the iron removal chamber 11.
  • the first feed port 1102 can be used as an inlet of the iron removal chamber 11 for the slurry to enter.
  • the slurry can enter the iron removal chamber 11 from the first feed port 1102.
  • the slurry in the iron removal chamber 11 can also flow out of the iron removal chamber 11 through the first feed port 1102.
  • the first feed port 1102 involved in this embodiment is the same as the first feed port 1102 involved in the above embodiments. For details, please refer to the above description, and no further details will be given here.
  • the direction in which the magnetic element 21 enters and exits the iron removal chamber 11 is parallel to the direction Y shown in the figure, that is, the direction in which the magnetic element 21 enters and exits the iron removal chamber 11 is roughly parallel to the direction in which the magnetic element 21 enters and exits the cleaning chamber 12.
  • the extension direction (length direction) of the magnetic element 21 is roughly parallel to the direction in which the magnetic element 21 enters and exits the iron removal chamber 11, that is, roughly parallel to the direction Y.
  • the magnetic element 21 is a magnetic rod
  • the axial direction of the magnetic rod is parallel to the direction Y.
  • the first feed port 1102 is arranged at the end of the iron removal chamber 11 along the direction in which the magnetic suction member 21 enters and exits the iron removal chamber 11.
  • the slurry flows in the iron removal chamber 11 roughly along the direction parallel to the direction in which the magnetic suction member 21 enters and exits the iron removal chamber 11, that is, the slurry flows in the iron removal chamber 11 roughly along the direction Y to fill the iron removal chamber 11.
  • the slurry in the state where the magnetic suction member 21 extends into the iron removal chamber 11, when the slurry flows in the iron removal chamber 11 along the direction (direction Y) parallel to the direction in which the magnetic suction member 21 enters and exits the iron removal chamber 11, the slurry can better flow to the end of the magnetic suction member 21 entering the iron removal chamber 11 along the direction Y, and flow to the outer peripheral surface of the magnetic suction member 21 around the first axis, so that the magnetic suction blind area of the magnetic suction member 21 can be reduced, and the magnetic suction efficiency of the metal impurities is higher.
  • the slurry flows in a direction perpendicular to the length direction of the magnetic element 21.
  • a blind spot for magnetically attracting metal impurities will appear on one side of the magnetic element 21 along the flow direction of the slurry, and the magnetic attraction of the metal impurities cannot be efficiently achieved.
  • the flow direction of the slurry is roughly parallel to the extension direction of the magnetic element 21, so that the slurry can fully contact the surface of the magnetic element 21 during the flow process, so that the magnetic element 21 can magnetically attract metal impurities at all positions in the iron removal chamber 11, reducing the adsorption blind spot of the magnetic element 21, and improving the magnetic attraction efficiency of the magnetic element 21 for metal impurities, thereby improving the efficiency of the iron removal device 100 in removing metal impurities from the slurry.
  • the iron removal chamber 11 also has a second feed port 1103, the first feed port 1102 and the second feed port 1103 are respectively arranged at the two ends of the iron removal chamber 11 along the direction of the magnetic suction part 21 entering and exiting the iron removal chamber 11, and any one of the first feed port 1102 and the second feed port 1103 is used for slurry to enter, and the other is used for slurry to flow out.
  • the slurry can enter the iron removal chamber 11 through the first feed port 1102 and flow out of the iron removal chamber 11 through the second feed port 1103. Out of the iron cavity 11.
  • the flow direction of the slurry in the iron removal chamber 11 can be roughly parallel to the distribution direction of the first feed port 1102 and the second feed port 1103, so that the adsorption blind area of the magnetic suction member 21 can be reduced, the magnetic suction efficiency of the magnetic suction member 21 for metal impurities can be improved, and the efficiency of the iron removal device 100 in removing metal impurities from the slurry can be improved.
  • first feed port 1102 and the second feed port 1103 are arranged at the two ends of the iron removal chamber 11 along the direction in which the magnetic suction member 21 enters and exits the iron removal chamber 11, the connection and assembly of the iron removal chamber 11 and the external device for outputting and inputting slurry are facilitated.
  • the iron removal chamber 11 has a first opening 1101 for the magnetic suction member 21 to enter and exit.
  • the first opening 1101 described here is the same as the first opening 1101 involved in the above-mentioned embodiments. Please refer to the above explanation for details, and the explanation will not be repeated here.
  • the magnetic suction member 21 includes a magnetic suction body 211 and a sealing member 212 provided on the magnetic suction body 211.
  • the magnetic suction body 211 is used to magnetically absorb metal impurities, and the sealing member 212 is used to seal the first opening 1101 when the magnetic suction body 211 enters the iron removal chamber 11.
  • the magnetic body 211 of the magnetic member 21 extends into the inner cavity of the iron removal chamber 11 and can magnetically attract metal impurities in the slurry in the iron removal chamber 11.
  • the sealing member 212 seals the first opening 1101 of the iron removal chamber 11.
  • the seal 212 is arranged on the outer periphery of the magnetic body 211 around the first axis.
  • the seal 212 covers the first opening 1101 to fill the gap between the outer peripheral side of the magnetic body 211 and the inner side wall of the first opening 1101, thereby sealing the first opening 1101.
  • the seal 212 can be a structural part such as a metal part or a plastic part.
  • a sealing ring can also be provided on the seal 212, and the sealing ring is arranged around the outer periphery of the magnetic body 211.
  • the sealing ring When the seal 212 seals the first opening 1101, the sealing ring is arranged around the outer periphery of the first opening 1101, and one end of the sealing ring along the axial direction abuts against the seal 212, and the other end of the sealing ring along the axial direction abuts against the iron removal chamber 11. In this way, the sealing ring can seal the gap between the seal 212 and the first opening 1101, which can improve the problem of slurry overflow.
  • the sealing ring may be, but is not limited to, a rubber ring, a silicone ring or other sealing structures.
  • the seal 212 of the magnetic element 21 seals the first opening 1101 of the iron removal chamber 11, which can improve the problem of slurry in the iron removal chamber 11 overflowing from the first opening 1101.
  • the sealing member 212 is provided with a first lock buckle 213, and the iron removal chamber 11 is provided with a second lock buckle 111.
  • the first lock buckle 213 can be locked with the second lock buckle 111 to restrict the magnetic body 211 from moving out of the iron removal chamber 11.
  • the first lock buckle 213 can also be unlocked with the second lock buckle 111 to allow the magnetic body 211 to move out of the iron removal chamber 11.
  • first lock buckle 213 and the second lock buckle 111 can be switched back and forth between a locked state and an unlocked state.
  • the magnetic attraction member 21 extends into the iron removal chamber 11
  • the first lock buckle 213 and the second lock buckle 111 can be switched to a locked state, as shown in Figures 12 and 13.
  • the magnetic attraction body 211 is difficult to move out of the iron removal chamber 11 under the locking action of the first lock buckle 213 and the second lock buckle 111, and accordingly, the sealing member 212 is also difficult to detach from the iron removal chamber 11, making it difficult to open the first opening 1101.
  • the first lock buckle 213 and the second lock buckle 111 can be switched to an unlocked state, as shown in Figures 10 and 11, at which time the magnetic attraction body 211 can be removed from the iron removal chamber 11, and accordingly, the sealing member 212 can also be detached from the iron removal chamber 11 with the magnetic attraction body 211 to open the first opening 1101.
  • the first lock buckle 213 on the magnetic element 21 can be locked with the second lock buckle 111 on the iron removal chamber 11, thereby limiting the magnetic body 211 from moving out of the iron removal chamber 11 and limiting the seal 212 from opening the first opening 1101.
  • the state in which the magnetic body 211 extends into the iron removal chamber 11 can be better maintained to maintain the magnetic attraction of metal impurities by the magnetic body 211 in the iron removal chamber 11.
  • the sealing state of the seal 212 to the first opening 1101 can be maintained, thereby improving the problem of the seal 212 opening the first opening 1101 under the pressure of the slurry, causing the slurry to overflow.
  • the first lock buckle 213 may be disposed on the magnetic body 211 , or the first lock buckle 213 may be fixed to both the magnetic body 211 and the seal 212 .
  • FIG. 8 shows a partial schematic diagram of the magnetic member 21 and the iron removal chamber 11
  • FIG. 10 shows a schematic diagram of the magnetic member 21 and the iron removal chamber 11 in the unlocked state of the first lock buckle 213 and the second lock buckle 111
  • FIG. 11 shows a partial enlarged view of FIG. 10
  • FIG. 12 shows a schematic diagram of the magnetic member 21 and the iron removal chamber 11 in the locked state of the first lock buckle 213 and the second lock buckle 111
  • FIG. 13 shows a partial enlarged view of FIG. 12.
  • the second lock buckle 111 is provided with a lock groove 1104.
  • the magnetic body 211 can rotate around the first rotation axis L1, so that the first lock buckle 213 is screwed into the lock groove 1104, and is limited in the lock groove 1104 along the first direction Y; or, the first lock buckle 213 is screwed out of the lock groove 1104.
  • the first direction Y is parallel to the direction in which the magnetic body 211 enters and exits the iron removal chamber 11, and is parallel to the first rotation axis L1.
  • the magnetic body 211 can be driven to rotate around the first rotation axis L1, so that the first lock buckle 213 is driven by the magnetic body 211 to rotate in the lock groove 1104 of the second lock buckle 111, so that the first lock buckle 213 is limited in the lock groove 1104 along the first direction Y, thereby realizing the locking of the first lock buckle 213 and the second lock buckle 111, as shown in Figures 12 and 13.
  • the first lock buckle 213 is limited between the two sides of the lock slot 1104 along the first direction Y, so that the first lock buckle 213 cannot move relative to the second lock buckle 111 along the first direction Y.
  • the magnetic body 211 and the seal 212 cannot move relative to the iron removal chamber 11 along the first direction Y, and the magnetic body 211 cannot move out of the iron removal chamber 11 along the first direction Y, so that the state of the magnetic body 211 in the iron removal chamber 11 and the state of the seal 212 sealing the first opening 1101 can be maintained.
  • the magnetic body 211 can be driven to rotate around the first rotation axis L1 to disengage the first lock buckle 213 from the lock slot 1104, thereby realizing the unlocking of the first lock buckle 213 and the second lock buckle 111, as shown in Figures 10 and 11, and the magnetic member 21 can be moved out of the iron removal chamber 11 at this time.
  • the first lock buckle 213 can be limited only by the lock groove 1104 on both sides along the first direction Y, so as to realize the locking of the first lock buckle 213 and the second lock buckle 111.
  • the second lock buckle 111 it is only necessary to set the second lock buckle 111 to have a structure with a lock groove 1104, and the lock groove 1104 can limit the first lock buckle 213 on both sides along the first direction Y.
  • the first lock buckle 213 it is only necessary to enable the first lock buckle 213 to enter the lock groove 1104. In this way, the structure of the first lock buckle 213 and the second lock buckle 111 is very simple and easy to process.
  • the locking or unlocking between the first lock buckle 213 and the second lock buckle 111 can be realized, so that the operation of switching between the locked state and the unlocked state of the first lock buckle 213 and the second lock buckle 111 is very simple and convenient, and easy to realize.
  • Figure 14 shows a schematic diagram of the cooperation between the second drive structure 22 and the third drive structure 23.
  • the iron removal mechanism 20 also includes a second drive structure 22, which is used to drive the magnetic body 211 to move, so as to drive the first lock 213 to lock or unlock relative to the second lock 111.
  • the second drive structure 22 when the magnetic body 211 realizes the locking or unlocking of the first lock buckle 213 and the second lock buckle 111 by rotating, the second drive structure 22 is a component or assembly for driving the magnetic body 211 to rotate.
  • the second drive structure 22 can be a rotating motor, a combined mechanism formed by a rotating motor and a transmission member, etc.
  • the second drive structure 22 includes a second driver 221, a rack 223 and a gear 222, the gear 222 is connected to the magnetic body 211, the rack 223 is connected to the output end of the second driver 221, and the rack 223 and the gear 222 are meshed.
  • the second driver 221 can be a driver for outputting linear motion, such as a cylinder or an electric cylinder.
  • the second driver 221 drives the rack 223 to move linearly, so that the rack 223 and the gear 222 are meshed and move, and then the gear 222 rotates around the first rotation axis L1.
  • the magnetic body 211 can rotate around the first rotation axis L1 driven by the gear 222, so that the first lock 213 on the magnetic member 21 is locked relative to the second lock 111 or unlocked relative to the second lock 111.
  • the second drive structure 22 can be a linear motor, a cylinder, an electric cylinder, a combined mechanism formed by a rotary motor and a screw mechanism, etc.
  • the second driving structure 22 is used to drive the locking or unlocking between the first lock buckle 213 and the second lock buckle 111, so that the automation degree of the iron removal device 100 can be improved, and then the working efficiency of the iron removal device 100 can be improved.
  • the second driving structure 22 can also be electrically connected to the above-mentioned control device, so that The control device sends a control instruction to control the second driving structure 22, so that the second driving structure 22 drives the first lock buckle 213 and the second lock buckle 111 to lock or unlock, and the degree of automation is high.
  • Figure 15 shows a partial schematic diagram of the iron removal device 100 when the receiving tray 60 is located in the first position below
  • Figure 16 is a partial enlarged view of Figure 15
  • Figure 17 shows a partial schematic diagram of the iron removal device 100 when the receiving tray 60 is located in the second position below
  • Figure 18 is a partial enlarged view of Figure 17.
  • the iron removal chamber 11 has a first opening 1101 for the magnetic suction member 21 to enter and exit
  • the cleaning chamber 12 has a second opening 1201 for the magnetic suction member 21 to enter and exit.
  • the first opening 1101 and the second opening 1201 described in this embodiment are the same as the first opening 1101 and the second opening 1201 involved in the above embodiments, and will not be repeated here.
  • the iron removal mechanism 20 also includes a third driving structure 23, and the iron removal device 100 also includes a fourth driving structure 30.
  • the third driving structure 23 is used to drive the magnetic suction member 21 to move, so as to drive the magnetic suction member 21 to move between one side of the first opening 1101 and one side of the second opening 1201.
  • the fourth driving structure 30 is used to drive the magnetic attraction member 21 to enter and exit the iron removal chamber 11 or the cleaning chamber 12 .
  • the third driving structure 23 is used to drive the magnetic member 21 to move between one side of the first opening 1101 along the first direction Y and one side of the second opening 1201 along the first direction Y, that is, the third driving structure 23 can drive the magnetic member 21 from one side of the first opening 1101 along the first direction Y to one side of the second opening 1201 along the first direction Y, and can also drive the magnetic member 21 from one side of the second opening 1201 along the first direction Y to one side of the first opening 1101 along the first direction Y.
  • the fourth driving structure 30 is used to drive the magnetic member 21 to move along the first direction Y, so that the magnetic member 21 enters and exits the iron removal chamber 11 or enters and exits the cleaning chamber 12.
  • the magnetic member 21 can be first placed on one side of the first opening 1101 along the first direction Y, and the magnetic member 21 can be driven to move along the first direction Y by the fourth driving structure 30, so that the magnetic member 21 extends into the iron removal chamber 11 through the first opening 1101 along the first direction Y.
  • the magnetic member 21 is driven to move along the first direction Y by the fourth driving structure 30, so that the magnetic member 21 moves out of the iron removal chamber 11 along the first direction Y and moves to the side of the first opening 1101 along the first direction Y.
  • the magnetic member 21 is driven from one side of the first opening 1101 along the first direction Y to one side of the second opening 1201 along the first direction Y by the third driving structure 23. Then, the magnetic member 21 is driven to move along the first direction Y by the fourth driving structure 30, so that the magnetic member 21 extends into the cleaning chamber 12 along the first direction Y through the second opening 1201 for cleaning.
  • the fourth driving structure 30 drives the magnetic component 21 to move out of the cleaning chamber 12 along the first direction Y to drive the magnetic component 21 to move to the side of the second opening 1201 along the first direction Y
  • the third driving structure 23 drives the magnetic component 21 from the side of the second opening 1201 along the first direction Y to the side of the first opening 1101 along the first direction Y
  • the fourth driving structure 30 drives the magnetic component 21 to move along the first direction Y, so that the magnetic component 21 extends into the iron removal chamber 11 along the first direction Y to magnetically attract metal impurities... and so on
  • the third driving structure 23 and the fourth driving structure 30 work alternately, thereby realizing the movement of the magnetic component 21 between the iron removal chamber 11 and the cleaning chamber 12.
  • the fourth driving structure 30 is used to drive the magnetic attraction part 21 to move along the first direction Y, that is, to drive the magnetic attraction part 21 to move linearly.
  • the fourth driving structure 30 can be a cylinder, an electric cylinder, a combined mechanism formed by a rotating motor and a screw mechanism, etc., which is a component or assembly for outputting linear driving force.
  • the third driving structure 23 is used to drive the magnetic member 21 to rotate around the second rotation axis L2, as shown in FIG2, so as to drive the magnetic member 21 between one side of the first opening 1101 along the first direction Y and one side of the second opening 1201 along the first direction Y.
  • the third driving structure 23 can be a component or assembly such as a rotating motor, a combined mechanism formed by a rotating motor and a transmission member, and a combined mechanism formed by a rotating motor and a reducer.
  • the second rotation axis L2 is parallel to the first direction Y and also parallel to the first rotation axis L1.
  • the iron removal mechanism 20 also includes a mounting seat 24, which is connected to the output end of the third driving structure 23 and can rotate around the second rotation axis L2 under the drive of the third driving structure 23.
  • the magnetic member 21 is connected to the output end of the second driving structure 22, and the second driving structure 22 is arranged on the mounting seat 24, and can rotate around the second rotation axis L2 together with the mounting seat 24 under the drive of the third driving structure 23.
  • the third driving structure 23 is used to drive the magnetic member 21 to move linearly, so as to drive the magnetic member 21 between one side of the first opening 1101 along the first direction Y and one side of the second opening 1201 along the first direction Y.
  • the third driving structure 23 can be a component or assembly for outputting a linear driving force, such as a linear motor, an electric cylinder, or a pneumatic cylinder.
  • the third driving structure 23 and the fourth driving structure 30 can alternately drive the magnetic suction member 21 to move, thereby realizing the effect of the magnetic suction member 21 moving between the iron removal chamber 11 and the cleaning chamber 12, and can make the movement of the magnetic suction member 21 more automated, that is, improve the automation performance of the iron removal device 100, so as to help improve the working efficiency of the iron removal device 100.
  • the third driving structure 23 and the fourth driving structure 30 can be electrically connected to the control device to drive the magnetic attraction member 21 under the control of the control device, so that the automatic movement of the magnetic attraction member 21 can be achieved.
  • the iron removal device 100 provided in the embodiment of the present application can automatically realize the magnetic attraction of the metal impurities in the slurry by the magnetic attraction component 21 in the iron removal chamber 11, and can also automatically realize the cleaning of the magnetic attraction component 21 in the cleaning chamber 12, so that the iron removal device 100 has a higher automation performance, which helps to improve the working efficiency of the iron removal device 100.
  • the iron removal device 100 also includes a receiving tray 60.
  • the receiving tray 60 can be located on one side of the first opening 1101 and one side of the second opening 1201 at the same time to receive the slurry or metal impurities flowing out of the magnetic suction member 21.
  • the receiving tray 60 may be located on one side of the first opening 1101 along the first direction Y, and on one side of the second opening 1201 along the first direction Y, and the receiving tray 60 is also located between the iron removal chamber 11 and the magnetic member 21 along the first direction Y, and is also located between the cleaning chamber 12 and the magnetic member 21 along the first direction Y.
  • the first direction Y is parallel to the up and down directions shown in the figure, and at this time, the magnetic member 21 is located above the cleaning chamber 12, that is, on one side of the second opening 1201 along the first direction Y.
  • the receiving tray 60 is located below the magnetic member 21, and above the first opening 1101 and the second opening 1201. In this way, when the slurry and/or metal impurities on the magnetic component 21 flow down, the receiving tray 60 can receive the slurry and/or metal impurities.
  • the magnetic component 21 moves between one side of the first opening 1101 and one side of the second opening 1201, if the slurry and/or metal impurities on the magnetic component 21 are thrown out under the eccentricity, they can also be received by the receiving tray 60.
  • the receiving plate 60 can receive the slurry and/or metal impurities on the magnetic component 21 when the magnetic component 21 is moved out of the iron removal chamber 11 and the cleaning chamber 12. This can improve the problem of the slurry and/or metal impurities on the magnetic component 21 being thrown out of the iron removal device 100, thereby maintaining the cleanliness of the iron removal device 100 during operation.
  • the receiving tray 60 can move between a first position and a second position.
  • the receiving tray 60 is used to receive slurry and/or metal impurities when it is in the first position.
  • the receiving tray 60 can allow the magnetic suction component 21 to enter and exit the iron removal chamber 11 or the cleaning chamber 12 when it is in the second position.
  • the receiving tray 60 can move to the first position, as shown in Figures 15 and 16, at which time the receiving tray 60 is simultaneously located on one side of the first opening 1101 along the first direction Y and on one side of the second opening 1201 along the first direction Y, and the receiving tray 60 is also simultaneously located between the iron removal chamber 11 and the magnetic element 21 along the first direction Y and between the cleaning chamber 12 and the magnetic element 21 along the first direction Y.
  • one side of the receiving tray 60 along the first direction Y is simultaneously opposite to the first opening 1101 and the second opening 1201, and the other side of the receiving tray 60 along the first direction Y is opposite to the magnetic element 21.
  • the receiving tray 60 can be used to receive slurry and/or metal impurities flowing out of the magnetic element 21. It should be noted that at this time, the receiving tray 60 blocks the first opening 1101 and the second opening 1201, as shown in Figures 15 and 16, and the magnetic attraction member 21 is difficult to extend into the iron removal chamber 11 or the cleaning chamber 12. It can be understood that the first position refers to one side of the first opening 1101 along the first direction Y and one side of the second opening 1201 along the first direction Y, and is directly opposite to the first opening 1101 and the second opening 1201.
  • the receiving tray 60 When the receiving tray 60 moves to the second position, as shown in FIGS. 17 and 18 , the receiving tray 60 avoids the first opening 1101 and the second opening 1201, and the magnetic attraction member 21 can smoothly enter and exit the iron removal chamber 11 or the cleaning chamber 12.
  • the receiving tray 60 may also be located on one side of the first opening 1101 along the first direction Y and on one side of the second opening 1201 along the first direction Y, but the receiving tray 60 is not directly opposite to the first opening 1101 and the second opening 1201 along the first direction Y, that is, the receiving tray 60 avoids the first opening 1101 and the second opening 1201.
  • the receiving tray 60 may not be located on one side of the first opening 1101 along the first direction Y and on one side of the second opening 1201 along the first direction Y.
  • the receiving tray 60 can move between the first position and the second position. Specifically, the receiving tray 60 can move to the first position after the magnetic element 21 is moved out of the iron removal chamber 11 or the cleaning chamber 12, so as to receive the slurry and/or metal impurities flowing out of the magnetic element 21.
  • the receiving tray 60 can also move to the second position when the magnetic element 21 needs to be extended into the iron removal chamber 11 or the cleaning chamber 12, so as to avoid the first opening 1101 and the second opening 1201, so as to facilitate the magnetic element 21 to extend into the iron removal chamber 11 or the cleaning chamber 12.
  • the slurry or metal impurities flowing out of the magnetic element 21 can be better received during the movement of the magnetic element 21, and the problem of interference of the receiving tray 60 with the movement of the magnetic element 21 can also be improved.
  • the iron removal device 100 also includes a slide rail 70.
  • the receiving tray 60 can slide along the slide rail 70 to switch between the first position and the second position, thereby improving the movement flexibility and efficiency of the receiving tray 60.
  • the cleaning mechanism 10 includes a plurality of iron removal chambers 11 and a plurality of cleaning chambers 12, and each iron removal chamber 11 and each cleaning chamber 12 are alternately distributed along the circumferential direction.
  • the iron removal mechanism 20 includes a plurality of magnetic suction members 21, and a plurality of magnetic suction members 21 are spaced apart along the circumferential direction.
  • each magnetic suction member 21 can rotate around the second rotation axis L2 to alternately rotate to one side of the corresponding iron removal chamber 11 along the first direction Y and one side of the corresponding cleaning chamber 12 along the first direction Y.
  • the magnetic suction member 21 can enter and exit the iron removal chamber 11 along the first direction Y, and can also enter and exit the cleaning chamber 12 along the first direction Y.
  • the second rotation axis L2 is parallel to the first direction Y, and is parallel to the direction in which the magnetic suction member 21 enters and exits the iron removal chamber 11, and the direction in which the magnetic suction member 21 enters and exits the cleaning chamber 12.
  • the second rotation axis L2 mentioned here is the same as the second rotation axis L2 involved in the above embodiments.
  • each iron removal chamber 11 and each cleaning chamber 12 are alternately distributed along the circumferential direction” and “multiple magnetic suction components 21 are spaced apart along the circumferential direction” are both perpendicular to the second rotation axis L2 and perpendicular to the first direction Y.
  • the number of iron removal chambers 11 is the same as the number of cleaning chambers 12.
  • the number of magnetic suction members 21 is the same as the number of iron removal chambers 11, and multiple magnetic suction members 21 are arranged in a one-to-one correspondence with multiple iron removal chambers 11.
  • the number of cleaning chambers 12 is also the same as the number of magnetic suction members 21, and multiple magnetic suction members 21 are arranged in a one-to-one correspondence with multiple cleaning chambers 12.
  • multiple magnetic suction members 21 can be extended into multiple iron removal chambers 11 one by one, so that multiple magnetic suction members 21 can magnetically absorb metal impurities in the corresponding iron removal chambers 11. After the magnetic suction member 21 completes the magnetic suction work on the metal impurities, the multiple magnetic suction members 21 can be moved out of the multiple iron removal chambers 11 one by one, and extend into the multiple cleaning chambers 12 one by one, so as to achieve the cleaning of the magnetic suction member 21.
  • the setting of multiple cleaning chambers 12, multiple iron removal chambers 11 and multiple magnetic suction members 21 enables the iron removal device 100 to complete the metal impurity removal work of the slurry in multiple iron removal chambers 11 at one time, and can also complete the cleaning work of multiple magnetic suction members 21 at one time, so that the working efficiency of the iron removal device 100 can be improved.
  • Figure 19 shows a three-dimensional schematic diagram of the iron removal device 100 provided in some embodiments of the present application at another perspective
  • Figure 20 shows a partial enlarged view of Figure 19.
  • the iron removal chamber 11 has a first feed port 1102 and a second feed port 1103, any one of the first feed port 1102 and the second feed port 1103 is used for the slurry to enter, and the other is used for the slurry to flow out.
  • the cleaning mechanism 10 also includes a first confluence pipe 15 and a second confluence pipe 16, and the first feed ports 1102 of multiple iron removal chambers 11 are connected to the first confluence pipe 15, and the second feed ports 1103 of multiple iron removal chambers 11 are connected to the second confluence pipe 16.
  • the first confluence pipe 15 is connected to the inner cavity of multiple iron removal chambers 11 through the first feed port 1102, and the second confluence pipe 16 is connected to the inner cavity of multiple iron removal chambers 11 through the second feed port 1103.
  • the external slurry can first enter the first confluence pipe 15, and then enter the corresponding iron removal chamber 11 through the first feed port 1102 of the multiple iron removal chambers 11 respectively.
  • the magnetic suction member 21 completes the removal of metal impurities from the slurry in the iron removal chamber 11 flows out to the second confluence pipe 16 through the corresponding second feed port 1103, and finally flows out to the designated position.
  • the external slurry can first enter the second confluence pipe 16, and then enter the corresponding iron removal chamber 11 through the second feed port 1103 of the multiple iron removal chambers 11 respectively.
  • the magnetic element 21 completes the removal of metal impurities from the slurry in the iron removal chamber 11
  • the slurry in each iron removal chamber 11 flows out through the corresponding first feed port 1102 into the first conduit 15, and finally flows out to a designated location.
  • the slurry first converges in the first confluence pipe 15 and then flows into the multiple iron removal chambers 11 respectively. After the slurry in the iron removal chamber 11 completes the work of removing metal impurities, the slurries in the multiple iron removal chambers 11 first converge into the second confluence pipe 16, and then flow out to the designated location. Conversely, the slurry may also first converge into the second confluence pipe 16, and then flow into the multiple iron removal chambers 11 respectively. After the slurry in the iron removal chamber 11 completes the work of removing metal impurities, the slurries in the multiple iron removal chambers 11 first converge into the first confluence pipe 15, and then flow out to the designated location.
  • the slurry in multiple iron removal chambers 11 is converged through the first converging pipe 15 and the second converging pipe 16, without each iron removal chamber 11 being connected to an external device for inputting and outputting slurry through its own pipe, thus simplifying the pipe design for the slurry flow in the iron removal chamber 11, and further simplifying the iron removal device 100.
  • the converging effect of the first converging pipe 15 and the second converging pipe 16 allows the slurry to quickly enter the multiple iron removal chambers 11, and the slurry in the multiple iron removal chambers 11 can also quickly flow out, thereby helping to improve the metal impurity removal effect of the slurry.
  • the first confluence pipe 15 is annular and is disposed outside the plurality of iron removal chambers 11 and cleaning chambers 12 .
  • the first confluence pipe 15 is arranged in a ring around multiple cleaning chambers 12 and multiple iron removal chambers 11, so that the first confluence pipe 15, the second confluence pipe 16, the cleaning chamber 12, the iron removal chamber 11, etc. can be made more compact, thereby improving the structural compactness of the iron removal device 100 to achieve a miniaturized design of the iron removal device 100.
  • the iron removal device 100 further includes a pressure relief pipe 50, and the pressure relief pipe 50 is connected to the iron removal chamber 11 and is used for pressure relief.
  • the pressure relief pipe 50 may be a single pipe, or may be formed by connecting a plurality of pipes in sequence.
  • the pressure relief pipe 50 is connected to the iron removal chamber 11 and communicated with the inner cavity of the iron removal chamber 11, and the pressure relief pipe 50 can also communicate with the external environment. In this way, the gas in the iron removal chamber 11 can be discharged to the external environment through the pressure relief pipe 50, so that there is a small pressure difference between the inner cavity of the iron removal chamber 11 and the external environment.
  • the pressure relief pipe 50 can achieve a pressure relief effect on the iron removal chamber 11, so that the pressure difference between the iron removal chamber 11 and the external environment is not large, which is conducive to the flexible flow of slurry in the iron removal chamber 11, so that the magnetic suction member 21 can magnetically attract the metal impurities in the slurry in the iron removal chamber 11. Based on this, the problem that the slurry is difficult to flow due to excessive pressure in the iron removal chamber 11, and the magnetic suction member 21 cannot smoothly perform the magnetic attraction of metal impurities, can be improved.
  • each iron removal chamber 11 can be connected to a separate pressure relief pipe 50 for separate pressure relief.
  • the pressure relief pipe 50 can also be connected to multiple iron removal chambers 11 at the same time to relieve pressure on multiple iron removal chambers 11 at the same time, which simplifies the arrangement of the pressure relief pipe 50 in the iron removal device 100 and simplifies the structure of the iron removal device 100.
  • FIG. 1 and FIG. 2 there are multiple cleaning mechanisms 10, and the iron removal chambers 11 of the multiple cleaning mechanisms 10 are connected in sequence.
  • the slurry when the slurry is passed into the iron removal device 100, the slurry can first pass into the iron removal chamber 11 of the first cleaning mechanism 10, and pass through the magnetic attraction of metal impurities by the magnetic attraction part 21, and then pass into the iron removal chamber 11 of the second cleaning mechanism 10, and pass through the magnetic attraction of metal impurities by the magnetic attraction part 21... and so on, the slurry finally passes through the iron removal chamber 11 of the last cleaning mechanism 10, and passes through the magnetic attraction of metal impurities by the magnetic attraction part 21, and then flows out of the iron removal device 100.
  • the slurry can be sequentially passed into the iron removal chambers 11 of multiple cleaning mechanisms 10 to sequentially remove metal impurities through the magnetic suction parts 21, thereby improving the metal impurity removal effect of the slurry.
  • the number of the iron removal mechanisms 20 may also be multiple, and the multiple cleaning mechanisms 10 and the multiple iron removal mechanisms 20 are arranged one by one, and the magnetic attraction member 21 of each iron removal mechanism 20 is used to magnetically attract the metal impurities in the iron removal chamber 11 on each cleaning mechanism 10.
  • the magnetic attraction members 21 of the multiple iron removal mechanisms 20 can correspond to the metal impurities in the iron removal chamber 11 of the multiple cleaning mechanisms 10, thereby improving the cleaning efficiency of the slurry.
  • the fourth driving structure 30 can drive the second driving structure 22, the third driving structure 23 and the magnetic attraction member 21 of multiple iron removal mechanisms 20 to move along the first direction Y at the same time.
  • Figure 21 shows a schematic diagram of the coordination of the slurry making equipment 200 and the iron removal device 100.
  • a slurry making system is provided.
  • the slurry making system includes the iron removal device 100.
  • the slurry making system also includes a slurry making device 200, and the slurry making device 200 is used to make output slurry.
  • the iron removal chamber 11 of the iron removal device 100 is connected to the second feed port 1103 of the slurry making device 200. Based on this, during the operation of the slurry making system, the slurry making device 200 makes output slurry and transports the slurry to the iron removal chamber 11 of the iron removal device 100.
  • the magnetic suction member 21 of the iron removal device 100 magnetically attracts the metal impurities in the slurry passed into the iron removal chamber 11 to clean the slurry, and transports the slurry from the iron removal chamber 11 to the preset station.
  • the preset station can be a station for making a pole piece.
  • the iron removal device 100 involved in the above embodiments since the iron removal device 100 involved in the above embodiments is adopted, there is no need to replace the magnetic element 21 after the magnetic element 21 magnetically absorbs more metal impurities, so that the magnetic element 21 can be inserted into the iron removal chamber 11 again to magnetically absorb metal impurities with better magnetic absorption ability, that is, the replacement of the magnetic element 21 is reduced. In addition, there is no need for excessive manual intervention in the magnetic absorption work and cleaning work of the magnetic element 21, which saves manpower. Therefore, the iron removal device 100 has a higher automation performance, thereby improving the working efficiency of the iron removal device 100. Accordingly, the slurry preparation system has a higher automation performance and a higher working efficiency.
  • Figure 22 shows a flow chart of the metal impurity removal method.
  • the third aspect of the embodiment of the present application provides a metal impurity removal method, which is applied to the iron removal device 100 involved in each of the above embodiments.
  • the metal impurity removal method includes the following steps:
  • the magnetic element 21 when the slurry is introduced into the iron removal chamber 11 , the magnetic element 21 can magnetically attract the metal impurities in the slurry through its magnetic attraction performance, thereby achieving the cleaning of the slurry in the iron removal chamber 11 .
  • the magnetic suction component 21 After the magnetic suction component 21 completes the cleaning work of the slurry in the iron removal chamber 11, the magnetic suction component 21 is removed from the iron removal chamber 11, and then the magnetic suction component 21 is extended into the cleaning chamber 12 for cleaning. In this way, the magnetic suction component 21 can continuously maintain a high magnetic suction ability to continuously perform magnetic suction work on the metal impurities in the slurry passed into the iron removal chamber 11.
  • the magnetic suction member 21 can be moved into the iron removal chamber 11 or the cleaning chamber 12, and the magnetic suction work of the magnetic suction member 21 on the metal impurities or the cleaning work of the magnetic suction member 21 can be alternately realized. In this way, there is no need to replace the magnetic suction member 21 after the magnetic suction member 21 has magnetically attracted more metal impurities, so that the magnetic suction member 21 can be inserted into the iron removal chamber 11 again.
  • the magnetic suction work of the metal impurities can be performed again with better magnetic suction ability, that is, the replacement of the magnetic suction member 21 is reduced.
  • the iron removal device 100 has a higher automation performance, thereby improving the working efficiency of the iron removal device 100. Accordingly, the method for removing metal impurities can have a higher automation performance and work efficiency.
  • step S20 the following steps are also included:
  • the scraper 13 scrapes the metal impurities on the magnetic member 21 into the cleaning chamber 12, which can effectively clean the magnetic member 21, making the cleaning of the magnetic member 21 very simple and easy to achieve. In this way, it is helpful to improve the cleaning efficiency of the magnetic member 21, and further improve the cleaning efficiency and production capacity of the slurry.
  • the iron removal device 100 includes a plurality of cleaning mechanisms 10 and a plurality of iron removal mechanisms 20, and the plurality of cleaning mechanisms 10 and the plurality of iron removal mechanisms 20 are arranged one by one.
  • Each cleaning mechanism 10 includes a plurality of iron removal chambers 11 and a plurality of cleaning chambers 12, and the iron removal chambers 11 and the cleaning chambers 12 of each cleaning mechanism 10 are alternately distributed in sequence along the circumferential direction.
  • Each iron removal mechanism 20 includes a plurality of magnetic suction members 21, and the plurality of magnetic suction members 21 of each iron removal mechanism 20 are distributed in sequence along the circumferential direction.
  • the iron removal chambers 11 of the plurality of cleaning mechanisms 10 are connected in sequence.
  • the multiple magnetic suction members 21 of each iron removal mechanism 20 extend into the multiple iron removal chambers 11 of the corresponding cleaning mechanism 10 one by one, and the slurry passes through the iron removal chambers 11 of the multiple cleaning mechanisms 10 in turn, and obtains multiple The metal impurity removal work of the iron removal mechanism 20. Then, the magnetic attraction member 21 of each iron removal mechanism 20 moves out of the corresponding iron removal chamber 11 and extends into the corresponding cleaning chamber 12 for cleaning. Subsequently, the magnetic attraction member 21 of each iron removal mechanism 20 moves out of the corresponding cleaning chamber 12 and then extends into the corresponding iron removal chamber 11, and the slurry is replaced, thereby achieving the metal impurity removal work of the next batch of slurry.

Landscapes

  • Cleaning In General (AREA)

Abstract

一种除铁装置(100)、浆料制作系统及金属杂质去除方法,浆料制作系统包括除铁装置(100),除铁装置(100)包括清洁机构(10)和除铁机构(20),清洁机构(10)包括除铁腔(11)和清洁腔(12),除铁腔(11)用于供浆料通过;除铁机构(20)包括可交替地运动至除铁腔(11)内和清洁腔(12)内的磁吸件(21),磁吸件(21)能够在除铁腔(11)内磁吸浆料中的金属杂质,还能够在清洁腔(12)内进行清洁。金属杂质去除方法包括驱动磁吸件(21)进入除铁腔(11)内,并在除铁腔(11)中通入浆料;将磁吸件(21)从除铁腔(11)驱动至清洁腔(12)内,以对磁吸件(21)清洁。

Description

除铁装置、浆料制作系统及金属杂质去除方法 技术领域
本申请涉及自动化设备技术领域,具体涉及一种除铁装置、浆料制作系统及金属杂质去除方法。
背景技术
在电池的生产工艺中,通常需要制作浆料,并通过浆料制作形成电池的极片或电池的其他零部件。在浆料制作完成后,一般需要去除浆料内的铁等金属杂质,以提高浆料的纯度和质量。
在一些情况下,浆料内的金属杂质通过磁棒的磁吸作用去除。磁棒在长时间工作后,需要进行定期更换或者通过人工进行清洁,如此使得用于去除浆料内的金属杂质的除铁装置的自动化程度较低,进而致使工作效率低下。
技术问题
鉴于上述问题,本申请实施例的目的在于:提供一种除铁装置、浆料制作系统及金属杂质去除方法,能够改善自动化程度低、工作效率低下的技术问题。
技术解决方案
本申请实施例采用的技术方案是:
第一方面,本申请实施例提供了一种除铁装置,包括:
清洁机构,包括除铁腔和清洁腔,除铁腔用于供浆料通过;
除铁机构,包括可交替地运动至除铁腔内和清洁腔内的磁吸件,磁吸件能够在除铁腔内磁吸浆料中的金属杂质,还能够在清洁腔内进行清洁。
通过采用上述技术方案,以使磁吸件可交替运动至除铁腔内和清洁腔内。这样,工作时,可先将磁吸件运动至除铁腔内,以使磁吸件磁吸除铁腔内的浆料中的金属杂质,然后将磁吸件从除铁腔运动至清洁腔内,以使磁吸件在清洁腔内进行清洁,以去除磁吸件上的金属杂质。如此可交替地实现磁吸件对金属杂质的磁吸工作和磁吸件的清洁工作,而无需在磁吸件磁吸较多金属杂质后进行磁吸件的更换,即减少了磁吸件的更换,也无需人工过多干预,从而使得除铁装置具有较高的自动化性能,进而提高了除铁装置的工作效率。
在一些实施例中,清洁机构还包括刮件,刮件用于将磁吸件上的金属杂质刮下至清洁腔中。
通过采用上述技术方案,通过刮件实现对磁吸件的清洁,使得磁吸件的清洁工作十分简单,易于实现。这样,有助于提高磁吸件的清洁效率,进而能够提高浆料的清洁效率和产能。
在一些实施例中,刮件包括多个刮部;多个刮部能够相向运动,以抱住磁吸件;磁吸件能够沿进出清洁腔的方向运动,以在移出清洁腔时供刮部刮下金属杂质;多个刮部还能够背向运动。
通过采用上述技术方案,在多个刮部抱住磁吸件,且磁吸件移出清洁腔的过程中,多个刮部可完整地接触并抵持于磁吸件具有金属杂质的位置,从而能够尽可能地将磁吸件上的金属杂质全部刮下,如此减小了磁吸件的清洁盲区,提高了对磁吸件的清洁效果。并且,对于刮部的装配要求、运动控制要求较低,无需过高要求地精确多个刮部相向运动和背向运动的行程。在磁吸件伸入清洁腔内后,仅需控制多个刮部相向运动至抱住磁吸件即可。在磁吸件移出清洁腔后,仅需控制多个刮部背向运动至大致的位置即可。如此使得刮件的维护十分方便,生产成本较低。
在一些实施例中,多个刮部限定出用于抱住磁吸件的通槽,通槽的内周侧设有凸起结构,刮部通过凸起结构抵持磁吸件。
通过采用上述技术方案,通过在通槽的内周侧设置凸起结构,可提高刮部和磁吸件之 间的摩擦力,这样可提高刮部刮下磁吸件表面的金属杂质的力度,以提高磁吸件的清除效果。
在一些实施例中,凸起结构为设于刮部的微结构,或者,凸起结构为缓冲结构。
通过采用上述技术方案,通过在刮部设置微结构或者设置缓冲结构,均可有效增大刮部和磁吸件之间的摩擦力,以使得刮部对磁吸件具有较高的清洁效果。
在一些实施例中,清洁机构还包括第一驱动结构,第一驱动结构用于驱动多个刮部相向运动或背向运动。
通过采用上述技术方案,除铁装置可自动实现对磁吸件的清洁,从而可提高磁吸件的清洁效率,进而提高除铁装置的工作效率。
在一些实施例中,第一驱动结构包括第一驱动器和驱动座;驱动座开设有多个滑槽,多个刮部能够对应地沿着多个滑槽滑动,以相向运动或背向运动;第一驱动器用于驱动驱动座运动,以使刮部沿着滑槽滑动。
通过采用上述技术方案,一方面,除铁装置可自动实现对磁吸件的清洁工作,从而可提高除铁装置的工作效率。另一方面,可使得多个刮部能够灵活地相向运动或背向运动,从而可提高除铁装置的工作灵活性。
在一些实施例中,除铁装置还包括连接于清洁腔的排污管道,排污管道用于将清洁腔内的金属杂质排出。
通过采用上述技术方案,当清洁腔容纳较多的金属杂质时,可通过排污管道将清洁腔内的金属杂质排出。这样,可使得清洁腔具有较大的空间来容纳金属杂质,清洁腔可反复进行利用。并且,通过排污管道将清洁腔内的金属杂质排出,也即是实现了对清洁腔的清洁工作,这样无需人工过多干预清洁腔的清洁工作,即可实现清洁腔的反复利用。这样,也同样提高了除铁装置的自动化性能,省时省力,同样提高了除铁装置的工作效率。
在一些实施例中,除铁腔的内腔呈圆柱状,磁吸件呈轴状,且除铁腔的内径的直径与磁吸件的直径之差小于50mm。
通过采用上述技术方案,在除铁腔的内腔可同时容纳浆料和磁吸件的基础上,还可使得除铁腔内的浆料不至于过多,这样可使得磁吸件能够充分地接触于浆料,以充分地磁吸浆料中的金属杂质,从而可有效地提高磁吸件21对浆料的清洁效果。
在一些实施例中,除铁腔具有第一过料口,第一过料口设于除铁腔沿磁吸件进出除铁腔的方向上的端部,第一过料口能够供浆料进入。
通过采用上述技术方案,在磁吸件伸入除铁腔的状态下,当浆料沿与磁吸件进出除铁腔的方向平行的方向在除铁腔内流动的过程中,浆料可更好地流动至磁吸件沿方向Y进入除铁腔的一端,以及流动至磁吸件绕第一轴线的外周表面,这样可减小磁吸件的磁吸盲区,对金属杂质的磁吸效率更高。
在一些实施例中,除铁腔还具有第二过料口,第一过料口和第二过料口分别设于除铁腔沿磁吸件进出除铁腔的方向上的两端,且第一过料口和第二过料口中的任意一者用于供浆料进入,另一者用于供浆料流出。
通过采用上述技术方案,一方面,可使得浆料在除铁腔内的流动方向大致平行于第一过料口和第二过料口的分布方向,如此可减小了磁吸件的吸附盲区。另一方面,便于用于输出浆料和输入浆料的装置与除铁腔之间的连接和装配操作。
在一些实施例中,除铁腔具有供磁吸件进出的第一开口;磁吸件包括用于磁吸金属杂质的磁吸主体和设于磁吸主体的密封件,密封件用于在磁吸主体进入除铁腔内时密封第一开口。
通过采用上述技术方案,当磁吸件伸入除铁腔内后,磁吸件的密封件实现除铁腔的第一开口的密封,可改善除铁腔内的浆料从第一开口溢出的问题。
在一些实施例中,密封件和/或磁吸主体设置有第一锁扣,除铁腔设置有第二锁扣;第一锁扣能够与第二锁扣锁定,以限制磁吸主体移出除铁腔;第一锁扣还能够与第二锁扣解 锁,以供磁吸主体移出除铁腔。
通过采用上述技术方案,当磁吸件伸入除铁腔内后,磁吸件上的第一锁扣可与除铁腔上的第二锁扣形成锁定,从而可限制磁吸主体移出除铁腔,且限制密封件打开第一开口。如此,可较佳地维持磁吸主体伸入除铁腔内的状态,以维持磁吸主体在除铁腔内进行的金属杂质的磁吸工作。并且,还可维持密封件对第一开口的密封状态,从而可改善密封件在浆料的压力下打开第一开口致使浆料溢出的问题。
在一些实施例中,第二锁扣设置有锁槽,磁吸主体能够绕第一旋转轴线旋转,以供第一锁扣旋进并沿第一方向限位于锁槽内或者旋出锁槽;第一方向平行于磁吸主体进出除铁腔的方向,且平行于第一旋转轴线。
通过采用上述技术方案,使得第一锁扣和第二锁扣的结构十分简单,易于加工。并且,通过驱动磁吸主体绕第一旋转轴线旋转,即可实现第一锁扣和第二锁扣之间的锁定或解锁,如此使得第一锁扣和第二锁扣在锁定状态和解锁状态之间切换的操作十分简单便利,易于实现。
在一些实施例中,除铁机构还包括第二驱动结构,第二驱动结构用于驱动磁吸主体运动,以驱动第一锁扣相对于第二锁扣锁定或解锁。
通过采用上述技术方案,通过第二驱动结构来驱动第一锁扣和第二锁扣之间的锁定或解锁,可提高除铁装置的自动化程度,进而可提高除铁装置的工作效率。
在一些实施例中,除铁腔具有供磁吸件进出的第一开口,清洁腔具有供磁吸件进出的第二开口;
除铁机构还包括第三驱动结构,除铁装置还包括第四驱动结构;第三驱动结构用于驱动磁吸件运动,以驱动磁吸件在第一开口的一侧和第二开口的一侧之间运动;第四驱动结构用于驱动磁吸件进出除铁腔或进出清洁腔。
通过采用上述技术方案,使得第三驱动结构和第四驱动结构可交替驱动磁吸件运动,从而实现磁吸件在除铁腔和清洁腔之间运动的效果,且可使得磁吸件的运动自动化较高,也即是提高了除铁装置的自动化性能,以有助于提高除铁装置的工作效率。
在一些实施例中,除铁装置还包括接料盘,接料盘能够同时位于第一开口的一侧和第二开口的一侧,以承接从磁吸件流出的浆料和/或金属杂质。
通过采用上述技术方案,以使接料盘可在磁吸件移出除铁腔和清洁腔的状态下承接磁吸件上的浆料和/或金属杂质,如此可改善磁吸件上的浆料和/或金属杂质甩出除铁装置外的问题,从而可维持除铁装置在工作过程中的整洁。
在一些实施例中,接料盘能够在第一位置和第二位置之间运动;接料盘在第一位置时用于承接浆料和/或金属杂质,接料盘在第二位置时能够供磁吸件进出除铁腔或进出清洁腔。
通过采用上述技术方案,能够在磁吸件运动的过程中较好地承接从磁吸件流出的浆料或金属杂质,同时还可改善接料盘对磁吸件的运动产生干涉的问题。
在一些实施例中,清洁机构包括多个除铁腔和多个清洁腔,各除铁腔和各清洁腔沿圆周方向交替分布;除铁机构包括多个磁吸件,各磁吸件均能够绕第二旋转轴线旋转,以交替地旋转至对应的除铁腔沿第一方向的一侧和对应的清洁腔沿第一方向的一侧;磁吸件能够沿第一方向进出除铁腔或进出清洁腔,第二旋转轴线平行于第一方向。
通过采用上述技术方案,多个清洁腔、多个除铁腔和多个磁吸件的设置,使得除铁装置可一次性完成多个除铁腔内的浆料的金属杂质去除工作,还可一次性完成多个磁吸件的清洁工作,如此可以提高除铁装置的工作效率。
在一些实施例中,除铁腔具有第一过料口和第二过料口,第一过料口和第二过料口中的任意一者用于供浆料进入,另一者用于供浆料流出;清洁机构还包括第一汇流管道和第二汇流管道,多个除铁腔的第一过料口连通于第一汇流管道,多个除铁腔的第二过料口连通于第二汇流管道。
通过采用上述技术方案,通过第一汇流管道和第二汇流管道实现对多个除铁腔内的浆料的汇流,而无需每个除铁腔都通过各自的管道连接至外部的用于输入浆料和输出浆料的装置,如此简化了除铁腔的浆料流通的管道设计,进而简化了除铁装置。
在一些实施例中,第一汇流管道呈环形,且环设于除铁腔和清洁腔外。
通过采用上述技术方案,以使第一汇流管道环设于多个清洁腔和多个除铁腔外,可使得第一汇流管道、第二汇流管道、清洁腔、除铁腔等之间较为紧凑,如此可提高除铁装置的结构紧凑性,以实现除铁装置的小型化设计。
在一些实施例中,除铁装置还包括连接于除铁腔的泄压管道,泄压管道用于泄压。
通过采用上述技术方案,以使泄压管道可对除铁腔实现泄压效果,这样可使得除铁腔内和外部环境之间的压力相差不大,利于浆料在除铁腔内灵活地流动,从而便于磁吸件对除铁腔内的浆料中的金属杂质进行磁吸工作。基于此,可改善除铁腔内由于压力过大导致浆料难以流动,进而致使磁吸件无法顺利地进行金属杂质的磁吸工作的问题。
在一些实施例中,清洁机构的数量为多个,多个清洁机构的除铁腔依次连通。
通过采用上述技术方案,以使浆料可依次通入多个清洁机构的除铁腔,以依次通过磁吸件进行金属杂质去除工作,从而可提高浆料的金属杂质去除效果。
第二方面,本申请实施例提供了一种浆料制作系统,包括除铁装置。
通过采用上述技术方案,由于采用了上述各实施例涉及的除铁装置,同样使得除铁装置具有较高的自动化性能,进而提高了除铁装置的工作效率。相应地,浆料制作系统具有较高的自动化性能和较高的工作效率。
第三方面,本申请实施例提供了一种金属杂质去除方法,应用于除铁装置;包括以下步骤:
驱动磁吸件进入除铁腔内,并在除铁腔中通入浆料;
将磁吸件从除铁腔驱动至清洁腔内,以对磁吸件清洁。
通过采用上述技术方案,由于金属杂质去除方法应用于以上各实施例中涉及的除铁装置,可使得金属杂质的去除方法具有较高的自动化性能和工作效率。
在一些实施例中,将磁吸件从除铁腔驱动至清洁腔内,以对磁吸件清洁之后,还包括:
将磁吸件从清洁腔移出,并通过刮件将磁吸件上的金属杂质刮下至清洁腔中。
通过刮件将磁吸件上的金属杂质刮下清洁腔内,可有效实现对磁吸件的清洁,使得磁吸件的清洁工作十分简单,易于实现。这样,有助于提高磁吸件的清洁效率,进而能够提高浆料的清洁效率和产能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请一些实施例提供的除铁装置的立体示意图一;
图2为图1提供的除铁装置的清洁机构和除铁机构的配合示意图;
图3为图1提供的除铁装置的清洁机构的俯视图;
图4为图1提供的除铁装置的清洁机构的正视图;
图5为图2中A处的放大图;
图6为图3中B处的放大图;
图7为图4中C处的放大图;
图8为图2中D处的放大图;
图9为图1提供的除铁装置的磁吸件和除铁腔的配合截面图;
图10为图1提供的除铁装置的磁吸件和除铁腔在第一锁扣和第二锁扣解锁状态下的示意图;
图11为图10中E处的放大图;
图12为图1提供的除铁装置的磁吸件和除铁腔在第一锁扣和第二锁扣锁定状态下的示意图;
图13为图12中F处的放大图;
图14为图2提供的除铁装置的除铁机构的部分示意图;
图15为图1提供的除铁装置在接料盘位于第一位置时的部分示意图;
图16为图15的局部放大图;
图17为图1提供的除铁装置在接料盘位于第二位置时的部分示意图;
图18为图17的局部放大图;
图19为本申请一些实施例提供的除铁装置的立体示意图二;
图20为图19中G处的放大图;
图21为本申请实施例提供的浆料制作系统的示意图;
图22为本申请实施例提供的金属杂质去除方法的流程图。
其中,图中各附图标记:
100-除铁装置;200-浆料制作设备;10-清洁机构;11-除铁腔;1101-第一开口;1102-第一过料口;1103-第二过料口;1104-锁槽;111-第二锁扣;12-清洁腔;1201-第二开口;13-刮件;1301-通槽;131-刮部;1311-凸起结构;14-第一驱动结构;141-第一驱动器;142-驱动座;1421-滑槽;143-转盘;144-连接轴;15-第一汇流管道;16-第二汇流管道;20-除铁机构;21-磁吸件;211-磁吸主体;212-密封件;213-第一锁扣;22-第二驱动结构;221-第二驱动器;222-齿轮;223-齿条;23-第三驱动结构;24-安装座;30-第四驱动结构;40-排污管道;50-泄压管道;60-接料盘;70-滑轨;L1-第一旋转轴线;L2-第二旋转轴线;Y-第一方向;X-第二方向;Z-第三方向;D1-除铁腔的直径;D2-磁吸件的直径。
本发明的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,“多个”的含义是两个以上,除非另有明确具体的限定,“两个以上”包含两个。相应地,“多组”的含义是两组以上,包含两组。
在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情 况。另外,本申请中,字符“/”,一般表示前后关联对象是一种“或”的关系。
在电池的生产工艺中,通常需要制作浆料,并通过浆料制作形成电池的极片或电池的其他零部件。在浆料制作完成后,一般需要去除浆料内的铁等金属杂质,以提高浆料的纯度和质量。
在一些情况下,浆料内的金属杂质通过磁棒的磁吸作用去除。磁棒在长时间工作后,需要进行定期更换或者通过人工进行清洁。因而,浆料的金属杂质去除工作需要人工干预较多,使得用于去除浆料内的金属杂质的除铁装置的自动化程度较低,进而致使浆料的金属杂质去除工作效率低下。
基于以上考虑,本申请实施例第一方面提供了一种除铁装置,通过磁吸件可运动至除铁腔内或清洁腔内,这样,工作时,可先将磁吸件运动至除铁腔内,以使磁吸件磁吸除铁腔内的浆料中的金属杂质,然后将磁吸件从除铁腔运动至清洁腔内,以使磁吸件在清洁腔内进行清洁,以去除磁吸件上的金属杂质。如此可交替地实现磁吸件对金属杂质的磁吸工作和磁吸件的清洁工作,而无需在磁吸件磁吸较多金属杂质后进行磁吸件的更换,即减少了磁吸件的更换,也无需人工过多干预,从而使得除铁装置具有较高的自动化性能,进而提高了除铁装置的工作效率。
可以理解的是,本申请实施例提供的除铁装置主要用于但不限于除铁,也即是除铁装置除了可用于去除浆料中的铁,还可用于去除浆料中的其他金属杂质。其中,浆料可以是用于制作极片的浆料,当然也可以是用于形成电池的其他零部件的浆料,甚至还可以是其他领域中的浆料。换言之,本申请实施例提供的除铁装置可以应用于电池的生产领域中,当然也可以应用于除电池领域外的其他领域中。
请一并参阅图1至图4,图1示出了本申请实施例提供的除铁装置100的示意图,图2示出了清洁机构10和除铁机构20的配合示意图,图3示出了清洁机构10的俯视图,图4示出了清洁机构10的正视图。本申请实施例提供的除铁装置100包括清洁机构10和除铁机构20。清洁机构10包括除铁腔11和清洁腔12,除铁腔11用于供浆料通过。除铁机构20包括磁吸件21,磁吸件21可交替地运动至除铁腔11内和清洁腔12内。磁吸件21能够在除铁腔11内磁吸浆料中的金属杂质,磁吸件21还能够在清洁腔12内进行清洁。
如图2和图4所示,除铁腔11和清洁腔12均为具有内腔的实体结构。
磁吸件21可在除铁腔11和清洁腔12之间运动,以交替地运动至除铁腔11和清洁腔12。具体地,磁吸件21能够从清洁腔12的内腔移出,并伸入除铁腔11的内腔。磁吸件21还能够从除铁腔11的内腔移出,并伸入清洁腔12的内腔。可以理解的是,磁吸件21能够进出除铁腔11的内腔,也能够进出清洁腔12的内腔。其中,如图2和图4所示,磁吸件21进出除铁腔11的方向如图中示意的方向Y,磁吸件21进出清洁腔12的方向也如图中示意的方向Y。
如图2和图3所示,除铁腔11具有第一开口1101,第一开口1101连通于除铁腔11的内腔,磁吸件21可通过第一开口1101进出除铁腔11的内腔。清洁腔12具有第二开口1201,第二开口1201连通于清洁腔12的内腔,磁吸件21可通过第二开口1201进出清洁腔12的内腔。
磁吸件21是指能够对金属起到磁吸效果的部件。若除铁腔11内的浆料混有金属杂质,当磁吸件21伸入除铁腔11的内腔,磁吸件21能够磁吸浆料中的金属杂质,以实现浆料的金属杂质去除工作,也即是实现浆料的清洁效果。
磁吸件21的结构可以是多种。在一些实现方式中,如图2和图4所示,磁吸件21为长条形结构,具体地,磁吸件21沿进出除铁腔11的方向延伸布置。如此设置,磁吸件21能够较大程度地伸入除铁腔11的内腔,从而与较多的浆料接触,如此可较大程度地磁吸浆料中的金属杂质,以对浆料起到较佳的清洁效果。例如,如图2和图4所示,磁吸件21为磁棒。磁吸件21的横截面为圆形,也可以为椭圆形、三角形等形状。其中,磁吸件21的横截面为磁吸件21的垂直于自身长度方向(延伸方向)的截面,此时磁吸件21的自身长 度方向(延伸方向)平行于除铁腔11进出除铁腔11的方向。其中,磁吸件21的长度方向(延伸方向)如图中示意的方向Y。当然,在另一些实现方式中,磁吸件21也可呈除长条形外的其他形状。
除铁腔11用于供浆料通过,具体是指浆料可通入除铁腔11内,还可流出除铁腔11外。其中,浆料进出除铁腔11的方式可以是多种。在一些实现方式中,如图2和图4所示,除铁腔11具有第一过料口1102和第二过料口1103,第一过料口1102和第二过料口1103均连通于除铁腔11的内腔,且第一过料口1102和第二过料口1103均与第一开口1101间隔分布。第一过料口1102为浆料的进口,第二过料口1103为浆料的出口;或者,第一过料口1102为浆料的出口,第二过料口1103为浆料的出口。工作时,浆料可通过第一过料口1102和第二过料口1103中的任意一者进入除铁腔11的内腔,并通过第一过料口1102和第二过料口1103中的另一者流出除铁腔11外。其中,第一过料口1102和第二过料口1103可以是不同的开口,当然,第一过料口1102和第二过料口1103也可以是同一个开口。在另一些实现方式中,除铁腔11可设置有上述第一过料口1102,而并没有设置上述第二过料口1103。此时第一过料口1102为浆料的进口,除铁腔11的第一开口1101为浆料的出口;或者,第一过料口1102为浆料的出口,除铁腔11的第一开口1101为浆料的进口。在又一些实现方式中除铁腔11均没有设置上述第一过料口1102和上述第二过料口1103,基于此,浆料可通过除铁腔11的第一开口1101进出除铁腔11的内腔,也即是第一开口1101可作为浆料的进口和出口。
磁吸件21能够在清洁腔12内进行清洁,具体是磁吸件21能够在清洁腔12内清除其上的金属杂质。在此需要说明的是,将磁吸件21上的金属杂质清除,可便于磁吸件21的磁吸能力的恢复,进而便于磁吸件21再次伸入除铁腔11内,以对浆料中的金属杂质进行磁吸工作,如此使得磁吸件21可反复进行金属杂质去除工作,也即是可反复地对浆料进行清洁工作。
本申请实施例提供的除铁装置100,工作时,可先将磁吸件21伸入除铁腔11内,且在除铁腔11内通入浆料,以使磁吸件21磁吸除铁腔11内的浆料中的金属杂质,从而实现浆料的金属杂质去除效果。然后,将磁吸件21从除铁腔11内移出,并将磁吸件21伸入清洁腔12内,以使磁吸件21在清洁腔12内进行清洁,从而去除磁吸件21上的金属杂质。随后,再将磁吸件21从清洁腔12中移出,并将磁吸件21伸入除铁腔11内,排出除铁腔11内的浆料并通入新的浆料,以使清洁后的磁吸件21对新的浆料进行金属杂质去除工作。然后,再将磁吸件21从除铁腔11中移出,并将磁吸件21伸入清洁腔12中进行清洁工作……以此类推,使得磁吸件21交替地运动至除铁腔11内和清洁腔12内,从而交替地进行金属杂质的去除工作和磁吸件21的清洁工作。
如此设置,通过磁吸件21可交替地运动至除铁腔11内和清洁腔12内,能够交替地实现磁吸件21对金属杂质的磁吸工作或磁吸件21的清洁工作。这样,无需在磁吸件21磁吸较多金属杂质后更换磁吸件21,便可使得磁吸件21在再次伸入除铁腔11中时能够以较佳的磁吸能力再次进行金属杂质的磁吸工作,即减少了磁吸件21的更换工序。并且,也无需人工过多干预磁吸件21的磁吸工作和磁吸件21的清洁工作,节省了人力的付出。从而,除铁装置100具有较高的自动化性能,进而有助于提高除铁装置100的工作效率。
此外,除铁装置100既能够实现浆料的金属杂质去除工作,还兼顾磁吸件21的清洁功能。在需要磁吸浆料的金属杂质时,仅需将磁吸件21运动至除铁腔11内即可。在需要清洁磁吸件21上的金属杂质时,可将磁吸件21运动至清洁腔12内进行清洁工作。如此,当磁吸件21在清洁腔12中完成清洁工作后,在再次伸入除铁腔11中时能够以较佳的磁吸能力进行金属杂质的磁吸工作,从而使得除铁腔11中的浆料可不断更新,以不断地通过磁吸件21进行金属杂质去除工作,也即是浆料的金属杂质去除工作可不断地进行。这样,有助于提高浆料的清洁效率,进而提高浆料的产能。并且,磁吸件21可交替地运动至除铁腔11内和清洁腔12内,从而交替地实现磁吸件21对金属杂质的磁吸工作或磁吸件21的清 洁工作,使得除铁装置100的工作十分简单,同样有助于提高浆料的清洁效率,以提高浆料的产能。
在此需要补充说明的是,在一些实现方式中,浆料可在磁吸件21运动至除铁腔11内后再通入除铁腔11内,即,磁吸件21先运动至除铁腔11内,浆料随后通入除铁腔11内。基于此,当磁吸件21完成对除铁腔11中的浆料的金属杂质的磁吸工作后,可在磁吸件21移出除铁腔11之前排出浆料,也可在磁吸件21移出除铁腔11之后,并在磁吸件21完成清洁工作以再次伸入除铁腔11之前排出浆料,甚至还可在磁吸件21完成清洁工作且再次伸入除铁腔11后排出浆料,然后在磁吸件21运动至除铁腔11内后再通入新的浆料。在另一些实现方式中,浆料还可在磁吸件21运动至除铁腔11之前通入除铁腔11内,即,浆料先通入除铁腔11内,磁吸件21随后运动至除铁腔11内。基于此,当磁吸件21完成对除铁腔11中的浆料的金属杂质的磁吸工作后,可在磁吸件21移出除铁腔11之前排出浆料,也可在磁吸件21移出除铁腔11之后,并在磁吸件21完成清洁工作以再次伸入除铁腔11之前排出浆料,然后在磁吸件21运动至除铁腔11内之前通入新的浆料。
在一些实施例中,请一并参阅图2、图3、图5和图6,图5示出了图2的局部放大图,具体示出了清洁腔12和刮件13的配合立体图,图6示出了图3的局部放大图,具体示出了清洁腔12和刮件13的配合俯视图。清洁机构10还包括刮件13,刮件13用于将磁吸件21上的金属杂质刮下至清洁腔12中。
可以理解的是,刮件13可相对于磁吸件21运动,以将磁吸件21上的金属杂质刮下至清洁腔12中,从而实现磁吸件21的清洁工作,也即是实现磁吸件21能够在清洁腔12中进行清洁的效果。
刮件13相对于磁吸件21的运动可以是多种。在一些实现方式中,在磁吸件21移出清洁腔12的过程中,刮件13可沿磁吸件21进出清洁腔12的方向相对于清洁腔12固定,并抵持于磁吸件21的表面,从而使得磁吸件21表面的金属杂质能够被刮件13刮下清洁腔12中。在另一些实现方式中,在磁吸件21伸入清洁腔12内的状态下或者在磁吸件21移出清洁腔12的过程中,刮件13可沿与磁吸件21移出清洁腔12的方向相反的方向移动,并抵持于磁吸件21的表面,从而将磁吸件21表面的金属杂质刮下清洁腔12中。
其中,磁吸件21进出清洁腔12的方向平行于图中示意的方向Y。
通过采用上述技术方案,当磁吸件21完成对除铁腔11内的浆料中的金属杂质的磁吸工作后,在磁吸件21伸入清洁腔12的状态下或者在磁吸件21移出清洁腔12的过程中,刮件13可将磁吸件21表面的金属杂质刮下清洁腔12中,以实现对磁吸件21的清洁,从而恢复磁吸件21的磁吸能力,以便于磁吸件21再次伸入除铁腔11时能够以较佳的磁吸能力再次进行金属杂质的去除工作。
如此设置,通过刮件13实现对磁吸件21的清洁,使得磁吸件21的清洁工作十分简单,易于实现。这样,有助于提高磁吸件21的清洁效率,进而能够提高浆料的清洁效率和产能。
在此需要补充的是,当刮件13用于在磁吸件21移出清洁腔12的过程中将磁吸件21表面的金属杂质刮下,以实现对磁吸件21的清洁时,通过磁吸件21迅速伸入清洁腔12内并移出清洁腔12,便可实现磁吸件21的清洁。这样,无需磁吸件21在清洁腔12中停留,则无需额外花费过多的时间来清洁磁吸件21,可有效提高磁吸件21的清洁效率,进而能够提高浆料的清洁效率和产能。
在一些实施例中,请一并参阅图2、图3、图5和图6,刮件13包括多个刮部131。多个刮部131能够相向运动或背向运动,且多个刮部131能够在相向运动后抱住磁吸件21。磁吸件21能够沿进出清洁腔12的方向相对于刮部131运动,以在移出清洁腔12时供刮部131刮下金属杂质。
如图5和图6所示,每个刮件13的刮部131的数量为两个,当然也可以是三个以上。其中,刮部131可以是板状结构,也可以是块状结构等,在此不限定刮部131的具体形状。
在磁吸件21伸入清洁腔12的状态下,多个刮部131相向运动后,如图2和图5所示, 多个刮部131抱住磁吸件21,使得多个刮部131均抵持于磁吸件21的表面。此时,当磁吸件21移出清洁腔12,磁吸件21相对于刮部131运动,从而使得多个刮部131均能够将磁吸件21表面的金属杂质刮下至清洁腔12中。其中,在磁吸件21移出清洁腔12的过程中,刮部131可以沿磁吸件21进出清洁腔12的方向(方向Y)相对于清洁腔12固定,也可以沿与磁吸件21移出清洁腔12的方向相反的方向移动。
多个刮部131相向运动后,多个刮部131可限定出通槽1301,该通槽1301沿磁吸件21进出清洁腔12的方向贯通刮件13。此时,在磁吸件21伸入清洁腔12的状态下,磁吸件21沿进出清洁腔12的方向穿设于通槽1301,从而使得多个刮部131抱住磁吸件21绕第一轴线的外周,以使多个刮部131共同接触并抵持于磁吸件21绕第一轴线的外周表面。如此,当磁吸件21移出清洁腔12,以使多个刮部131将磁吸件21外周表面的金属杂质刮下时,多个刮部131能够接触于磁吸件21绕第一轴线的外周表面的各个位置,从而可减小磁吸件21的清洁死角,以有效提高刮件13对磁吸件21的清洁率。其中,这里所述的第一轴线平行于磁吸件21进出清洁腔12的方向,如图中示意的方向Y。并且,这里所述的第一轴线为下文各实施例中涉及的第一旋转轴线L1,具体如图8中示意的轴线L1。其中,图8中示出了图2的局部放大图,具体示出了磁吸件21和除铁腔11的结构示意图。
如图5至图7所示,图7示出了图4的局部放大图,具体示出了刮件13和清洁腔12的配合正视图。多个刮部131设置于清洁腔12的第二开口1201处。在磁吸件21伸入清洁腔12之前,多个刮部131可背向运动,以避开第二开口1201,这样便于磁吸件21伸入清洁腔12内。在磁吸件21伸入清洁腔12的状态下,多个刮部131相向运动并抱住磁吸件21时,多个刮部131共同限定出的通槽1301沿磁吸件21进出清洁腔12的方向正对于第二开口1201。
通过采用上述技术方案,在除铁装置100工作过程中,多个刮部131可先背向运动,以避开清洁腔12的第二开口1201。然后,磁吸件21通过第二开口1201伸入清洁腔12内。随后,多个刮部131相向运动,以抱住磁吸件21。再然后,磁吸件21移出清洁腔12,以使多个刮部131将磁吸件21上的金属杂质刮下清洁腔12内。之后,磁吸件21伸入除铁腔11内,且多个刮部131背向运动,以便于磁吸件21在磁吸除铁腔11内的金属杂质后再次移出除铁腔11并伸入清洁腔12内。
本申请实施例提供的除铁装置100,多个刮部131可在磁吸件21伸入清洁腔12之前背向运动,且可在磁吸件21伸入清洁腔12后相向运动以抱住磁吸件21,这样使得多个刮部131的运动可十分灵活,可设置为在磁吸件21伸入清洁腔12后,抱住磁吸件21没有磁吸金属杂质的位置。这样,在多个刮部131抱住磁吸件21,且磁吸件21移出清洁腔12的过程中,多个刮部131可完整地接触并抵持于磁吸件21具有金属杂质的位置,从而能够尽可能地将磁吸件21上的金属杂质全部刮下,如此减小了磁吸件21的清洁盲区,提高了对磁吸件21的清洁效果。并且,对于刮部131的装配要求、运动控制要求较低,无需过高要求地精确多个刮部131相向运动和背向运动的行程。在磁吸件21伸入清洁腔12内后,仅需控制多个刮部131相向运动至抱住磁吸件21即可。在磁吸件21移出清洁腔12后,仅需控制多个刮部131背向运动至大致的位置即可。如此使得刮件13的维护十分方便,生产成本较低。
在一些实施例中,如图5和图7所示,刮部131位于清洁腔12外。在磁吸件21伸入清洁腔12的状态下,多个刮部131在相向运动后抱住磁吸件21位于清洁腔12外的部分。这样,磁吸件21位于清洁腔12外的部分可以设置为磁吸件21不用于磁吸金属杂质的部分,如此,在多个刮部131抱住磁吸件21,且磁吸件21移出清洁腔12的过程中,多个刮部131可完整地接触并抵持于磁吸件21具有金属杂质的位置,从而可提高对磁吸件21的清洁率,减小磁吸件21的清洁死角。
在一些实施例中,多个刮部131相向运动的方向和背向运动的方向可都垂直于磁吸件21进出清洁腔12的方向,如此便于多个刮部131抱住磁吸件21或松开磁吸件21。例如, 如图5和图6所示,当刮部131的数量为两个时,两个刮部131的相向运动方向和背向运动方向均平行于图中示意的方向X,方向X垂直于方向Y。
在一些实施例中,请一并参阅图5和图6,多个刮部131限定出用于抱住磁吸件21的通槽1301,通槽1301的内周侧设有凸起结构1311,刮部131通过凸起结构1311抵持磁吸件21。
可以理解的是,本实施例所述的通槽1301与上述通槽1301相同。具体地,在磁吸件21伸入清洁腔12的状态下,多个刮部131相向运动后限定出上述通槽1301,磁吸件21穿设于该通槽1301,以实现多个刮部131抱住磁吸件21的效果。此时,凸起结构1311抵持并接触于磁吸件21的表面。在磁吸件21移出清洁腔12的过程中,凸起结构1311将磁吸件21表面的金属杂质刮下清洁腔12内,从而实现对磁吸件21的清洁。
通过采用上述技术方案,通过在通槽1301的内周侧设置凸起结构1311,可提高刮部131和磁吸件21之间的摩擦力,这样可提高刮部131刮下磁吸件21表面的金属杂质的力度,以提高磁吸件21的清除效果。
在一些实施例中,请参阅图6,凸起结构1311可以是设置于刮部131的微结构,该微结构具体设置于通槽1301的内周侧。例如,该微结构可以类似于螺纹的结构。
在另一些实施例中,凸起结构1311也可以缓冲结构。具体地,凸起结构1311具有一定的缓冲性能,例如,凸起结构1311可以是橡胶圈、硅胶圈等。
通过采用上述技术方案,通过在刮部131设置微结构或者设置缓冲结构,均可有效增大刮部131和磁吸件21之间的摩擦力,以使得刮部131对磁吸件21具有较高的清洁效果。
在一些实施例中,请一并参阅图5至图7,清洁机构10还包括第一驱动结构14,第一驱动结构14用于驱动多个刮部131相向运动或背向运动。
第一驱动结构14是指能够对刮部131实现驱动效果的部件或组件。
通过采用上述技术方案,通过第一驱动结构14驱动多个刮部131相向运动或背向运动,可有效减少人工对磁吸件21的清洁工作的干预,提高清洁机构10对磁吸件21的清洁工作的自动化程度,从而可提高除铁装置100的工作效率。可以理解的是,刮部131可在第一驱动结构14的驱动下对磁吸件21进行清洁工作,则当磁吸件21从除铁腔11移出并伸入清洁腔12后,磁吸件21又从清洁腔12移出的过程中,除铁装置100可自动实现对磁吸件21的清洁,从而可提高磁吸件21的清洁效率,进而提高除铁装置100的工作效率。
在一些实施例中,除铁装置100还可与控制装置配合使用。具体地,控制装置电连接于第一驱动结构14,控制装置向第一驱动结构14发出操控指令,第一驱动结构14执行上述操控指令,以驱动多个刮部131相向运动或背向运动。控制装置是指能够直接发出操控指令、接收信号的装置,例如可以是能够发出操控指令、接收数据的计算机。例如,控制装置向第一驱动结构14发送操控指令,以使第一驱动结构14驱动多个刮部131相向运动。第一驱动结构14在多个刮部131抱住磁吸件21后向控制装置发送信号,控制装置接收第一驱动结构14发送的信号并停止控制第一驱动结构14。其中,控制装置和第一驱动结构14之间可以是有线电连接,也可以是无线电连接。如此设置,提高了磁吸件21的清洁工作的自动化程度,使得磁吸件21的清洁工作十分省时省力,利于提高除铁装置100的工作效率。
在一些实施例中,请一并参阅图5至图7,第一驱动结构14包括第一驱动器141和驱动座142。驱动座142开设有多个滑槽1421,多个刮部131能够对应地沿着多个滑槽1421滑动,以相向运动或背向运动。第一驱动器141用于驱动驱动座142运动,以使刮部131沿着滑槽1421滑动。
可以理解的是,在第一驱动器141驱动驱动座142,以使驱动座142运动的过程中,多个刮部131一一对应地沿着多个滑槽1421滑动,从而实现多个刮部131的相向运动或背向运动。具体地,多个滑槽1421均具有相对的第一端和第二端,相邻的两个滑槽1421之间的距离自第一端向第二端逐渐增大。当多个刮部131沿着对应的滑槽1421朝向第一端滑 动时,多个刮部131的距离逐渐减小,也即是多个刮部131相向运动。当多个刮部131沿着对应的滑槽1421朝向第二端滑动时,多个刮部131的距离逐渐增大,也即是多个刮部131背向运动。
为便于描述刮部131的滑动,本实施例以刮部131的数量为两个为例进行说明。相应地,驱动座142上的滑槽1421的数量也为两个。
在此先定义磁吸件21进出清洁腔12的方向为第一方向Y,如图中示意的方向Y。定义两个刮部131的相向运动的方向和背向运动的方向均为第二方向X,如图中示意的方向X。本实施例中,刮部131可沿第二方向X相对于清洁腔12运动,以使两个刮部131可沿第二方向X相向运动或背向运动。并且,刮部131沿第一方向Y相对于清洁腔12固定,且刮部131还沿第三方向Z相对于清洁腔12固定。并且,两个滑槽1421沿第二方向X间隔分布,且两个滑槽1421沿第二方向X的距离自第一端向第二端逐渐增大。其中,第三方向Z为分别与第一方向Y、第二方向X交叉的任意方向,例如,第三方向Z可以是图6中示意的方向Z,该第三方向Z可以是直线方向,也可以是曲线方向。
当第一驱动器141驱动驱动座142运动时,驱动座142可沿第三方向Z运动,也即是驱动座142沿分别与第一方向Y、第二方向X交叉的方向运动。此时,刮部131分别沿第一方向Y和第三方向Z相对于清洁腔12固定,且只能沿第二方向X运动,则刮部131沿着对应的滑槽1421滑动,从而实现两个刮部131的相向运动或背向运动。
第一驱动器141是指用于驱动驱动座142运动的部件,第一驱动器141的结构可以是多种。
在一些实施例中,当第一驱动器141用于驱动驱动座142曲线运动时,也即是第三方向Z为曲线方向时,第一驱动器141可以是旋转电机、由旋转电机和传动件组合形成的组合机构等。
示例性地,如图5至图7所示,本实施例中,第一驱动结构14还包括转盘143,转盘143设置于第一驱动器141的输出端,第一驱动器141用于驱动转盘143旋转。驱动座142设置于转盘143上,并能够在转盘143转动时随转盘143同步旋转。这样,当转盘143在第一驱动器141的驱动下转动时,驱动座142随转盘143同步旋转,从而实现曲线运动的效果,进而可实现驱动座142沿第三方向Z曲线运动。
在一些实现方式中,如图5至图7所示,转盘143的旋转轴线可平行于第一方向Y。在一些实现方式中,如图5至图7所述,第一方向Y还可与第二方向X垂直。
通过采用上述技术方案,以使第一驱动器141通过驱动转盘143旋转,以实现驱动座142在第三方向Z上的运动,进而实现至少两个刮部131的相向运动或背向运动,如此使得刮部131的运动操作十分稳定。
在另一些实施例中,当第一驱动器141用于驱动驱动座142直线运动时,也即是第三方向Z为直线方向时,第一驱动器141可以是气缸、电缸、直线电机、旋转电机和螺杆机构组合形成的组合机构等。
通过采用上述技术方案,一方面,在磁吸件21从除铁腔11内移出并伸入清洁腔12后,第一驱动器141可驱动驱动座142运动,以使多个刮部131相向运动以抱住磁吸件21,从而在磁吸件21从清洁腔12移出的过程中,多个刮部131可实现对磁吸件21的清洁。如此,除铁装置100可自动实现对磁吸件21的清洁工作,从而可提高除铁装置100的工作效率。另一方面,第一驱动器141驱动驱动座142运动的过程中,多个刮部131可沿着对应的滑槽1421滑动,从而可实现刮部131的运动导向效果,且可提高刮部131的运动稳定性,如此可使得多个刮部131能够灵活地相向运动或背向运动,从而可提高除铁装置100的工作灵活性。
在一些实施例中,请一并参阅图5和图6,刮部131转动连接有连接轴144,连接轴144穿设于对应的滑槽1421,并能够沿着对应的滑槽1421滑动。可以理解的是,当第一驱动器141驱动驱动座142运动时,连接轴144沿着对应的滑槽1421滑动,从而可实现刮部 131的运动,从而实现多个刮部131的相向运动或背向运动。
在另一些实施例中,刮部131上也可以设置凸起柱,凸起柱穿设于对应的滑槽1421,并能够沿着对应的滑槽1421滑动。此时,凸起柱可设置为不相对刮部131自转,也即是刮部131和凸起柱相互固定。
在一些实施例中,如图2至图7所示,清洁机构10包括多个清洁腔12,每个清洁腔12处均设置有刮件13,也即是清洁机构10包括多个刮件13,多个刮件13和多个清洁腔12一一对应。相应地,驱动座142也可设置为多个,多个驱动座142和多个刮件13一一对应。
并且,多个清洁腔12绕转盘143的旋转轴线分布于转盘143的外周,多个驱动座142均设置于转盘143,且多个驱动座142绕转盘143的旋转轴线圆周分布于转盘143的外周边缘,从而使得每个驱动座142的至少部分可对应位于每个清洁腔12。第一驱动器141驱动时,转盘143旋转,并带动多个驱动座142运动,从而使得多个刮件13的刮部131运动。如此设置,使得多个清洁腔12处的刮件13可同步运动,从而在多个清洁腔12内均具有磁吸件21时,可同时实现对多个清洁腔12内的磁吸件21的清洁工作。此外,这样还可使得刮件13的驱动十分简单,进而使得除铁装置100的整体结构简单。
在一些实施例中,请一并参阅图1和图2,除铁装置100还包括排污管道40,排污管道40连接于清洁腔12,并用于将清洁腔12内的金属杂质排出。
可以理解的是,排污管道40连接于清洁腔12,且与清洁腔12的内腔连通。
在此需要说明的是,磁吸件21在清洁腔12内进行清洁后,磁吸件21上的金属杂质被清除并容纳于清洁腔12内。其中,上述清洁腔12内的金属杂质,一般是指磁吸件21清洁后留在清洁腔12内的金属杂质。
通过采用上述技术方案,当清洁腔12容纳较多的金属杂质时,可通过排污管道40将清洁腔12内的金属杂质排出。这样,可使得清洁腔12具有较大的空间来容纳金属杂质,清洁腔12可反复进行利用。并且,通过排污管道40将清洁腔12内的金属杂质排出,也即是实现了对清洁腔12的清洁工作,这样无需人工过多干预清洁腔12的清洁工作,即可实现清洁腔12的反复利用。这样,也同样提高了除铁装置100的自动化性能,省时省力,同样提高了除铁装置100的工作效率。
其中,排污管道40可连通于外部环境,或者连通于外部的废物收集装置。这样,清洁腔12内的金属杂质通过排污管道40排出时,可排出至外部环境或者排出至废物收集装置等指定位置。其中,排污管道40可以是一个管道,也可以由多个管道依次连通组合形成。
在一些实现方式中,清洁腔12内的金属杂质可直接在重力作用下通过排污管道40排出。在另一些实现方式中,排污管道40还可设置有压力泵等泵送装置,压力泵等泵送装置可泵送清洁腔12内的金属杂质,从而使得清洁腔12内的金属杂质通过排污管道40排出。在又一些实现方式中,清洁腔12内可连接有供水装置,当需要清洁清洁腔12内的金属杂质时,供水装置可向清洁腔12内供水,以使水带动清洁腔12内的金属杂质通过排污管道40排出。其中,此时水可在上述泵送装置的泵送作用下带动金属杂质通过排污管道40排出,或者直接在重力作用下带动金属杂质通过排污管道40排出。在此需要补充的是,通过泵送装置来辅助排出清洁腔12内的金属杂质,可使得清洁腔12的清洁工作十分简单便利,易于实现,从而能够较好地提高除铁装置100的自动化程度,无需人工干预清洁腔12的工作,进而提高除铁装置100的工作效率。
在一些实施例中,当清洁腔12的数量为多个时,多个清洁腔12均可连接有单独的排污管道40。当然,排污管道40也可均连接于多个清洁腔12,这样可简化排污管道40的布置,以简化除铁装置100的结构。
在一些实施例中,请一并参阅图2和图9,图9示出了磁吸件21进入除铁腔11内的状态下的截面图,该截面图垂直于磁吸件21进出除铁腔11的方向。除铁腔11的内腔呈圆柱状,磁吸件21呈轴状,且除铁腔11的内腔的直径与磁吸件21的直径之差小于50mm。
除铁腔11的内腔呈圆柱状,且磁吸件21呈轴状。基于此,当磁吸件21进入除铁腔11的内腔,在磁吸件21和除铁腔11的垂直于磁吸件21的轴向的截面上,磁吸件21和除铁腔11的内腔均呈圆形,具体如图9所示。其中,除铁腔11的内腔的直径如图中示意的D1,磁吸件21的直径如图中示意的D2。
其中,本实施例中,除铁腔11和磁吸件21的轴向平行于磁吸件21进出除铁腔11的方向。
需要说明的是,为使得磁吸件21能够进出除铁腔11,除铁腔11的内腔的直径大于磁吸件21的直径。基于此,除铁腔11的内腔的直径与磁吸件21的直径之差小于50mm,也即是D1-D2小于50mm,具体可以是40mm、30mm等。
通过采用上述技术方案,以使除铁腔11的内腔的直径与磁吸件21的直径之差在预定的范围内,而不至于过大。这样,在除铁腔11的内腔可同时容纳浆料和磁吸件21的基础上,还可使得除铁腔11内的浆料不至于过多,这样可使得磁吸件21能够充分地接触于浆料,以充分地磁吸浆料中的金属杂质,从而可有效地提高磁吸件21对浆料的清洁效果。
在一些实施例中,请一并参阅图2和图4,除铁腔11具有第一过料口1102,第一过料口1102设于除铁腔11沿磁吸件21进出除铁腔11的方向上的端部,且第一过料口1102能够供浆料进入。
第一过料口1102连通于除铁腔11的内腔。在一些实现方式中,第一过料口1102可作除铁腔11用于供浆料进入的进口,具体地,浆料可从第一过料口1102进入除铁腔11内。在另一些实施例中,除铁腔11内的浆料也可通过第一过料口1102流出除铁腔11外。在此需要说明的是,本实施例中涉及的第一过料口1102均与上述各实施例中涉及的第一过料口1102相同,具体可参照上述描述,在此不再重复赘述。
其中,磁吸件21进出除铁腔11的方向平行于图中示意的方向Y,也即是磁吸件21进出除铁腔11的方向和磁吸件21进出清洁腔12的方向大致平行。当磁吸件21为长条形结构时,磁吸件21的延伸方向(长度方向)大致平行于磁吸件21进出除铁腔11的方向,也即是大致平行于方向Y。当磁吸件21为磁棒时,磁棒的轴向平行于方向Y。
通过采用上述技术方案,使得第一过料口1102设于除铁腔11沿磁吸件21进出除铁腔11的方向上的端部。这样,当浆料从第一过料口1102进入除铁腔11内后,为使得浆料充满除铁腔11的内腔,浆料大致沿与磁吸件21进出除铁腔11的方向平行的方向在除铁腔11内流动,也即是浆料大致沿方向Y在除铁腔11内流动,以充满除铁腔11。这样,在磁吸件21伸入除铁腔11的状态下,当浆料沿与磁吸件21进出除铁腔11的方向平行的方向(方向Y)在除铁腔11内流动的过程中,浆料可更好地流动至磁吸件21沿方向Y进入除铁腔11的一端,以及流动至磁吸件21绕第一轴线的外周表面,这样可减小磁吸件21的磁吸盲区,对金属杂质的磁吸效率更高。
在此需要说明的是,在一些情况下,浆料沿与磁吸件21的长度方向垂直的方向流动,这样,磁吸件21沿浆料的流动方向上的一侧会出现磁吸金属杂质的盲区,而无法高效地实现对金属杂质的磁吸工作。本申请实施例提供的除铁装置100,浆料的流动方向大致平行于磁吸件21的延伸方向,从而使得浆料在流动过程中能够充分地接触磁吸件21的表面,使得磁吸件21伸入除铁腔11内的各个位置均能够磁吸金属杂质,减小了磁吸件21的吸附盲区,可提高磁吸件21对金属杂质的磁吸效率,进而可提高除铁装置100对浆料的金属杂质去除的效率。
在一些实施例中,请一并参阅图2和图4,且结合其他附图,除铁腔11还具有第二过料口1103,第一过料口1102和第二过料口1103分别设于除铁腔11沿磁吸件21进出除铁腔11的方向上的两端,且第一过料口1102和第二过料口1103中的任意一者用于供浆料进入,另一者用于供浆料流出。
可以理解的是,浆料可通过第一过料口1102进入除铁腔11内,通过第二过料口1103流出除铁腔11外,也可通过第二过料口1103进入除铁腔11内,通过第一过料口1102流 出除铁腔11外。
通过采用上述技术方案,通过将第一过料口1102和第二过料口1103分别设于除铁腔11沿磁吸件21进出除铁腔11的方向上的两端,从而可使得浆料在除铁腔11内的流动方向大致平行于第一过料口1102和第二过料口1103的分布方向,如此可减小了磁吸件21的吸附盲区,可提高磁吸件21对金属杂质的磁吸效率,进而可提高除铁装置100对浆料的金属杂质去除的效率。并且,通过将第一过料口1102和第二过料口1103分别设于除铁腔11沿磁吸件21进出除铁腔11的方向上的两端,便于除铁腔11和外部的用于输出浆料和输入浆料的装置的连接和装配。
在一些实施例中,请一并参阅图2、图3、图6和图8,除铁腔11具有供磁吸件21进出的第一开口1101。其中,这里所述的第一开口1101与上述各实施例中涉及的第一开口1101相同,具体可参考上述的解释,在此不再重复解释。磁吸件21包括磁吸主体211和设于磁吸主体211的密封件212,磁吸主体211用于磁吸金属杂质,密封件212用于在磁吸主体211进入除铁腔11内时密封第一开口1101。
可以理解的是,在磁吸件21伸入除铁腔11内后,磁吸件21的磁吸主体211伸入除铁腔11的内腔,并能够在除铁腔11内磁吸浆料中的金属杂质。并且,密封件212密封除铁腔11的第一开口1101。
密封件212设置于磁吸主体211绕第一轴线的外周,当磁吸主体211伸入除铁腔11内后,密封件212盖住第一开口1101,以填充磁吸主体211的外周侧和第一开口1101的内侧壁之间的间隙,从而实现对第一开口1101的密封。其中,密封件212可以是金属件、塑胶件等结构件。在一些实现方式中,密封件212上还可设置有密封圈,密封圈围设于磁吸主体211的外周。当密封件212密封第一开口1101时,密封圈围设于第一开口1101的外周,且密封圈沿轴向上的一端抵接于密封件212,密封圈沿轴向上的另一端抵接于除铁腔11。这样,密封圈可实现密封件212和第一开口1101之间的间隙的密封,能够改善浆料溢出的问题。其中,密封圈可以但不限于是橡胶圈、硅胶圈等具有密封作用的结构。
通过采用上述技术方案,当磁吸件21伸入除铁腔11内后,磁吸件21的密封件212实现除铁腔11的第一开口1101的密封,可改善除铁腔11内的浆料从第一开口1101溢出的问题。
在一些实施例中,请一并参阅图2、图8、图10至图13,密封件212设置有第一锁扣213,除铁腔11设置有第二锁扣111。第一锁扣213能够与第二锁扣111锁定,以限制磁吸主体211移出除铁腔11。第一锁扣213还能够与第二锁扣111解锁,以供磁吸主体211移出除铁腔11。
可以理解的是,第一锁扣213和第二锁扣111可在锁定状态和解锁状态之间来回切换。当磁吸件21伸入除铁腔11内,可将第一锁扣213和第二锁扣111切换至锁定状态,如图12和图13所示。此时,磁吸主体211在第一锁扣213和第二锁扣111的锁定作用下难以移出除铁腔11,相应地,密封件212也难以脱离除铁腔11,从而难以打开第一开口1101。当磁吸主体211完成金属杂质的磁吸工作后,可将第一锁扣213和第二锁扣111切换至解锁状态,如图10和图11所示,此时可将磁吸主体211移除除铁腔11,相应地,密封件212也可随磁吸主体211脱离除铁腔11以打开第一开口1101。
通过采用上述技术方案,当磁吸件21伸入除铁腔11内后,磁吸件21上的第一锁扣213可与除铁腔11上的第二锁扣111形成锁定,从而可限制磁吸主体211移出除铁腔11,且限制密封件212打开第一开口1101。如此,可较佳地维持磁吸主体211伸入除铁腔11内的状态,以维持磁吸主体211在除铁腔11内进行的金属杂质的磁吸工作。并且,还可维持密封件212对第一开口1101的密封状态,从而可改善密封件212在浆料的压力下打开第一开口1101致使浆料溢出的问题。
在另一些实施例中,上述第一锁扣213可设置于磁吸主体211上,或者,第一锁扣213还可同时固定于磁吸主体211和密封件212上。
在一些实施例中,请一并参阅图8、图10至图13,图8示出了磁吸件21和除铁腔11的部分示意图,图10示出了磁吸件21和除铁腔11在第一锁扣213和第二锁扣111解锁状态下的示意图,图11示出了图10的局部放大图,图12示出了磁吸件21和除铁腔11在第一锁扣213和第二锁扣111锁定状态下的示意图,图13示出了图12的局部放大图。第二锁扣111设置有锁槽1104。磁吸主体211能够绕第一旋转轴线L1旋转,以供第一锁扣213旋进锁槽1104内,并沿第一方向Y限位于锁槽1104内;或者,供第一锁扣213旋出锁槽1104。其中,第一方向Y平行于磁吸主体211进出除铁腔11的方向,且平行于第一旋转轴线L1。
可以理解的是,在磁吸主体211伸入除铁腔11内后,可驱动磁吸主体211绕第一旋转轴线L1旋转,以使第一锁扣213在磁吸主体211的带动下旋转第二锁扣111的锁槽1104内,如此使得第一锁扣213沿第一方向Y限位于锁槽1104内,从而实现第一锁扣213和第二锁扣111的锁定,如图12和图13所示。具体地,此时第一锁扣213限位于锁槽1104沿第一方向Y的两侧之间,从而使得第一锁扣213无法沿第一方向Y相对于第二锁扣111运动,相应地,磁吸主体211和密封件212均无法沿第一方向Y相对于除铁腔11运动,则磁吸主体211无法沿第一方向Y移出除铁腔11,从而可维持磁吸主体211在除铁腔11内的状态以及密封件212密封第一开口1101的状态。当磁吸主体211完成金属杂质的磁吸工作后,可驱动磁吸主体211绕第一旋转轴线L1旋转,以使第一锁扣213脱离锁槽1104,从而实现第一锁扣213和第二锁扣111的解锁,如图10和图11所示,此时磁吸件21可从除铁腔11移出。
通过采用上述技术方案,通过在第二锁扣111设置锁槽1104,使得第一锁扣213仅需通过锁槽1104沿第一方向Y的两侧即可实现限位,以实现第一锁扣213和第二锁扣111的锁定。基于此,制作第二锁扣111时,仅需将第二锁扣111设置为具有锁槽1104的结构,且该锁槽1104沿第一方向Y的两侧可对第一锁扣213实现限位即可。制作第一锁扣213时,仅需使得第一锁扣213能够进入锁槽1104内即可。如此使得第一锁扣213和第二锁扣111的结构十分简单,易于加工。并且,通过驱动磁吸主体211绕第一旋转轴线L1旋转,即可实现第一锁扣213和第二锁扣111之间的锁定或解锁,如此使得第一锁扣213和第二锁扣111在锁定状态和解锁状态之间切换的操作十分简单便利,易于实现。
在一些实施例中,请一并参阅图2、图10至图14,图14示出了第二驱动结构22和第三驱动结构23的配合示意图。除铁机构20还包括第二驱动结构22,第二驱动结构22用于驱动磁吸主体211运动,以驱动第一锁扣213相对于第二锁扣111锁定或解锁。
在一些实现方式中,如图2、图10至图14所示,当磁吸主体211通过旋转的方式来实现第一锁扣213和第二锁扣111的锁定或解锁,第二驱动结构22为用于驱动磁吸主体211旋转的部件或组件。例如,第二驱动结构22可以是旋转电机、由旋转电机和传动件组合形成的组合机构等。示例性地,如图14所示,第二驱动结构22包括第二驱动器221、齿条223和齿轮222,齿轮222连接于磁吸主体211,齿条223连接于第二驱动器221的输出端,且齿条223和齿轮222啮合。其中,第二驱动器221可以是气缸、电缸等用于输出直线运动的驱动器。工作时,第二驱动器221驱动齿条223直线移动,以使齿条223和齿轮222啮合运动,进而使得齿轮222绕第一旋转轴线L1旋转,如此,磁吸主体211可在齿轮222的带动下绕第一旋转轴线L1旋转,从而使得磁吸件21上的第一锁扣213相对于第二锁扣111锁定或者相对于第二锁扣111解锁。在另一些实现方式中,当磁吸主体211通过直线移动的方式来实现第一锁扣213和第二锁扣111的锁定或解锁,第二驱动结构22可以是直线电机、气缸、电缸、由旋转电机和螺杆机构组合形成的组合机构等。
通过采用上述技术方案,通过第二驱动结构22来驱动第一锁扣213和第二锁扣111之间的锁定或解锁,可提高除铁装置100的自动化程度,进而可提高除铁装置100的工作效率。
在此需要说明的是,第二驱动结构22也可电性连接于上述的控制装置,从而可通过控 制装置发送操控指令来控制第二驱动结构22,以使第二驱动结构22驱动第一锁扣213和第二锁扣111锁定或解锁,自动化程度较高。
在一些实施例中,请一并参阅图15至图18,图15示出了除铁装置100在下文中的接料盘60位于第一位置时的部分示意图,图16为图15的局部放大图,图17示出了除铁装置100在下文中的接料盘60位于第二位置时的部分示意图,图18为图17的局部放大图。除铁腔11具有供磁吸件21进出的第一开口1101,清洁腔12具有供磁吸件21进出的第二开口1201。其中,本实施例中所述的第一开口1101、第二开口1201均与上述各实施例中涉及的第一开口1101、第二开口1201相同,在此不再重复赘述。除铁机构20还包括第三驱动结构23,除铁装置100还包括第四驱动结构30。第三驱动结构23用于驱动磁吸件21运动,以驱动磁吸件21在第一开口1101的一侧和第二开口1201的一侧之间运动。第四驱动结构30用于驱动磁吸件21进出除铁腔11或进出清洁腔12。
可以理解的是,第三驱动结构23用于驱动磁吸件21在第一开口1101沿第一方向Y上的一侧和第二开口1201沿第一方向Y上的一侧之间运动,即,第三驱动结构23可将磁吸件21从第一开口1101沿第一方向Y的一侧驱动至第二开口1201沿第一方向Y上的一侧,还可将磁吸件21从第二开口1201沿第一方向Y上的一侧驱动至第一开口1101沿第一方向Y上的一侧。第四驱动结构30用于驱动磁吸件21沿第一方向Y运动,以使磁吸件21进出除铁腔11或进出清洁腔12。
具体地,除铁装置100工作过程中,可先将磁吸件21置于第一开口1101沿第一方向Y的一侧,并通过第四驱动结构30驱动磁吸件21沿第一方向Y运动,以使磁吸件21沿第一方向Y通过第一开口1101伸入除铁腔11内。待磁吸件21完成磁吸除铁腔11内的金属杂质的工作后,通过第四驱动结构30驱动磁吸件21沿第一方向Y运动,以使磁吸件21沿第一方向Y移出除铁腔11且运动至第一开口1101沿第一方向Y的一侧。随后,通过第三驱动结构23驱动磁吸件21从第一开口1101沿第一方向Y上的一侧驱动至第二开口1201沿第一方向Y上的一侧。然后,通过第四驱动结构30驱动磁吸件21沿第一方向Y运动,以使磁吸件21沿第一方向Y通过第二开口1201伸入清洁腔12内,以进行清洁。之后,第四驱动结构30驱动磁吸件21沿第一方向Y移出清洁腔12,以驱动磁吸件21运动至第二开口1201沿第一方向Y上的一侧,第三驱动结构23将磁吸件21从第二开口1201沿第一方向Y的一侧驱动至第一开口1101沿第一方向Y的一侧,第四驱动结构30驱动磁吸件21沿第一方向Y运动,以使磁吸件21沿第一方向Y伸入除铁腔11磁吸金属杂质……以此类推,第三驱动结构23和第四驱动结构30交替工作,从而实现磁吸件21在除铁腔11和清洁腔12之间运动。
可以理解的是,第四驱动结构30用于驱动磁吸件21沿第一方向Y运动,也即是用于驱动磁吸件21直线运动,则第四驱动结构30可以是气缸、电缸、由旋转电机和螺杆机构组合形成的组合机构等用于输出直线驱动力的部件或组件。
在一些实现方式中,第三驱动结构23用于驱动磁吸件21绕第二旋转轴线L2旋转,如图2所示,从而将磁吸件21在第一开口1101沿第一方向Y上的一侧和第二开口1201沿第一方向Y上的一侧之间驱动。此时,第三驱动结构23可以是旋转电机、由旋转电机和传动件组合形成的组合机构、由旋转电机和减速机组合形成的组合机构等部件或组件。其中,第二旋转轴线L2平行于第一方向Y,也平行于第一旋转轴线L1。示例性地,如图2和图14所示,除铁机构20还包括安装座24,安装座24连接于第三驱动结构23的输出端,并能够在第三驱动结构23的驱动下绕第二旋转轴线L2旋转。磁吸件21连接于第二驱动结构22的输出端,第二驱动结构22设置于安装座24,并能够在第三驱动结构23的驱动下随安装座24一并绕第二旋转轴线L2旋转。在另一些实现方式中,第三驱动结构23用于驱动磁吸件21直线运动,以将磁吸件21在第一开口1101沿第一方向Y上的一侧和第二开口1201沿第一方向Y上的一侧之间驱动。此时,第三驱动结构23可以是直线电机、电缸、气缸等用于输出直线驱动力的部件或组件。
通过采用上述技术方案,使得第三驱动结构23和第四驱动结构30可交替驱动磁吸件21运动,从而实现磁吸件21在除铁腔11和清洁腔12之间运动的效果,且可使得磁吸件21的运动自动化较高,也即是提高了除铁装置100的自动化性能,以有助于提高除铁装置100的工作效率。
在此需要补充说明的是,第三驱动结构23和第四驱动结构30均可电性连接于控制装置,以在控制装置的控制下对磁吸件21进行驱动,如此可实现磁吸件21的自动运动。
以上,本申请实施例提供的除铁装置100,可自动实现磁吸件21在除铁腔11内对浆料中的金属杂质的磁吸工作,还可自动实现磁吸件21在清洁腔12内的清洁工作,从而使得除铁装置100具有较高的自动化性能,以有助于提高除铁装置100的工作效率。
在一些实施例中,请一并参阅图15和图16,除铁装置100还包括接料盘60,接料盘60能够同时位于第一开口1101的一侧和第二开口1201的一侧,以承接从磁吸件21流出的浆料或金属杂质。
具体地,当磁吸件21移出除铁腔11,以位于第一开口1101沿第一方向Y的一侧,或者当磁吸件21移出清洁腔12,以位于第二开口1201沿第一方向Y的一侧时,接料盘60可位于第一开口1101沿第一方向Y的一侧,且位于第二开口1201沿第一方向Y的一侧,并且,接料盘60还位于除铁腔11和磁吸件21沿第一方向Y之间的位置,且还位于清洁腔12和磁吸件21沿第一方向Y之间的位置。示例性地,如图15和图16所示,第一方向Y平行于图中示意的上下方向,此时磁吸件21位于清洁腔12的上方,也即是位于第二开口1201沿第一方向Y的一侧。并且,接料盘60位于磁吸件21的下方,且位于第一开口1101和第二开口1201的上方。这样,当磁吸件21上的浆料和/或金属杂质流下时,接料盘60可承接该浆料和/或金属杂质,当磁吸件21在第一开口1101的一侧和第二开口1201的一侧之间运动的过程中,如果磁吸件21上的浆料和/或金属杂质在离心率下甩出时,也可由接料盘60承接。
因此,通过采用上述技术方案,以使接料盘60可在磁吸件21移出除铁腔11和清洁腔12的状态下承接磁吸件21上的浆料和/或金属杂质,如此可改善磁吸件21上的浆料和/或金属杂质甩出除铁装置100外的问题,从而可维持除铁装置100在工作过程中的整洁。
在一些实施例中,请一并参阅图15至图18,接料盘60能够在第一位置和第二位置之间运动,接料盘60在第一位置时用于承接浆料和/或金属杂质,接料盘60在第二位置时能够供磁吸件21进出除铁腔11或进出清洁腔12。
在磁吸件21同时移出除铁腔11和清洁腔12后,接料盘60可运动至第一位置,如图15和图16所示,此时接料盘60同时位于第一开口1101沿第一方向Y的一侧和第二开口1201沿第一方向Y的一侧,且接料盘60还同时位于除铁腔11和磁吸件21沿第一方向Y之间的位置和清洁腔12和磁吸件21沿第一方向Y之间的位置。并且,接料盘60沿第一方向Y的一侧同时正对于第一开口1101和第二开口1201,接料盘60沿第一方向Y的另一侧正对于磁吸件21。如此,接料盘60可用于承接从磁吸件21流出的浆料和/或金属杂质。需要说明的是,此时接料盘60阻挡了第一开口1101和第二开口1201,如图15和图16所示,则磁吸件21难以伸入除铁腔11或清洁腔12。可以理解的是,第一位置是指第一开口1101沿第一方向Y的一侧和第二开口1201沿第一方向Y的一侧,且正对于第一开口1101和第二开口1201的位置。
当接料盘60运动至第二位置时,如图17和图18所示,接料盘60避开第一开口1101和第二开口1201,则磁吸件21可顺利地进出除铁腔11或进出清洁腔12。示例性地,在一些实施例中,如图18所示,此时接料盘60还可位于第一开口1101沿第一方向Y的一侧和第二开口1201沿第一方向Y的一侧,但是接料盘60并没有沿第一方向Y正对于第一开口1101和第二开口1201,也即是接料盘60避开第一开口1101和第二开口1201。在另一些实施例中,此时接料盘60可不位于第一开口1101沿第一方向Y的一侧和第二开口1201沿第一方向Y的一侧。
通过采用上述技术方案,使得接料盘60可在第一位置和第二位置之间运动。具体地,接料盘60能够在磁吸件21从除铁腔11或清洁腔12移出后运动至第一位置,以承接从磁吸件21流出的浆料和/或金属杂质。接料盘60还能够在磁吸件21需要伸入除铁腔11或清洁腔12时运动至第二位置,以避开第一开口1101和第二开口1201,便于磁吸件21伸入除铁腔11或清洁腔12。如此设置,能够在磁吸件21运动的过程中较好地承接从磁吸件21流出的浆料或金属杂质,同时还可改善接料盘60对磁吸件21的运动产生干涉的问题。
在一些实施例中,请一并参阅图15至图18,除铁装置100还包括滑轨70,接料盘60可沿着滑轨70滑动,从而在第一位置和第二位置之间切换,如此可提高接料盘60的运动灵活性和效率。
在一些实施例中,请一并参阅图2、图3和图14,清洁机构10包括多个除铁腔11和多个清洁腔12,各除铁腔11和各清洁腔12沿圆周方向交替分布。除铁机构20包括多个磁吸件21,多个磁吸件21沿圆周方向间隔分布。并且,各磁吸件21能够绕第二旋转轴线L2旋转,以交替地旋转至对应的除铁腔11沿第一方向Y的一侧和对应的清洁腔12沿第一方向Y的一侧。磁吸件21能够沿第一方向Y进出除铁腔11,也能够沿第一方向Y进出清洁腔12。其中,第二旋转轴线L2平行于第一方向Y,且平行于磁吸件21进出除铁腔11的方向,以及磁吸件21进出清洁腔12的方向。
其中,这里所述的第二旋转轴线L2和以上各实施例中涉及的第二旋转轴线L2相同。
其中,“各除铁腔11和各清洁腔12沿圆周方向交替分布”和“多个磁吸件21沿圆周方向间隔分布”中的圆周方向均垂直于第二旋转轴线L2,且垂直于第一方向Y。
其中,除铁腔11的数量和清洁腔12的数量相同。磁吸件21的数量和除铁腔11的数量相同,且多个磁吸件21和多个除铁腔11一一对应设置。相应地,清洁腔12的数量和磁吸件21的数量也相同,且多个磁吸件21和多个清洁腔12一一对应设置。
通过采用上述技术方案,多个磁吸件21可一一对应地伸入多个除铁腔11内,从而使得多个磁吸件21均可磁吸对应的除铁腔11内的金属杂质。待磁吸件21完成对金属杂质的磁吸工作后,多个磁吸件21可一一对应地从多个除铁腔11内移出,并一一对应地伸入多个清洁腔12内,从而实现磁吸件21的清洁。如此设置,多个清洁腔12、多个除铁腔11和多个磁吸件21的设置,使得除铁装置100可一次性完成多个除铁腔11内的浆料的金属杂质去除工作,还可一次性完成多个磁吸件21的清洁工作,如此可以提高除铁装置100的工作效率。
在一些实施例中,请一并参阅图1、图2、图4、图19和图20,且结合其他附图,图19示出了本申请一些实施例提供的除铁装置100在另一个视角的立体示意图,图20示出了图19的局部放大图。除铁腔11具有第一过料口1102和第二过料口1103,第一过料口1102和第二过料口1103中的任意一者用于供浆料进入,另一者用于供浆料流出。清洁机构10还包括第一汇流管道15和第二汇流管道16,多个除铁腔11的第一过料口1102连通于第一汇流管道15,多个除铁腔11的第二过料口1103连通于第二汇流管道16。
可以理解的是,第一汇流管道15通过第一过料口1102连通于多个除铁腔11的内腔,且第二汇流管道16通过第二过料口1103连通于多个除铁腔11的内腔。基于此,当第一过料口1102为浆料的进口时,外部的浆料可先进入第一汇流管道15,然后分别通过多个除铁腔11的第一过料口1102进入对应的除铁腔11内。当磁吸件21完成对除铁腔11内的浆料的金属杂质去除工作后,各除铁腔11内的浆料通过对应的第二过料口1103流出至第二汇流管道16内,最后流出至指定的位置。反之,当第二过料口1103为浆料的出口时,外部的浆料可先进入第二汇流管道16,然后分别通过多个除铁腔11的第二过料口1103进入对应的除铁腔11内。当磁吸件21完成对除铁腔11内的浆料的金属杂质去除工作后,各除铁腔11内的浆料通过对应的第一过料口1102流出至第一汇流管道15内,最后流出至指定的位置。
可以理解的是,浆料先汇聚在第一汇流管道15,然后再分别流入多个除铁腔11内。 除铁腔11内的浆料完成金属杂质去除工作后,多个除铁腔11内的浆料先汇聚至第二汇流管道16内,然后再流出至指定的位置。反之,浆料也可先汇聚在第二汇流管道16,然后再分别流入多个除铁腔11内。除铁腔11内的浆料完成金属杂质去除工作后,多个除铁腔11内的浆料先汇聚至第一汇流管道15内,然后再流出至指定的位置。
通过采用上述技术方案,通过第一汇流管道15和第二汇流管道16实现对多个除铁腔11内的浆料的汇流,而无需每个除铁腔11都通过各自的管道连接至外部的用于输入浆料和输出浆料的装置,如此简化了除铁腔11的浆料流通的管道设计,进而简化了除铁装置100。并且,第一汇流管道15和第二汇流管道16的汇流作用,使得浆料能够快速地进入多个除铁腔11内,且多个除铁腔11内的浆料也可快速地流出,从而有助于提高浆料的金属杂质去除效果。
在一些实施例中,请一并参阅图19和图20,第一汇流管道15呈环形,且环设于多个除铁腔11和清洁腔12外。
通过采用上述技术方案,以使第一汇流管道15环设于多个清洁腔12和多个除铁腔11外,可使得第一汇流管道15、第二汇流管道16、清洁腔12、除铁腔11等之间较为紧凑,如此可提高除铁装置100的结构紧凑性,以实现除铁装置100的小型化设计。
在一些实施例中,请一并参阅图1和图2,除铁装置100还包括泄压管道50,泄压管道50连接于除铁腔11,并用于泄压。
其中,泄压管道50可以是一个管道,也可以由多个管道依次连接形成。
可以理解的是,泄压管道50连接于除铁腔11,且连通于除铁腔11的内腔,并且,泄压管道50还可与外部环境连通。如此,除铁腔11内的气体可通过泄压管道50排出外部环境,从而使得除铁腔11的内腔和外部环境之间具有较小的压力差。
通过采用上述技术方案,以使泄压管道50可对除铁腔11实现泄压效果,这样可使得除铁腔11内和外部环境之间的压力相差不大,利于浆料在除铁腔11内灵活地流动,从而便于磁吸件21对除铁腔11内的浆料中的金属杂质进行磁吸工作。基于此,可改善除铁腔11内由于压力过大导致浆料难以流动,进而致使磁吸件21无法顺利地进行金属杂质的磁吸工作的问题。
在此需要补充的是,当清洁机构10包括多个除铁腔11时,每个除铁腔11可连接一个单独的泄压管道50,以进行单独泄压。当然,泄压管道50也可同时连接于多个除铁腔11,以同时对多个除铁腔11进行泄压,如此简化了泄压管道50在除铁装置100内的布置,以简化了除铁装置100的结构。
在一些实施例中,请一并参阅图1和图2,清洁机构10的数量为多个,多个清洁机构10的除铁腔11依次连通。
可以理解的是,当浆料通入除铁装置100时,浆料可先通入第一个清洁机构10的除铁腔11,并通过磁吸件21的金属杂质磁吸工作,然后再通入第二个清洁机构10的除铁腔11,并通过磁吸件21的金属杂质磁吸工作……依次类推,浆料最后通过最后一个清洁机构10的除铁腔11,并通过磁吸件21的金属杂质磁吸工作,再流出除铁装置100外。
通过采用上述技术方案,以使浆料可依次通入多个清洁机构10的除铁腔11,以依次通过磁吸件21进行金属杂质去除工作,从而可提高浆料的金属杂质去除效果。
在一些实施例中,除铁机构20的数量也可以为多个,并且,多个清洁机构10和多个除铁机构20一一对应设置,各除铁机构20的磁吸件21用于磁吸各清洁机构10上的除铁腔11内的金属杂质。如此设置,多个除铁机构20的磁吸件21可对应用于给多个清洁机构10的除铁腔11内的金属杂质,从而可提高浆料的清洁效率。
在此需要补充的是,除铁机构20的数量为多个,则第三驱动结构23的数量为多个,各除铁机构20的第三驱动结构23用于驱动对应的除铁机构20的磁吸件21。并且,第四驱动结构30可一并驱动多个除铁机构20的第二驱动结构22、第三驱动结构23和磁吸件21沿第一方向Y运动。
请一并参阅图1、图2和图21,图21示出了浆料制作设备200和除铁装置100的配合示意图。本申请实施例第二方面提供了一种浆料制作系统,该浆料制作系统包括除铁装置100。
可以理解的是,浆料制作系统还包括浆料制作设备200,浆料制作设备200用于制作产出浆料。除铁装置100的除铁腔11连通于浆料制作设备200的第二过料口1103。基于此,浆料制作系统在工作过程中,浆料制作设备200制作产出浆料,并将浆料输送至除铁装置100的除铁腔11内,除铁装置100的磁吸件21对通入除铁腔11内的浆料中的金属杂质进行磁吸,以实现对浆料的清洁,将浆料从除铁腔11输送至预设工位。例如,在一些实施例中,当浆料制作系统的浆料用于制作电池的极片时,该预设工位可以是用于制作极片的工位。
通过采用上述技术方案,由于采用了上述各实施例涉及的除铁装置100,同样无需在磁吸件21磁吸较多金属杂质后进行磁吸件21的更换,便可使得磁吸件21在再次伸入除铁腔11中时能够以较佳的磁吸能力再次进行金属杂质的磁吸工作,即减少了磁吸件21的更换。并且,也无需人工过多干预磁吸件21的磁吸工作和磁吸件21的清洁工作,节省了人力付出。从而,除铁装置100具有较高的自动化性能,进而提高了除铁装置100的工作效率。相应地,浆料制作系统具有较高的自动化性能和较高的工作效率。
请一并参阅图1、图2和图22,图22示出了金属杂质去除方法的流程图。本申请实施例第三方面提供了一种金属杂质去除方法,应用于以上各个实施例涉及的除铁装置100。该金属杂质去除方法包括以下步骤:
S10、驱动磁吸件21进入除铁腔11内,并再除铁腔11中通入浆料;
本实施例中,当除铁腔11内通入浆料后,磁吸件21可通过其磁吸性能磁吸浆料中的金属杂质,从而实现除铁腔11内的浆料的清洁工作。
S20、将磁吸件21从除铁腔11驱动至清洁腔12内,以对磁吸件21进行清洁。
本实施例中,当磁吸件21完成除铁腔11内的浆料的清洁工作之后,再将磁吸件21从除铁腔11移出,随后将磁吸件21伸入清洁腔12内进行清洁,如此可使得磁吸件21可不断地维持较高的磁吸能力,以不断地对通入除铁腔11内的浆料的金属杂质进行磁吸工作。
通过采用上述技术方案,通过磁吸件21可运动至除铁腔11内或清洁腔12内,能够交替地实现磁吸件21对金属杂质的磁吸工作或磁吸件21的清洁工作。这样,无需在磁吸件21磁吸较多金属杂质后进行磁吸件21的更换,便可使得磁吸件21在再次伸入除铁腔11中时能够以较佳的磁吸能力再次进行金属杂质的磁吸工作,即减少了磁吸件21的更换。并且,也无需人工过多干预磁吸件21的磁吸工作和磁吸件21的清洁工作,节省了人力付出。从而,除铁装置100具有较高的自动化性能,进而提高了除铁装置100的工作效率。相应地,可使得金属杂质的去除方法具有较高的自动化性能和工作效率。
在一些实施例中,请一并参阅图2至图7,在步骤S20之后,还包括以下步骤:
S30、将磁吸件21从清洁腔12移出,并通过刮件13将磁吸件21上的金属杂质刮下至清洁腔12中。
本实施例中,通过刮件13将磁吸件21上的金属杂质刮下至清洁腔12内,可有效实现对磁吸件21的清洁,使得磁吸件21的清洁工作十分简单,易于实现。这样,有助于提高磁吸件21的清洁效率,进而能够提高浆料的清洁效率和产能。
作为本申请的其中一个实施例,除铁装置100包括多个清洁机构10和多个除铁机构20,多个清洁机构10和多个除铁机构20一一对应设置。每个清洁机构10包括多个除铁腔11和多个清洁腔12,每个清洁机构10的各除铁腔11和各清洁腔12交替地沿圆周方向依次分布。每个除铁机构20包括多个磁吸件21,每个除铁机构20的多个磁吸件21沿圆周方向依次分布。并且,多个清洁机构10的除铁腔11依次连通。
除铁装置100工作时,每个除铁机构20的多个磁吸件21一一对应地伸入对应的清洁机构10的多个除铁腔11内,浆料依次通过多个清洁机构10的除铁腔11,并依次得到多个 除铁机构20的金属杂质去除工作。然后,每个除铁机构20的磁吸件21移出对应的除铁腔11,并伸入对应的清洁腔12内进行清洁工作。随后,每个除铁机构20的磁吸件21又对应的清洁腔12移出,再伸入对应的除铁腔11内,并且,更换浆料,从而实现下一批浆料的金属杂质去除工作。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (26)

  1. 一种除铁装置(100),其中,包括:
    清洁机构(10),包括除铁腔(11)和清洁腔(12),所述除铁腔(11)用于供浆料通过;
    除铁机构(20),包括可交替地运动至所述除铁腔(11)内和所述清洁腔(12)内的磁吸件(21),所述磁吸件(21)能够在所述除铁腔(11)内磁吸所述浆料中的金属杂质,还能够在所述清洁腔(12)内进行清洁。
  2. 根据权利要求1所述的除铁装置(100),其中,所述清洁机构(10)还包括刮件(13),所述刮件(13)用于将所述磁吸件(21)上的所述金属杂质刮下至所述清洁腔(12)中。
  3. 根据权利要求2所述的除铁装置(100),其中,所述刮件(13)包括多个刮部(131);多个所述刮部(131)能够相向运动,以抱住所述磁吸件(21);所述磁吸件(21)能够沿进出所述清洁腔(12)的方向运动,以在移出所述清洁腔(12)时供所述刮部(131)刮下所述金属杂质;多个所述刮部(131)还能够背向运动。
  4. 根据权利要求3所述的除铁装置(100),其中,多个所述刮部(131)限定出用于抱住所述磁吸件(21)的通槽(1301),所述通槽(1301)的内周侧设有凸起结构(1311),所述刮部(131)通过所述凸起结构(1311)抵持所述磁吸件(21)。
  5. 根据权利要求4所述的除铁装置(100),其中,所述凸起结构(1311)为设于所述刮部的微结构,或者,所述凸起结构(1311)为缓冲结构。
  6. 根据权利要求3-5任一项所述的除铁装置(100),其中,所述清洁机构(10)还包括第一驱动结构(14),所述第一驱动结构(14)用于驱动多个所述刮部(131)相向运动或背向运动。
  7. 根据权利要求6所述的除铁装置(100),其中,所述第一驱动结构(14)包括第一驱动器(141)和驱动座(142);所述驱动座(142)开设有多个滑槽(1421),多个所述刮部(131)能够对应地沿着多个所述滑槽(1421)滑动,以相向运动或背向运动;所述第一驱动器(141)用于驱动所述驱动座(142)运动,以使所述刮部(131)沿着所述滑槽(1421)滑动。
  8. 根据权利要求1-7任一项所述的除铁装置(100),其中,所述除铁装置(100)还包括连接于所述清洁腔(12)的排污管道(40),所述排污管道(40)用于将所述清洁腔(12)内的金属杂质排出。
  9. 根据权利要求1-8任一项所述的除铁装置(100),其中,所述除铁腔(11)的内腔呈圆柱状,所述磁吸件(21)呈轴状,且所述除铁腔(11)的内腔的直径与所述磁吸件(21)的直径之差小于50mm。
  10. 根据权利要求1-9任一项所述的除铁装置(100),其中,所述除铁腔(11)具有第一过料口(1102),所述第一过料口(1102)设于所述除铁腔(11)沿所述磁吸件(21)进出所述除铁腔(11)的方向上的端部,所述第一过料口(1102)能够供所述浆料进入。
  11. 根据权利要求10所述的除铁装置(100),其中,所述除铁腔(11)还具有第二过料口(1103),所述第一过料口(1102)和所述第二过料口(1103)分别设于所述除铁腔(11)沿所述磁吸件(21)进出所述除铁腔(11)的方向上的两端,且所述第一过料口(1102)和所述第二过料口(1103)中的任意一者用于供所述浆料进入,另一者用于供所述浆料流出。
  12. 根据权利要求1-11任一项所述的除铁装置(100),其中,所述除铁腔(11)具有供所述磁吸件(21)进出的第一开口(1101);所述磁吸件(21)包括用于磁吸所述金属杂质的磁吸主体(211)和设于所述磁吸主体(211)的密封件(212),所述密封件(212)用 于在所述磁吸主体(211)进入所述除铁腔(11)内时密封所述第一开口(1101)。
  13. 根据权利要求12所述的除铁装置(100),其中,所述密封件(212)和/或所述磁吸主体设置有第一锁扣(213),所述除铁腔(11)设置有第二锁扣(111);所述第一锁扣(213)能够与所述第二锁扣(111)锁定,以限制所述磁吸主体(211)移出所述除铁腔(11);所述第一锁扣(213)还能够与所述第二锁扣(111)解锁,以供所述磁吸主体(211)移出所述除铁腔(11)。
  14. 根据权利要求13所述的除铁装置(100),其中,所述第二锁扣(111)设置有锁槽(1104),所述磁吸主体(211)能够绕第一旋转轴线(L1)旋转,以供所述第一锁扣(213)旋进并沿第一方向(Y)限位于所述锁槽(1104)内或者旋出所述锁槽(1104);所述第一方向(Y)平行于所述磁吸主体(211)进出所述除铁腔(11)的方向,且平行于所述第一旋转轴线(L1)。
  15. 根据权利要求13或14所述的除铁装置(100),其中,所述除铁机构(20)还包括第二驱动结构(22),所述第二驱动结构(22)用于驱动所述磁吸主体(211)运动,以驱动所述第一锁扣(213)相对于所述第二锁扣(111)锁定或解锁。
  16. 根据权利要求1-15任一项所述的除铁装置(100),其中,所述除铁腔(11)具有供所述磁吸件(21)进出的第一开口(1101),所述清洁腔(12)具有供所述磁吸件(12)进出的第二开口(1201);
    所述除铁机构(20)还包括第三驱动结构(23),所述除铁装置(100)还包括第四驱动结构(30);所述第三驱动结构(23)用于驱动所述磁吸件(21)运动,以驱动所述磁吸件(21)在所述第一开口(1101)的一侧和所述第二开口(1201)的一侧之间运动;所述第四驱动结构(30)用于驱动所述磁吸件(21)进出所述除铁腔(11)或进出所述清洁腔(12)。
  17. 根据权利要求16所述的除铁装置(100),其中,所述除铁装置(100)还包括接料盘(60),所述接料盘(60)能够同时位于所述第一开口(1101)的一侧和所述第二开口(1201)的一侧,以承接从所述磁吸件(21)流出的浆料和/或所述金属杂质。
  18. 根据权利要求17所述的除铁装置(100),其中,所述接料盘(60)能够在第一位置和第二位置之间运动;所述接料盘(60)在所述第一位置时用于承接所述浆料和/或所述金属杂质,所述接料盘(60)在所述第二位置时能够供所述磁吸件(21)进出所述除铁腔(11)或进出所述清洁腔(12)。
  19. 根据权利要求1-18任一项所述的除铁装置(100),其中,所述清洁机构(10)包括多个所述除铁腔(11)和多个所述清洁腔(12),各所述除铁腔(11)和各所述清洁腔(12)沿圆周方向交替分布;所述除铁机构(20)包括多个所述磁吸件(21),各所述磁吸件(21)均能够绕第二旋转轴线(L2)旋转,以交替地旋转至对应的所述除铁腔(11)沿第一方向(Y)的一侧和对应的所述清洁腔(12)沿所述第一方向(Y)的一侧;所述磁吸件(21)能够沿所述第一方向(Y)进出所述除铁腔(11)或进出所述清洁腔(12),所述第二旋转轴线(L2)平行于所述第一方向(Y)。
  20. 根据权利要求19所述的除铁装置(100),其中,所述除铁腔(11)具有第一过料口(1102)和第二过料口(1103),所述第一过料口(1102)和所述第二过料口(1103)中的任意一者用于供所述浆料进入,另一者用于供所述浆料流出;所述清洁机构(10)还包括第一汇流管道(15)和第二汇流管道(16),多个所述除铁腔(11)的所述第一过料口(1102)连通于所述第一汇流管道(15),多个所述除铁腔(11)的所述第二过料口(1103)连通于所述第二汇流管道(16)。
  21. 根据权利要求20所述的除铁装置(100),其中,所述第一汇流管道(15)呈环形,且环设于所述除铁腔(11)和所述清洁腔(12)外。
  22. 根据权利要求1-21任一项所述的除铁装置(100),其中,所述除铁装置(100)还包括连接于所述除铁腔(11)的泄压管道(50),所述泄压管道(50)用于泄压。
  23. 根据权利要求1-22任一项所述的除铁装置(100),其中,所述清洁机构(10)的数量为多个,多个所述清洁机构(10)的所述除铁腔(11)依次连通。
  24. 一种浆料制作系统,其中,包括根据权利要求1-23任一项所述的除铁装置(100)。
  25. 一种金属杂质去除方法,应用于根据权利要求1-24任一项所述的除铁装置(100);其中,包括以下步骤:
    驱动磁吸件(21)进入除铁腔(11)内,并在所述除铁腔(11)中通入浆料;
    将所述磁吸件(21)从所述除铁腔(11)驱动至清洁腔(12)内,以对所述磁吸件(21)清洁。
  26. 根据权利要求25所述的金属杂质去除方法,其中,所述将所述磁吸件(21)从所述除铁腔(11)驱动至清洁腔(12)内,以对所述磁吸件(21)清洁之后,还包括:
    将所述磁吸件(21)从所述清洁腔(12)移出,并通过刮件(13)将所述磁吸件(21)上的金属杂质刮下至所述清洁腔(12)中。
PCT/CN2023/073823 2023-01-30 2023-01-30 除铁装置、浆料制作系统及金属杂质去除方法 WO2024159355A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/073823 WO2024159355A1 (zh) 2023-01-30 2023-01-30 除铁装置、浆料制作系统及金属杂质去除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/073823 WO2024159355A1 (zh) 2023-01-30 2023-01-30 除铁装置、浆料制作系统及金属杂质去除方法

Publications (1)

Publication Number Publication Date
WO2024159355A1 true WO2024159355A1 (zh) 2024-08-08

Family

ID=92145660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073823 WO2024159355A1 (zh) 2023-01-30 2023-01-30 除铁装置、浆料制作系统及金属杂质去除方法

Country Status (1)

Country Link
WO (1) WO2024159355A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257698A (en) * 1991-02-26 1993-11-02 Sulzer Escher Wyss Gmbh Cleaner for stock suspensions
US20020042960A1 (en) * 2000-08-23 2002-04-18 Satoshi Hayashi Soldering iron cleaning apparatus
CN104128257A (zh) * 2014-08-03 2014-11-05 广西北流市智诚陶瓷自动化科技有限公司 多自由度磁力除铁装置
KR20160135141A (ko) * 2016-11-07 2016-11-25 박광현 작동 유체에 함유한 금속 이물을 제거하는 장치
KR102282402B1 (ko) * 2021-06-14 2021-07-27 형성산업(주) 탈철장치
WO2022021671A1 (zh) * 2020-07-29 2022-02-03 苏州康贝尔电子设备有限公司 一种正反双面清洁装置及输送装置
CN114534910A (zh) * 2022-02-09 2022-05-27 上海晋瑄智能设备制造有限公司 高效全自动除铁设备
CN114643127A (zh) * 2022-03-17 2022-06-21 广东奥瑞特新能源设备科技有限公司 一种自动清洁的磁棒除铁设备
CN114918040A (zh) * 2022-05-26 2022-08-19 宁波西磁科技发展股份有限公司 一种高粘度浆料自动除铁器
CN115228606A (zh) * 2022-07-21 2022-10-25 中山市宏唯自动化科技有限公司 浆料杂质去除装置及浆料杂质去除方法
CN115382664A (zh) * 2022-10-12 2022-11-25 厦门钜臣机电科技有限公司 一种浆料除铁机及其工作方法和自清洁方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257698A (en) * 1991-02-26 1993-11-02 Sulzer Escher Wyss Gmbh Cleaner for stock suspensions
US20020042960A1 (en) * 2000-08-23 2002-04-18 Satoshi Hayashi Soldering iron cleaning apparatus
CN104128257A (zh) * 2014-08-03 2014-11-05 广西北流市智诚陶瓷自动化科技有限公司 多自由度磁力除铁装置
KR20160135141A (ko) * 2016-11-07 2016-11-25 박광현 작동 유체에 함유한 금속 이물을 제거하는 장치
WO2022021671A1 (zh) * 2020-07-29 2022-02-03 苏州康贝尔电子设备有限公司 一种正反双面清洁装置及输送装置
KR102282402B1 (ko) * 2021-06-14 2021-07-27 형성산업(주) 탈철장치
CN114534910A (zh) * 2022-02-09 2022-05-27 上海晋瑄智能设备制造有限公司 高效全自动除铁设备
CN114643127A (zh) * 2022-03-17 2022-06-21 广东奥瑞特新能源设备科技有限公司 一种自动清洁的磁棒除铁设备
CN114918040A (zh) * 2022-05-26 2022-08-19 宁波西磁科技发展股份有限公司 一种高粘度浆料自动除铁器
CN115228606A (zh) * 2022-07-21 2022-10-25 中山市宏唯自动化科技有限公司 浆料杂质去除装置及浆料杂质去除方法
CN115382664A (zh) * 2022-10-12 2022-11-25 厦门钜臣机电科技有限公司 一种浆料除铁机及其工作方法和自清洁方法

Similar Documents

Publication Publication Date Title
WO2017124734A1 (zh) 连续换网器及换网装置和挤出机
WO2024159355A1 (zh) 除铁装置、浆料制作系统及金属杂质去除方法
CN110681209A (zh) 一种前置过滤器及前置过滤器冲洗转换装置
CN111603810B (zh) 一种刮渣机用浮渣除水系统
CN115626722A (zh) 一种工业污水用净化装置
CN210140445U (zh) 一种污水处理设备
CN112121512A (zh) 一种自动型工业污水处理装置
CN217829178U (zh) 过滤器
CN114180676B (zh) 一种净水设备
CN104857759B (zh) 一种滤板式过滤装置
CN115849475A (zh) 一种化工废液循环利用系统及其利用方法
CN217210542U (zh) 一种储球室中置的端盖式胶球清洗装置
CN215390635U (zh) 一种防堵塞振动筛
CN212862845U (zh) 一种新型螺杆输送机
CN114011147A (zh) 一种过滤装置及热水器
CN108714591B (zh) 一种研磨颗粒清洗装置
CN112704922A (zh) 一种过滤效果好的养鱼场尾水过滤装置
CN219091262U (zh) 一种泵体进水过滤器
CN110038332A (zh) 一种污水处理设备
CN217449441U (zh) 纯棉水刺无纺布滤尘自动清理装置
CN215798801U (zh) 污水净化装置
CN113244716B (zh) 一种气动直排式过滤器
CN217188536U (zh) 具有组合排布式多滤芯单元的空气过滤器
CN112833069B (zh) 一种具有分离液体杂质功能的智能液压阀及其使用方法
CN221524867U (zh) 一种隧道二衬混凝土振捣系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918945

Country of ref document: EP

Kind code of ref document: A1