WO2024133157A1 - Procédé de synthèse d'isophorone en phase liquide avec recyclage du catalyseur alcalin par électrodialyse - Google Patents

Procédé de synthèse d'isophorone en phase liquide avec recyclage du catalyseur alcalin par électrodialyse Download PDF

Info

Publication number
WO2024133157A1
WO2024133157A1 PCT/EP2023/086481 EP2023086481W WO2024133157A1 WO 2024133157 A1 WO2024133157 A1 WO 2024133157A1 EP 2023086481 W EP2023086481 W EP 2023086481W WO 2024133157 A1 WO2024133157 A1 WO 2024133157A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkaline
isophorone
aqueous phase
phase
reactor
Prior art date
Application number
PCT/EP2023/086481
Other languages
English (en)
Inventor
Christophe Ruppin
Claudine BOISSON
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2024133157A1 publication Critical patent/WO2024133157A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the present invention relates to a process for the liquid phase synthesis of isophorone by alkaline autocondensation of acetone comprising the treatment by electrodialysis of an aqueous effluent generated during the synthesis.
  • Isophorone (or 3,5,5-trimethylcyclohex-2-enone) is a cyclic a,p-unsaturated ketone of increasing use as a synthesis intermediate, in particular for the manufacture of isophorone diamine used as a hardener of epoxy resins, isophorone diisocyanate used as a polyurethane monomer, 3,5-xylenol used as a precursor of PCMX (antimicrobial agent), keto-isophorone, which is an intermediate in the synthesis of vitamin E and 3,5,5-trimethylcyclohexanol used as homosalate precursor (UV absorber).
  • Isophorone is also an excellent high boiling point solvent for many natural and synthetic resins. It is also used as a solvent in the paint, ink and varnish industry, and also in agrochemistry for the formulation of emulsifiable pesticide concentrates.
  • Isophorone is conventionally obtained by catalytic self-condensation of 3 molecules of acetone, according to the following reaction:
  • the reaction is carried out in the liquid phase or in the gas phase.
  • the synthesis can be carried out continuously in a tubular reactor without special mixing equipment by using very low weight concentrations of soda or potash.
  • the catalyst concentrations are less than 1% by weight, or even around 0.1% by weight relative to the total weight of the reaction mixture. This low concentration allows a monophasic mixture.
  • the synthesis can also be carried out by reactive distillation via the injection of acetone and an aqueous solution of soda or potash into a reactive distillation column so as to maintain a low concentration of soda or potash ( ⁇ 0.1 % by weight relative to the total weight of the reaction mixture) and reacting the acetone against the current with the soda or potash.
  • This process is described in documents FR 1 315 788, FR 2 271 191 and FR 2 328 686.
  • the autocondensation reaction of acetone and/or the hydrolysis of reaction intermediates and polycondensation by-products generates an alkaline aqueous effluent.
  • this effluent includes the water resulting from the self-condensation reaction of acetone into isophorone and contains small quantities of organic products (mainly isophorone). This effluent must undergo costly specific treatment to limit its environmental impact during its discharge.
  • the electrodialyzer comprises at least one ion exchange membrane comprising a matrix based on polymers comprising at least one fluorinated polymer or copolymer, preferably PVDF,
  • the electrodialyzer has a total active exchange surface of between 1 and 10 m 2 per ton of alkaline aqueous phase to be treated, and preferably between 2 and 5 m 2 per ton of alkaline aqueous phase to be treated,
  • the electrodialyzer comprises several electrodialysis units in parallel or in series,
  • the aqueous solution of alkaline hydroxide is an aqueous solution of sodium hydroxide or potassium hydroxide
  • the alkaline hydroxide concentration of the aqueous phase present within the reactor is greater than or equal to 50 g/L, preferably between 50 and 200 g/L, preferably between 80 and 150 g/L and more preferably between 100 and 150 g/L,
  • the invention also relates to the use of an electrodialyzer as defined above, to treat at least one aqueous alkaline effluent resulting from a process for the synthesis of isophorone by alkaline autocondensation of acetone in the liquid phase.
  • Step a) Condensation reaction of acetone within a reactor in an alkaline medium
  • the synthesis can be carried out by injection, preferably continuously, of a flow of an aqueous solution of alkaline hydroxide and of a flow of an organic solution comprising acetone through a reactor R.
  • the ratio of the weight flow rate of the flow of aqueous alkaline hydroxide solution fed (Qalkaline hydroxide) and the weight flow rate of the organic flow fed (Qorga) is between 0.25 and 1.0, preferably between 0.4 and 0.8 and more preferably between 0.5 and 0.7.
  • the concentration of the aqueous alkaline hydroxide solution in the feed can be between 5 and 40 g/L, preferably between 10 and 40 g/L, and more preferably between 15 and 35 g/L.
  • the streams can be preheated beforehand using heat exchangers.
  • the reaction temperature within the reactor can be between 180 and 250°C, and preferably between 200 and 230°C, and under an absolute pressure of between 30 and 50 bars, preferably between 35 and 45 bars, and even higher. preferably between 38 and 42 bars.
  • the reactor R is preferably a tubular reactor, and more particularly a tubular reactor in a vertical position. In addition, it can, where appropriate, be made up of several tubular reactors supplied in parallel.
  • the alkaline hydroxide concentration of the aqueous phase present within the reactor is greater than or equal to 50 g/L, preferably between 50 and 200 g/L, preferably between 80 and 150 g/L and more preferably between 100 and 150 g/L.
  • the reaction mixture is recovered at the outlet of the reactor and led to a distillation column.
  • the reaction mixture recovered at the outlet of the reactor is distilled through a column, possibly reactive.
  • the process comprises a reactive hydrolysis distillation, making it possible to hydrolyze heavy products.
  • the process can include two or three successive distillations, so as to purify at each distillation the fraction comprising mainly isophorone.
  • the process does not include reactive distillation, but a succession of non-reactive distillations.
  • the process comprises four to six successive distillations, so as to purify at each distillation the fraction comprising mainly isophorone. The heavy products isolated through these distillations can be recycled.
  • the unconverted acetone is recovered at the top of the column and the concentrated reaction crude is withdrawn at the bottom of the column.
  • the acetone recovered at the top of the column can be recycled to reactor R.
  • the concentrated reaction crude withdrawn at the bottom of the first distillation column is separated, preferably by decantation.
  • the alkaline aqueous phase can be separated from the isophorone-rich organic phase using a decanter.
  • the alkaline hydroxide possibly present in the organic phase rich in isophorone recovered in separation step c) can be neutralized.
  • This neutralization can be carried out by any technique known to those skilled in the art, but preferably by means of a mineral acid providing a buffer effect.
  • phosphoric acid is used.
  • the organic phase rich in isophorone recovered in the separation step, then optionally neutralized, is purified.
  • it is distilled, preferably under reduced pressure in order to extract mainly the polycondensation by-products at the bottom of the column and to recover at the top of the column a flow consisting mainly of isophorone.
  • the flow consisting mainly of isophorone recovered in the previous step can undergo several successive distillations so as to obtain a high degree of purification.
  • This processing step can be carried out in batch or continuously.
  • This alkaline aqueous phase is treated by electrodialysis in order to recover: -an aqueous phase having an alkaline hydroxide content greater than the alkaline hydroxide content of the aqueous phase recovered at the end of step c); and - an aqueous phase having an alkaline hydroxide content lower than the alkaline hydroxide content of the aqueous phase recovered at the end of step c).
  • the electrodialyzer makes it possible to obtain a phase enriched in catalyst and a phase depleted in catalyst.
  • Electrodialysis is carried out in any equipment known to those skilled in the art allowing the migration of ions through selective ion exchange membranes (anionic or cationic) under the action of an electric field applied perpendicular to the membranes.
  • the electrodialyzer comprises at least one electrodialysis unit comprising at least at least 2 electrodes: an anode and a cathode, and anionic and cationic membranes arranged alternately in parallel so as to constitute at least one concentration compartment and at least one compartment dilution.
  • the electrodialyzer is made up of several electrodialysis units in parallel or in series.
  • the alkaline cations cross the cationic membranes, denoted MEC below and the OH" anions cross the anionic membranes, denoted MEA below.
  • MEC cationic membranes
  • MEA anionic membranes
  • These ion exchange membranes comprise a polymer matrix on which are grafted with functional groups, preferably of the sulfonic type -(SO 3 ) _ or phosphoric type - (PO 3 ) 2- for the MEC and preferably of the alkyl ammonium type -(NR 3 ) + , -(NHRîf, -(NHzRf or alkylsulfonium -(SRîf for MEA; the R group(s), identical or different, designating a saturated Ci-Cg alkyl group.
  • functional groups preferably of the sulfonic type -(SO 3 ) _ or phosphoric type - (PO 3 ) 2- for the MEC and preferably of the alkyl ammonium type -(NR 3 ) + , -(NHRîf, -(NHzRf or alkylsulfonium -(SRîf for MEA; the R group(s), identical or different, designating a saturated Ci-Cg
  • the ion exchange membranes comprise matrices based on polymers which may in particular comprise fluorinated polymers or copolymers, including in particular PVDF.
  • the total active exchange surface area constituted by all the ion exchange membranes of the electrodialyzer is between 1 and 10 m 2 per ton of alkaline aqueous phase to be treated, and preferably between 2 and 5 m 2 per ton of alkaline aqueous phase to be treated.
  • a current density of between 20 and 200 mA/cm 2 and in particular of between 30 and 100 mA/cm 2 is applied to the electrodialyzer.
  • the electrodialyzer has a total active exchange surface of between 1 and 10 m 2 per ton of alkaline aqueous phase to be treated and a current density of between 20 and 200 mA/cm 2 .
  • the electrodialyzer has a total active exchange surface of between 2 and 5 m 2 per ton of alkaline aqueous phase to be treated and a current density of between 30 and 100 mA/cm 2 is applied to the electrodialyzer.
  • Electrodialysis treatment of aqueous effluents makes it possible to recycle the catalyst and thus avoid its loss in wastewater, and consequently the treatment of this wastewater. This treatment also makes it possible to eliminate excess water from the process.
  • This quantity of excess water corresponds to the water formed in the reactor minus the water consumed in the hydrolysis column, minus the water solubilized in the crude isophorone which is eliminated at the top of one of the columns to be distill later.
  • the aqueous flow depleted of catalyst at the electrodialysis outlet can be sent to an SE waste water treatment installation.
  • the aqueous phase enriched with catalyst from the electrodialyzer that is to say having an alkaline hydroxide content greater than the alkaline hydroxide content of the aqueous phase recovered at the end of step c) is recycled to the reaction stage.
  • the invention also relates to the use of an electrodialyzer as defined above to treat at least one alkaline aqueous effluent resulting from a process for the synthesis of isophorone by alkaline autocondensation of acetone in the liquid phase.
  • the aqueous phase enriched in alkaline catalyst obtained can be recycled at the reactor of the acetone autocondensation reaction.
  • aqueous effluent means any alkaline aqueous solution produced by the isophorone synthesis process.
  • the synthesis process is as defined above, that is to say it comprises steps a) to d) defined above.
  • the invention also relates to a process for treating at least one alkaline aqueous effluent as defined above resulting from a process for the synthesis of isophorone by alkaline autocondensation of acetone in the liquid phase as defined above, comprising a treatment step with an electrodialyzer as defined above.
  • Figure 1 represents an embodiment of the method according to the invention.
  • Acetone is introduced via line 1 into heat exchanger El.
  • the aqueous alkaline hydroxide solution is introduced via line 2 into heat exchanger E2.
  • the preheated flows are recovered in a pipe 3 and introduced into the tubular reactor R.
  • the reaction mixture from the tubular reactor R is introduced into the reactive hydrolysis distillation column D H via line 4.
  • the hydrolysis of the reaction mixture is carried out under reduced pressure.
  • the concentrated reaction crude is recovered at the bottom of the DH column and is brought to the decanter dl via line 6.
  • the decanter dl separates the aqueous phase from the organic phase.
  • the alkaline aqueous phase is eliminated via line 8.
  • This line 8 brings all or part of the aqueous phase to the electrodialyzer Ed.
  • the possible remaining aqueous phase, which is not brought to the electrodialyzer, is recycled as is to the electrodialyzer.
  • the reaction step via line 9 to line 10.
  • the alkaline aqueous phase is treated by electrodialysis within E in order to:
  • the organic phase from the decanter dl is brought to the neutralizer N via line 7.
  • the neutralized organic phase is brought to the distillation column Dl via line 11.
  • Distillation under reduced pressure using the distillation column Dl makes it possible to recover residual water and any light organic impurities at the top of the column Dl and at the bottom of the column a flow comprising mainly isophorone, which is transferred via line 12 to the distillation column D2.
  • the flow extracted at the top of column Dl is conducted via a pipe 13 to a decanter d 2 in order to separate an aqueous phase sent to waste water treatment S E and an organic phase returned to the reflux of column Dl and, the where appropriate, partly recycled in the Dnhydrolysis column via line 14 to line 15.
  • Distillation under reduced pressure using the distillation column D2 makes it possible to recover isophorone with a purity greater than 99% at the top of column D2 and polycondensation by-products C3nH(4n+) at the bottom of the column. 2)O. These by-products are recycled, all or part, via line 15 to the reactive column DH. The part of the recovered fraction comprising the polycondensation by-products C3nH(4n+2jO, which is not recycled is recovered (S L ).
  • the weight concentration of isophorone in the flow feeding Di is greater than 70%, preferably greater than 75%.
  • the weight concentration of isophorone in the flow feeding D2 is greater than 75%, preferably greater than 80%.
  • the alkaline aqueous phase flow rate at the outlet of the di decanter at the bottom of the DH hydrolysis column is 4.67 t/h and the weight concentrations of sodium hydroxide (catalyst) and isophorone of this aqueous phase are respectively 2.8% and 0.85%.
  • the consumption to feed the reaction stage of the isophorone synthesis process is 131 kg of sodium hydroxide and 4.3 m 3 of water per ton of pure isophorone produced, and the loss of isophorone contained in the alkaline aqueous phase is 39.7 kg per ton of pure isophorone.
  • the feed consumption of the reaction stage of the isophorone synthesis process is then 7 kg of sodium hydroxide (also taking into account the loss of NaOH solubilized in the raw isophorone flow and representing approximately 0 .25 kg per ton of pure isophorone).
  • the addition of sodium hydroxide being carried out in the form of an aqueous solution of sodium hydroxide with a concentration by weight of 30.5% the water consumption is then 16 liters of water per tonne of isophorone. pure.
  • the loss of isophorone contained in the purging of the alkaline aqueous phase represents 2.0 kg per ton of pure isophorone.
  • the alkaline aqueous phase flow of 4.67 t/h leaving the decanter dl is treated within an electrodialyzer powered by a constant direct electric current of 60 mA/cm 2 so as to eliminate an aqueous flow with a flow rate of 0.23 t/h depleted in NaOH and recovering a flow of 4.44 t/h of alkaline aqueous phase enriched with catalyst (NaOH) and recycled as is to feed the reaction stage.
  • the electrodialyzer is made up of 34 cells providing a surface exchange of 13.3m 2 .
  • the efficiency of the electrodialyzer is monitored by measuring the conductivity of the different soda aqueous phase flows: approximately 140 mS/cm for the concentrated alkaline aqueous phase (2.9% NaOH) and 16 mS/cm for the alkaline aqueous phase. diluted (0.3% NaOH).
  • the weight composition of the catalyst-depleted aqueous stream is 0.05% acetone, 0.85% isophorone, 0.3% NaOH and 98.8% water. This flow is directed towards SE wastewater treatment.
  • the weight concentrations of NaOH and isophorone of the aqueous solution enriched with catalyst are 2.9% and 0.85% respectively.
  • the consumption in feeding the reaction stage of the isophorone synthesis process is limited to 0.95 kg of NaOH (corresponding to 0.7 kg eliminated towards S E at the outlet of the electrodialysis and 0.25 kg of NaOH solubilized in the flow of crude isophorone) and 2 liters of water per ton of pure isophorone produced.
  • the loss of isophorone contained in the aqueous flow eliminated towards the waste water treatment is 2 kg per tonne of pure isophorone.
  • the invention therefore makes it possible to save:
  • the invention thus makes it possible to recycle 99.2% of the catalyst used in the isophorone synthesis process and 95% of the isophorone contained in the alkaline aqueous phase at the outlet of the hydrolysis column.
  • this process saves an amount of energy of 129 kWh compared to a process which would eliminate excess water ( ⁇ 230 kg) by a thermal evaporation process which would require 135 kWh; electrodialysis consuming only 6 kWh per ton of isophorone.
  • the quantity of water to be eliminated in the process according to the invention is between 200 and 250 kg per ton of isophorone, depending on the quantity of by-products formed, the rate of hydrolysis and the quantity of water entrained with the crude isophorone.
  • the weight concentration of water in the S E stream is greater than 98.5%, in addition to the residual catalyst, the remainder essentially corresponds to isophorone and traces of acetone.
  • a flow of acetone with a flow rate of 1.4 t/h and a flow of an aqueous solution comprising 30% catalyst and 70% water with a flow rate of 0.003 t/h are introduced into the reactor.
  • the reactor is also supplied by two recycling streams, defined below.
  • the flow rate of the reaction medium leaving the reactor is 14.8t/h.
  • the flow rate of the organic phase at the outlet of the reactive column and decanter is 1.28 t/h.
  • This organic phase contains more than 79% isophorone.
  • the flow rate of the purified isophorone fraction leaving the distillation column is lt/h.
  • the flow rate of the light fraction stream coming from the reactive column, which recycles this fraction to the reactor, is 9t/h.
  • the flow rate of the aqueous phase flow at the outlet of the reactive column and decanter is 4.67t/h.
  • This aqueous phase contains 2.8% catalyst, 0.9% organic compounds, the remainder being water. This aqueous phase is introduced into the electrodialyzer.
  • the flow rate of the catalyst-depleted phase flow is 0.23t/h.
  • the catalyst-depleted phase contains 0.9% organic compounds, 0.3% catalyst, the remainder being water.
  • the flow rate of the phase enriched with catalyst and recycled to the reactor feed is 4.44t/h.
  • the catalyst-enriched phase contains 2.9% catalyst, 0.9% organic compounds, the remainder being water.
  • the use of the electrodialyzer and the recycling of the catalyst-enriched phase allows reduced water and catalyst consumption (0.003t/h), a minimized volume of aqueous effluent (0.23t/h), a catalyst content in the effluent divided by 10 and reduced energy consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention porte sur un procédé de synthèse en phase liquide d'isophorone par autocondensation alcaline de l'acétone comprenant les étapes successives suivantes : a) réaction de condensation de l'acétone au sein d'un réacteur en milieu alcalin puis b) distillation, éventuellement réactive, du mélange réactionnel issu du réacteur, puis c) séparation du flux récupéré en pied de la colonne de distillation, éventuellement réactive, de l'étape b) de manière à séparer la phase aqueuse alcaline de la phase organique, puis d) extraction et/ou purification de la phase organique de manière à récupérer l'isophorone, caractérisé en ce que le procédé comporte les étapes successives suivantes : e) traitement par électrodialyse de la phase aqueuse alcaline récupérée à l'issue de l'étape c) f) recyclage vers le réacteur de l'étape a) de la phase aqueuse issue de l'électrodialyse qui présente une teneur en hydroxyde alcalin supérieure à la teneur en hydroxyde alcalin de la phase aqueuse récupérée à l'issue de l'étape c).

Description

Procédé de synthèse d'isophorone en phase liquide avec recyclage du catalyseur alcalin par électrodialyse
Domaine technique
La présente invention concerne un procédé de synthèse en phase liquide d'isophorone par autocondensation alcaline de l'acétone comprenant le traitement par électrodialyse d'un effluent aqueux généré lors de la synthèse.
Arrière-plan technique
L'isophorone (ou 3,5,5-triméthylcyclohex-2-énone) est une cétone cyclique a,p-insaturée d'utilisation croissante comme intermédiaire de synthèse, notamment pour la fabrication de l'isophorone diamine utilisée en tant que durcisseur de résines époxy, de l'isophorone diisocyanate utilisé en tant que monomère de polyuréthanes, du 3,5-xylénol utilisé comme précurseur du PCMX (agent antimicrobien), de la céto-isophorone, qui est un intermédiaire de synthèse de la vitamine E et du 3,5,5-triméthycyclohexanol utilisé en tant que précurseur de l'homosalate (absorbeur UV). L'isophorone est également un excellent solvant de haut point d'ébullition de nombreuses résines naturelles et synthétiques. Elle est également utilisée en tant que solvant dans l'industrie des peintures, des encres et des vernis, et aussi dans l'agrochimie pour la formulation de concentrés émulsifiables de pesticides.
L'isophorone est classiquement obtenue par autocondensation catalytique de 3 molécules d'acétone, selon la réaction suivante :
Figure imgf000003_0001
La réaction est opérée en phase liquide ou en phase gaz.
Les procédés en phase gaz décrits dans la littérature mettent en œuvre essentiellement des catalyseurs hétérogènes solides, alors que les procédés en phase liquide utilisent des systèmes catalytiques homogènes ou hétérogènes.
La synthèse de l'isophorone par condensation de l'acétone en phase liquide est réalisée quasi exclusivement dans des conditions alcalines à température élevée et sous haute pression ; la catalyse alcaline étant effectuée le plus souvent par mise en œuvre d'une solution aqueuse de soude ou de potasse.
Du fait de la faible solubilité de la base minérale dans l'acétone, il est recherché des procédés visant à favoriser le contact de l'acétone avec le catalyseur. Ainsi, il est connu du document US 2,344,226 de réaliser la synthèse en réacteur agité. Le document FR 1 238954 divulgue une synthèse utilisant un réacteur tubulaire avec garnissage interne. Le document US 2,399,976 divulgue une synthèse utilisant un réacteur tubulaire équipé d'un système de recirculation. Les documents CN 102367223 et CN 102516051 divulguent une synthèse utilisant un système de prémélange, tel qu'un mélangeur statique. Il est également connu du document FR 1042057 de remplacer la solution aqueuse alcaline par une solution alcoolique alcaline. La synthèse peut être opérée en continu en réacteur tubulaire sans équipement particulier de mélangeage via la mise en œuvre de très faibles concentrations pondérales de soude ou de potasse. Généralement, les concentrations en catalyseur sont inférieures à 1 % en poids, voire de l'ordre de 0,1 % en poids par rapport au poids total du mélange réactionnel. Cette faible concentration permet un mélange monophasique. Ces procédés sont décrits dans les documents FR 1 316 515, DD145096, EP 2 649 032, EP 2 707 352, EP 2 837 618.
La synthèse peut également être réalisée par distillation réactive via l'injection d'acétone et d'une solution aqueuse de soude ou de potasse dans une colonne de distillation réactive de façon à maintenir une faible concentration en soude ou en potasse (< 0,1 % en poids par rapport au poids total du mélange réactionnel) et à faire réagir l'acétone à contre-courant avec la soude ou la potasse. Ce procédé est décrit dans les documents FR 1 315 788, FR 2 271 191 et FR 2 328 686.
La réaction d'autocondensation de l'acétone et/ou l'hydrolyse des intermédiaires réactionnels et des sous-produits de polycondensation génère un effluent aqueux alcalin. Outre la solution aqueuse alcaline initiale mise en œuvre, cet effluent comprend l'eau résultant de la réaction d'autocondensation de l'acétone en isophorone et contient de faibles quantités de produits organiques (principalement l'isophorone). Cet effluent doit faire l'objet d'un traitement spécifique coûteux pour limiter son impact environnemental lors de son rejet.
Il est connu du document US 8,889,914 B2 un procédé dans lequel la phase aqueuse de la colonne d'hydrolyse est traitée par distillation et par évaporation flash, afin de recycler une partie des composés organiques et de l'eau contenue dans ce flux. Ce procédé permet de récupérer la majeure partie des organiques et de l'eau, mais pas le catalyseur. Ainsi, la totalité du catalyseur injecté dans la réaction est perdue. Le problème de gestion de l'effluent aqueux résiduel se pose toujours : il doit être neutralisé, puis les sels issus de cette neutralisation doivent être éliminés avant rejet de l'eau dans le milieu naturel.
Il existe donc un besoin pour un procédé de synthèse d'isophorone plus économique en réactif, plus économique en énergie et plus respectueux pour l'environnement. Le procédé recherché doit générer moins de déchets, sans pour autant perdre en sélectivité, ni en productivité.
Brève description de l'invention
La présente invention porte sur un procédé, de préférence continu, de synthèse en phase liquide d'isophorone par autocondensation alcaline de l'acétone comprenant les étapes successives suivantes : a) réaction de condensation de l'acétone au sein d'un réacteur en milieu alcalin puis b) distillation, éventuellement réactive, du mélange réactionnel issu du réacteur, puis c) séparation du flux récupéré en pied de la colonne de distillation, éventuellement réactive, de l'étape b) de manière à séparer la phase aqueuse alcaline de la phase organique, puis d) extraction et/ou purification de la phase organique de manière à récupérer l'isophorone, caractérisé en ce que le procédé comporte les étapes successives suivantes : e) traitement par électrodialyse, en continu ou en batch, de la phase aqueuse alcaline récupérée à l'issue de l'étape c) f) recyclage vers le réacteur de l'étape a) de la phase aqueuse issue de l'électrodialyse qui présente une teneur en hydroxyde alcalin supérieure à la teneur en hydroxyde alcalin de la phase aqueuse récupérée à l'issue de l'étape c). D'autres caractéristiques avantageuses du procédé selon l'invention sont précisées dans la suite :
-l'électrodialyseur comporte au moins une membrane échangeuse d'ions comprenant une matrice à base de polymères comprenant au moins un polymère ou copolymère fluoré, de préférence du PVDF,
-l'électrodialyseur présente une surface active totale d'échange comprise entre 1 et 10 m2 par tonne de phase aqueuse alcaline à traiter, et de préférence comprise entre 2 et 5 m2 par tonne de phase aqueuse alcaline à traiter,
-une densité de courant comprise entre 20 et 200 mA/cm2 et de préférence comprise entre 30 et 100 mA/cm2 est appliquée à l'électrodialyseur,
-l'électrodialyseur comprend plusieurs unités d'électrodialyse en parallèle ou en série,
-la solution aqueuse d'hydroxyde alcalin est une solution aqueuse d'hydroxyde de sodium ou d'hydroxyde de potassium,
-la concentration en hydroxyde alcalin de la phase aqueuse présente au sein du réacteur est supérieure ou égale à 50 g/L, de préférence comprise entre 50 et 200 g/L, de préférence entre 80 et 150 g/L et plus préférentiellement entre 100 et 150 g/L,
-le rapport du débit pondéral du flux de solution aqueuse d'hydroxyde alcalin alimentée (Qhydroxyde alcalin) et du débit pondéral du flux organique alimenté (Qorga) est compris entre 0,25 et 1,0, de préférence entre 0,4 et 0,8 et plus préférentiellement entre 0,5 et 0,7,
-la concentration de la solution aqueuse en hydroxyde alcalin à l'alimentation est comprise entre 5 et 40 g/L, de préférence entre 10 et 40 g/L, et plus préférentiellement entre 15 et 35 g/L.
L'invention porte également sur l'utilisation d'un électrodialyseur tel que défini ci-dessus, pour traiter au moins un effluent alcalin aqueux issu d'un procédé de synthèse d'isophorone par autocondensation alcaline de l'acétone en phase liquide.
Brève description de la figure
La figure 1 est un schéma du dispositif mettant en œuvre le procédé revendiqué.
Description détaillée
D'autres caractéristiques, aspects, objets et avantages de la présente invention apparaîtront encore plus clairement à la lecture de la description qui suit.
Il est précisé que les expressions « de ...à ... » et « compris entre ... et .... » utilisées dans la présente description doivent s'entendre comme incluant chacune des bornes mentionnées.
Le procédé selon l'invention comprend les étapes consécutives suivantes.
Etape a) Réaction de condensation de l'acétone au sein d'un réacteur en milieu alcalin
La synthèse peut être opérée par injection, de préférence en continu, d'un flux d'une solution aqueuse d'hydroxyde alcalin et d'un flux d'une solution organique comprenant de l'acétone au travers d'un réacteur R. Avantageusement, le rapport du débit pondéral du flux de solution aqueuse d'hydroxyde alcalin alimentée (Qhydroxyde alcalin) et du débit pondéral du flux organique alimenté (Qorga) est compris entre 0,25 et 1,0, de préférence entre 0,4 et 0,8 et plus préférentiellement entre 0,5 et 0,7.
La concentration de la solution aqueuse en hydroxyde alcalin à l'alimentation peut être comprise entre 5 et 40 g/L, de préférence entre 10 et 40 g/L, et plus préférentiellement entre 15 et 35 g/L.
Les flux peuvent être préchauffés au préalable à l'aide d'échangeurs de chaleur.
La température réactionnelle au sein du réacteur peut être comprise entre 180 et 250 °C, et de préférence entre 200 et 230 °C, et sous une pression absolue comprise entre 30 et 50 bars, de préférence entre 35 et 45 bars, et encore plus préférentiellement entre 38 et 42 bars.
Le réacteur R est de préférence un réacteur tubulaire, et plus particulièrement un réacteur tubulaire en position verticale. De plus, il peut, le cas échéant, être constitué de plusieurs réacteurs tubulaires alimentés en parallèle.
De préférence, la concentration en hydroxyde alcalin de la phase aqueuse présente au sein du réacteur est supérieure ou égale à 50 g/L, de préférence comprise entre 50 et 200 g/L, de préférence entre 80 et 150 g/L et plus préférentiellement entre 100 et 150 g/L.
Le mélange réactionnel est récupéré en sortie du réacteur et conduit vers une colonne à distiller.
Etape b) : Distillation
Le mélange réactionnel récupéré en sortie du réacteur est distillé au travers d'une colonne, éventuellement réactive.
Selon un mode de réalisation du procédé selon l'invention, le procédé comporte une distillation réactive d'hydrolyse, permettant d'hydrolyser les produits lourds. Selon cette éventualité, le procédé peut comporter deux ou trois distillations successives, de manière à purifier à chaque distillation la fraction comportant majoritairement l'isophorone.
Selon un autre mode de réalisation du procédé selon l'invention, le procédé ne comporte pas de distillation réactive, mais une succession de distillations non réactives. De préférence, le procédé comporte quatre à six distillations successives, de manière à purifier à chaque distillation la fraction comportant majoritairement l'isophorone. Les produits lourds isolés grâce à ces distillations peuvent être recyclés.
A l'issue de la première distillation, réactive ou non, l'acétone non convertie est récupérée en tête de colonne et le brut réactionnel concentré est soutiré en pied de colonne. L'acétone récupérée en tête de colonne peut être recyclée vers le réacteur R.
Etape c) : Séparation
Le brut réactionnel concentré soutiré en pied de la première colonne de distillation est séparé, de préférence par décantation. La phase aqueuse alcaline peut être séparée de la phase organique riche en isophorone à l'aide d'un décanteur.
Eventuelle neutralisation de la phase organique. L'hydroxyde alcalin éventuellement présent dans la phase organique riche en isophorone récupérée à l'étape de séparation c) peut être neutralisé. Cette neutralisation peut être réalisée par toute technique connue de l'homme de l'art, mais de préférence au moyen d'un acide minéral procurant un effet tampon. De préférence, l'acide phosphorique est utilisé.
Etape d) : Extraction et/ou purification
La phase organique riche en isophorone récupérée à l'étape de séparation, puis éventuellement neutralisée, est purifiée. De préférence, elle est distillée, de préférence sous pression réduite afin d'extraire majoritairement en pied de colonne les sous-produits de polycondensation et de récupérer en tête de colonne un flux constitué majoritairement d'isophorone.
Distillation(s) ultérieure(s)
Le flux constitué majoritairement d'isophorone récupéré à l'étape précédente peut subir plusieurs distillations successives de manière à obtenir un degré de purification élevé.
Etape e) : Traitement par électrodialyse
Le flux aqueux sortant de l'étape de séparation c), de préférence sortant d'un décanteur subit un traitement par électrodialyse.
Cette étape de traitement peut être effectuée en batch ou en continu.
Cette phase aqueuse alcaline est traitée par électrodialyse afin de récupérer : -une phase aqueuse présentant une teneur en hydroxyde alcalin supérieure à la teneur en hydroxyde alcalin de la phase aqueuse récupérée à l'issue de l'étape c) ; et - une phase aqueuse présentant une teneur en hydroxyde alcalin inférieure à la teneur en hydroxyde alcalin de la phase aqueuse récupérée à l'issue de l'étape c).
En d'autres termes, l'électrodialyseur permet l'obtention d'une phase enrichie en catalyseur et d'une phase appauvrie en catalyseur.
L'électrodialyse est réalisée dans tout équipement connu de l'homme de l'art permettant la migration d'ions à travers des membranes échangeuses d'ions sélectives (anioniques ou cationiques) sous l'action d'un champ électrique appliqué perpendiculairement aux membranes. L'électrodialyseur comprend au moins une unité d'électrodialyse comportant au moins au minimum 2 électrodes : une anode et une cathode, et des membranes anioniques et cationiques disposées alternativement en parallèle de façon à constituer au moins un compartiment de concentration et au moins un compartiment de dilution. Avantageusement, l'électrodialyseur est constitué de plusieurs unités d'électrodialyse en parallèle ou en série.
Dans le cas de la phase aqueuse alcaline chargée en hydroxyde alcalin, les cations alcalins traversent les membranes cationiques, notées MEC ci-après et les anions OH" traversent les membranes anioniques, notées MEA ci-après. Ainsi, dans le cas de la phase aqueuse alcaline chargée en hydroxyde de sodium, les cations Na+ traversent les membranes cationiques (MEC), et les anions OH" traversent les membranes anioniques (MEA). Dans le cas de la phase aqueuse alcaline chargée en hydroxyde de potassium, les cations K+ traversent les membranes cationiques (MEC) et les anions OH" traversent les membranes anioniques (MEA). Ces membranes échangeuses d'ions comprennent une matrice polymérique sur laquelle sont greffés des groupements fonctionnels, préférentiellement de type sulfonique -(SO3)_ ou phosphorique - (PO3)2- pour les MEC et préférentiellement de type alkyl ammonium -(NR3)+, -(NHRîf, -(NHzRf ou alkylsulfonium -(SRîf pour les MEA ; le ou les groupes R, identiques ou différents, désignant un groupe alkyle saturé en Ci-Cg.
De préférence, les membranes échangeuses d'ions comprennent des matrices à base de polymères pouvant notamment comprendre des polymères ou copolymères fluorés, dont en particulier du PVDF.
De préférence, la surface active totale d'échange constituée par l'ensemble des membranes échangeuses d'ions de l'électrodialyseur est comprise entre 1 et 10 m2 par tonne de phase aqueuse alcaline à traiter, et de préférence comprise entre 2 et 5 m2 par tonne de phase aqueuse alcaline à traiter.
De préférence, une densité de courant comprise entre 20 et 200 mA/cm2 et en particulier comprise entre 30 et 100 mA/cm2 est appliquée à l'électrodialyseur.
Selon un mode de mise en œuvre du procédé selon l'invention, l'électrodialyseur présente une surface active totale d'échange comprise entre 1 et 10 m2 par tonne de phase aqueuse alcaline à traiter et une densité de courant comprise entre 20 et 200 mA/cm2.
Selon un mode de mise en œuvre préféré du procédé selon l'invention, l'électrodialyseur présente une surface active totale d'échange comprise entre 2 et 5 m2 par tonne de phase aqueuse alcaline à traiter et une densité de courant comprise entre 30 et 100 mA/cm2 est appliquée à l'électrodialyseur.
Le traitement par électrodialyse des effluents aqueux permet de recycler le catalyseur et d'éviter ainsi sa perte dans les eaux usées, et par conséquent le traitement de ces eaux usées. Ce traitement permet également d'éliminer du procédé l'eau en excès.
Cette quantité d'eau en excès correspond à l'eau formée dans le réacteur moins l'eau consommée dans la colonne d'hydrolyse, moins l'eau solubilisée dans l'isophorone brute qui est éliminée en tête de l'une des colonnes à distiller ultérieures.
Le flux aqueux appauvri en catalyseur en sortie de l'électrodialyse peut être envoyé sur une installation de traitement des eaux résiduaires SE.
Etape ) : Recyclage
La phase aqueuse enrichie en catalyseur issue de l'électrodialyseur, c'est-à-dire présentant une teneur en hydroxyde alcalin supérieure à la teneur en hydroxyde alcalin de la phase aqueuse récupérée à l'issue de l'étape c) est recyclée vers l'étape réactionnelle.
Utilisation
L'invention a également pour objet une utilisation d'un électrodialyseur tel que défini ci- dessus pour traiter au moins un effluent aqueux alcalin issu d'un procédé de synthèse d'isophorone par autocondensation alcaline de l'acétone en phase liquide. La phase aqueuse enrichie en catalyseur alcalin obtenue peut être recyclée au niveau du réacteur de la réaction d'autocondensation de l'acétone.
Par effluent aqueux, on entend au sens de la présente invention toute solution aqueuse alcaline produite par le procédé de synthèse d'isophorone. De préférence, le procédé de synthèse est tel que défini ci-dessus, c'est-à-dire qu'il comprend les étapes a) à d) définies ci-dessus. L'invention concerne également un procédé de traitement d'au moins un effluent aqueux alcalin tel que défini ci-dessus issu d'un procédé de synthèse d'isophorone par autocondensation alcaline de l'acétone en phase liquide tel que défini ci-dessus, comprenant une étape de traitement par un électrodialyseur tel que défini ci-dessus.
Description de la figure
La figure 1 représente un mode de réalisation du procédé selon l'invention.
L'acétone est introduite via la conduite 1 dans l'échangeur de chaleur El. La solution aqueuse d'hydroxyde alcalin est introduite via la conduite 2 dans l'échangeur de chaleur E2. Les flux préchauffés sont récupérés dans une conduite 3 et introduits dans le réacteur tubulaire R.
Le mélange réactionnel issu du réacteur tubulaire R est introduit dans la colonne de distillation réactive d'hydrolyse DH via la conduite 4. L'hydrolyse du mélange réactionnel est effectuée sous pression réduite.
L'acétone n'ayant pas été convertie au sein du réacteur tubulaire R est récupérée en tête de la colonne DH. Cette fraction est recyclée via la conduite 5 vers la conduite 1.
Le brut réactionnel concentré est récupéré en pied de la colonne DH et est amené vers le décanteur dl via la conduite 6.
Le décanteur dl sépare la phase aqueuse de la phase organique.
La phase aqueuse alcaline est éliminée via la conduite 8. Cette conduite 8 amène tout ou partie de la phase aqueuse vers l'électrodialyseur Ed. La phase aqueuse restante éventuelle, qui n'est pas amenée à l'électrodialyseur est recyclée telle quelle à l'étape réactionnelle via la conduite 9 vers la conduite 10.
La phase aqueuse alcaline est traitée par électrodialyse au sein de E afin :
-de récupérer une phase aqueuse enrichie en catalyseur (hydroxyde alcalin), recyclée à l'étape réactionnelle via la conduite 10, et
-d'éliminer une phase aqueuse appauvrie en catalyseur, envoyée vers un traitement d'eaux résiduaires SE.
La phase organique issue du décanteur dl est amenée au neutraliseur N via la conduite 7. La phase organique neutralisée est amenée à la colonne à distiller Dl via la conduite 11.
La distillation sous pression réduite à l'aide de la colonne à distiller Dl permet de récupérer en tête de la colonne Dl l'eau résiduelle et les impuretés organiques légères éventuelles et en pied de colonne un flux comprenant majoritairement de l'isophorone, qui est transféré via la conduite 12 vers la colonne à distiller D2.
Le flux extrait en tête de la colonne Dl est conduit via une conduite 13 vers un décanteur d2 afin de séparer une phase aqueuse envoyée vers un traitement d'eaux résiduaires SE et une phase organique renvoyée au reflux de la colonne Dl et, le cas échéant, recyclée pour partie dans la colonne d'hydrolyse Dnvia la conduite 14 vers la conduite 15.
La distillation sous pression réduite à l'aide de la colonne à distiller D2 permet de récupérer en tête de la colonne D2 l'isophorone d'une pureté supérieure à 99 % et en pied de colonne des sous-produits de polycondensation C3nH(4n+2)O. Ces sous-produits sont recyclés, en tout ou partie, via la conduite 15 vers la colonne réactive DH. La partie de la fraction récupérée comportant les sous-produits de polycondensation C3nH(4n+2jO, qui n'est pas recyclée est récupérée (SL).
De préférence, la concentration pondérale en isophorone du flux à l'alimentation de Di est supérieure à 70 %, de préférence supérieure à 75 %.
De préférence, la concentration pondérale en isophorone du flux à l'alimentation de D2 est supérieure à 75 %, de préférence supérieure à 80 %.
Les exemples, qui suivent permettent d'illustrer la présente invention, mais ne sont en aucun cas limitatifs.
Exemples
Ces exemples illustrent la mise en œuvre de la récupération du catalyseur sur la base d'une production unitaire d'isophorone pure de 1 t/h , en utilisant l'hydroxyde de sodium comme catalyseur.
Le débit de flux de phase aqueuse alcaline en sortie du décanteur di en pied de la colonne d'hydrolyse DH est de 4,67 t/h et les concentrations pondérales en hydroxyde de sodium (catalyseur) et en isophorone de cette phase aqueuse sont respectivement de 2,8 % et de 0,85 %.
Ex.l (comparatif, hors invention): Sans aucun recyclage de la phase aqueuse.
En éliminant la totalité de la phase aqueuse alcaline vers un traitement d'eaux résiduaires, la consommation à l'alimentation de l'étape réactionnelle du procédé de synthèse de l'isophorone est de 131 kg d'hydroxyde de sodium et de 4,3 m3 d'eau par tonne d'isophorone pure produite, et la perte en isophorone contenue dans la phase aqueuse alcaline est de 39,7 kg par tonne d'isophorone pure.
Ex.2 (comparatif, hors invention): Avec recyclage partiel de la phase aqueuse alcaline mais sans traitement de concentration de la purge.
Après avoir effectué une purge de 0,24 t/h sur le flux de phase aqueuse alcaline afin d'éliminer l'eau excédentaire générée par la réaction, la partie restante majoritaire du flux, soit 4,43 t/h, est recyclée à l'étape réactionnelle et la purge est éliminée telle quelle vers un traitement d'eaux résiduaires.
La consommation à l'alimentation de l'étape réactionnelle du procédé de synthèse de l'isophorone est alors de 7 kg d'hydroxyde de sodium (tenant compte également de la perte en NaOH solubilisé dans le flux d'isophorone brute et représentant environ 0,25 kg par tonne d' isophorone pure). L'appoint d'hydroxyde de sodium étant réalisé sous forme d'une solution aqueuse d'hydroxyde de sodium d'une concentration pondérale de 30,5 %, la consommation en eau est alors de 16 litres d'eau par tonne d'isophorone pure. Et la perte en isophorone contenue dans la purge de la phase aqueuse alcaline représente 2,0 kg par tonne d'isophorone pure.
Ex.3 (conforme à l'invention):
Le flux de phase aqueuse alcaline de 4,67 t/h sortant du décanteur dl est traité au sein d'un électrodialyseur alimenté par un courant électrique continu constant de 60 mA/cm2 de façon à éliminer un flux aqueux d'un débit de 0,23 t/h appauvri en NaOH et à récupérer un flux de 4,44 t/h de phase aqueuse alcaline enrichie en catalyseur (NaOH) et recyclé tel quel à l'alimentation de l'étape réactionnelle. L'électrodialyseur est constitué de 34 cellules fournissant une surface d'échange de 13,3m2. L'efficacité de l'électrodialyseur est suivie par mesure de la conductivité des différents flux de phase aqueuse sodée : environ 140 mS/cm pour la phase aqueuse alcaline concentrée (2,9 % NaOH) et 16 mS/cm pour la phase aqueuse alcaline diluée (0,3 % NaOH).
La composition pondérale du flux aqueux appauvri en catalyseur est de 0,05 % d'acétone, 0,85 % d'isophorone, 0,3 % NaOH et 98,8 % d'eau. Ce flux est orienté vers un traitement d'eaux résiduaires SE.
Les concentrations pondérales en NaOH et en isophorone de la solution aqueuse enrichie en catalyseur sont respectivement de 2,9 % et de 0,85 %.
Avec un tel recyclage du catalyseur, la consommation à l'alimentation de l'étape réactionnelle du procédé de synthèse de l'isophorone se limite à 0,95 kg de NaOH (correspondant à 0,7 kg éliminé vers SE en sortie de l'électrodialyse et à 0,25 kg de NaOH solubilisé dans le flux d'isophorone brute) et à 2 litres d'eau par tonne d'isophorone pure produite. La perte en isophorone contenu dans le flux aqueux éliminé vers le traitement d'eaux résiduaires est de 2 kg par tonne d'isophorone pure.
L'invention permet donc d'économiser :
-130 kg de soude, 38 kg d'isophorone et 4,3 m3 d'eau par tonne d'isophorone, par rapport à un procédé sans aucun recyclage de la phase aqueuse ;
-6 kg de soude et 14 litres d'eau par tonne d'isophorone par rapport à un procédé avec recyclage via une simple purge de la phase aqueuse.
L'invention permet ainsi de recycler 99,2 % du catalyseur mis en œuvre dans le procédé de synthèse de l'isophorone et 95 % de l'isophorone contenue dans la phase aqueuse alcaline en sortie de la colonne d'hydrolyse.
De plus, ce procédé permet d'économiser une quantité d'énergie de 129 kWh par rapport à un procédé qui éliminerait l'eau excédentaire (~230 kg) par un processus d'évaporation thermique qui nécessiterait 135 kWh ; l'électrodialyse ne consommant que 6 kWh par tonne d'isophorone.
De manière plus générale, la quantité d'eau à éliminer dans le procédé selon l'invention est comprise entre 200 et 250 kg par tonne d'isophorone, selon la quantité de sous-produits formés, le taux d'hydrolyse et la quantité d'eau entraînée avec l'isophorone brute. La concentration pondérale en eau du flux SE est supérieure à 98,5 %, outre le catalyseur résiduel, le complément correspond essentiellement à de l'isophorone et à des traces d'acétone.
Bilan de l'exemple 3 sur l'ensemble du processus : de l'alimentation à l'isophorone finale
Un flux d'acétone de débit l,4t/h et un flux d'une solution aqueuse comportant 30% de catalyseur et 70% d'eau de débit 0,003 t/h sont introduits dans le réacteur. Le réacteur est également alimenté par deux flux de recyclage, définis ci-après.
Le débit du flux du milieu réactionnel en sortie de réacteur est de 14,8t/h.
Le débit du flux de la phase organique en sortie de colonne réactive et de décanteur est de l,28t/h. Cette phase organique comporte plus de 79% d'isophorone.
Le débit du flux de la fraction d'isophorone purifiée en sortie de colonne de distillation est de lt/h.
Le débit du flux de la fraction légère provenant de la colonne réactive, qui recycle cette fraction vers le réacteur est de 9t/h. Le débit du flux de la phase aqueuse en sortie de colonne réactive et de décanteur est de 4,67t/h. Cette phase aqueuse comporte 2,8% de catalyseur, 0,9% de composés organiques, le reste étant de l'eau. Cette phase aqueuse est introduite dans l'électrodialyseur.
En sortie d'électrodialyseur, le débit du flux de la phase appauvrie en catalyseur est de 0,23t/h. La phase appauvrie en catalyseur comporte 0,9% de composés organiques, 0,3% de catalyseur, le reste étant de l'eau. Le débit du flux de la phase enrichie en catalyseur et recyclée à l'alimentation du réacteur est de 4,44t/h. La phase enrichie en catalyseur comporte 2,9% de catalyseur, 0,9% de composés organiques, le reste étant de l'eau.
Ainsi, l'utilisation de l'électrodialyseur et le recyclage de la phase enrichie en catalyseur permet une consommation d'eau et de catalyseur réduite (0,003t/h), un volume d'effluent aqueux minimisé (0,23t/h), une teneur en catalyseur dans l'effluent divisé par 10 et une consommation énergétique réduite.

Claims

Revendications
1. Procédé, de préférence continu, de synthèse en phase liquide d'isophorone par autocondensation alcaline de l'acétone comprenant les étapes successives suivantes : a) réaction de condensation de l'acétone au sein d'un réacteur en milieu alcalin puis b) distillation, éventuellement réactive, du mélange réactionnel issu du réacteur, puis c) séparation du flux récupéré en pied de la colonne de distillation, éventuellement réactive, de l'étape b) de manière à séparer la phase aqueuse alcaline de la phase organique, puis d) extraction et/ou purification de la phase organique de manière à récupérer l'isophorone, caractérisé en ce que le procédé comporte les étapes successives suivantes : e) traitement par électrodialyse, en continu ou en batch, de la phase aqueuse alcaline récupérée à l'issue de l'étape c) f) recyclage vers le réacteur de l'étape a) de la phase aqueuse issue de l'électrodialyse qui présente une teneur en hydroxyde alcalin supérieure à la teneur en hydroxyde alcalin de la phase aqueuse récupérée à l'issue de l'étape c).
2. Procédé selon la revendication 1, caractérisé en ce que l'électrodialyseur comporte au moins une membrane échangeuse d'ions comprenant une matrice à base de polymères comprenant au moins un polymère ou copolymère fluoré, de préférence du PVDF.
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'électrodialyseur présente une surface active totale d'échange comprise entre 1 et 10 m2 par tonne de phase aqueuse alcaline à traiter, et de préférence comprise entre 2 et 5 m2 par tonne de phase aqueuse alcaline à traiter.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une densité de courant comprise entre 20 et 200 mA/cm2 et de préférence comprise entre 30 et 100 mA/cm2 est appliquée à l'électrodialyseur.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'électrodialyseur comprend plusieurs unités d'électrodialyse en parallèle ou en série.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la solution aqueuse d'hydroxyde alcalin est une solution aqueuse d'hydroxyde de sodium ou d'hydroxyde de potassium.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la concentration en hydroxyde alcalin de la phase aqueuse présente au sein du réacteur est supérieure ou égale à 50 g/L, de préférence comprise entre 50 et 200 g/L, de préférence entre 80 et 150 g/L et plus préférentiellement entre 100 et 150 g/L.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le rapport du débit pondéral du flux de solution aqueuse d'hydroxyde alcalin alimentée (Qhydroxyde alcalin) et du débit pondéral du flux organique alimenté (Qorga) est compris entre 0,25 et 1,0, de préférence entre 0,4 et 0,8 et plus préférentiellement entre 0,5 et 0,7.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la concentration de la solution aqueuse en hydroxyde alcalin à l'alimentation est comprise entre 5 et 40 g/L, de préférence entre 10 et 40 g/L, et plus préférentiellement entre 15 et 35 g/L.
10. Utilisation d'un électrodialyseur, tel que défini à l'une quelconque des revendications 1 à 5, pour traiter au moins un effluent alcalin aqueux issu d'un procédé de synthèse d'isophorone par autocondensation alcaline de l'acétone en phase liquide.
PCT/EP2023/086481 2022-12-19 2023-12-18 Procédé de synthèse d'isophorone en phase liquide avec recyclage du catalyseur alcalin par électrodialyse WO2024133157A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2213789 2022-12-19
FR2213789A FR3143600A1 (fr) 2022-12-19 2022-12-19 Procédé de synthèse d’isophorone en phase liquide avec recyclage du catalyseur alcalin par électrodialyse

Publications (1)

Publication Number Publication Date
WO2024133157A1 true WO2024133157A1 (fr) 2024-06-27

Family

ID=85462157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/086481 WO2024133157A1 (fr) 2022-12-19 2023-12-18 Procédé de synthèse d'isophorone en phase liquide avec recyclage du catalyseur alcalin par électrodialyse

Country Status (2)

Country Link
FR (1) FR3143600A1 (fr)
WO (1) WO2024133157A1 (fr)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2344226A (en) 1941-05-31 1944-03-14 Shell Dev Production of isophorone
US2399976A (en) 1943-01-28 1946-05-07 Shell Dev Production of isophorone and related products
FR1042057A (fr) 1951-09-08 1953-10-28 Derives De L Acetylene Soc Ind Procédé de fabrication de l'isophorone
FR1238954A (fr) 1958-09-15 1960-08-19 Bergwerksgesellschaft Hibernia Procédé et dispositif pour la préparation de l'isophorone
FR1315788A (fr) 1961-11-30 1963-01-25 Hibernia Chemie Gmbh Procédé pour la préparation de produit de condensation de l'acétone, installation pour la mise en oeuvre du procédé ou procédé similaire et produits conformes àceux obtenus par le présent procédé ou procédé similaire
FR1316515A (fr) 1961-10-24 1963-02-01 Hibernia Chemie Gmbh Procédé pour l'obtention d'isophorone très pure, et installation pour la mise en oeuvre de ce procédé ou procédé similaire
US3337632A (en) * 1960-12-23 1967-08-22 Hibernia Chemic G M B H Process for recovering isophorone in high purity
FR2271191A1 (fr) 1974-05-15 1975-12-12 Bp Chem Int Ltd
FR2328686A1 (fr) 1975-10-20 1977-05-20 Bp Chem Int Ltd Procede de production d'isophorone
DD145096A1 (de) 1979-07-26 1980-11-19 Guenther Boehme Verfahren zur herstellung von isophoron
CN102367223A (zh) 2011-10-18 2012-03-07 烟台万华聚氨酯股份有限公司 一种异佛尔酮的合成方法
CN102516051A (zh) 2011-10-18 2012-06-27 烟台万华聚氨酯股份有限公司 一种丙酮在碱性催化剂下液相缩合制备异佛尔酮的方法
EP2649032A1 (fr) 2010-12-08 2013-10-16 Evonik Degussa GmbH Procédé de production d'isophorone
EP2707352A1 (fr) 2011-05-13 2014-03-19 Evonik Degussa GmbH Procédé pour la préparation d'isophorone en présence d'au moins un agent antimousse dans la colonne des eaux usées dans la partie traitement
EP2837618A1 (fr) 2013-08-12 2015-02-18 Evonik Industries AG Hydrolyse de résidus issus de la production d'isophorone pour la production d'isophorone et acétone
CN111377806A (zh) * 2018-12-27 2020-07-07 万华化学集团股份有限公司 一种丙酮液相缩合法制异佛尔酮的后处理工艺

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2344226A (en) 1941-05-31 1944-03-14 Shell Dev Production of isophorone
US2399976A (en) 1943-01-28 1946-05-07 Shell Dev Production of isophorone and related products
FR1042057A (fr) 1951-09-08 1953-10-28 Derives De L Acetylene Soc Ind Procédé de fabrication de l'isophorone
FR1238954A (fr) 1958-09-15 1960-08-19 Bergwerksgesellschaft Hibernia Procédé et dispositif pour la préparation de l'isophorone
US3337632A (en) * 1960-12-23 1967-08-22 Hibernia Chemic G M B H Process for recovering isophorone in high purity
FR1316515A (fr) 1961-10-24 1963-02-01 Hibernia Chemie Gmbh Procédé pour l'obtention d'isophorone très pure, et installation pour la mise en oeuvre de ce procédé ou procédé similaire
FR1315788A (fr) 1961-11-30 1963-01-25 Hibernia Chemie Gmbh Procédé pour la préparation de produit de condensation de l'acétone, installation pour la mise en oeuvre du procédé ou procédé similaire et produits conformes àceux obtenus par le présent procédé ou procédé similaire
FR2271191A1 (fr) 1974-05-15 1975-12-12 Bp Chem Int Ltd
FR2328686A1 (fr) 1975-10-20 1977-05-20 Bp Chem Int Ltd Procede de production d'isophorone
DD145096A1 (de) 1979-07-26 1980-11-19 Guenther Boehme Verfahren zur herstellung von isophoron
EP2649032A1 (fr) 2010-12-08 2013-10-16 Evonik Degussa GmbH Procédé de production d'isophorone
US8889914B2 (en) 2010-12-08 2014-11-18 Evonik Degussa Gmbh Method for producing isophorone
EP2707352A1 (fr) 2011-05-13 2014-03-19 Evonik Degussa GmbH Procédé pour la préparation d'isophorone en présence d'au moins un agent antimousse dans la colonne des eaux usées dans la partie traitement
CN102367223A (zh) 2011-10-18 2012-03-07 烟台万华聚氨酯股份有限公司 一种异佛尔酮的合成方法
CN102516051A (zh) 2011-10-18 2012-06-27 烟台万华聚氨酯股份有限公司 一种丙酮在碱性催化剂下液相缩合制备异佛尔酮的方法
EP2837618A1 (fr) 2013-08-12 2015-02-18 Evonik Industries AG Hydrolyse de résidus issus de la production d'isophorone pour la production d'isophorone et acétone
CN111377806A (zh) * 2018-12-27 2020-07-07 万华化学集团股份有限公司 一种丙酮液相缩合法制异佛尔酮的后处理工艺

Also Published As

Publication number Publication date
FR3143600A1 (fr) 2024-06-21

Similar Documents

Publication Publication Date Title
JP4644153B2 (ja) 水中のトリエチルアミンの回収方法
JP2009209144A (ja) メチレンジフェニルジイソシアネートの製造方法
CN108773894B (zh) 一种利用微通道反应器深度催化氧化连续处理高盐高cod有机废水的方法及其装置
US20190323132A1 (en) Method for generating clean water, hydrogen, and oxygen from contaminated effluent
CN103080012A (zh) 处理来自再加工粗芳族硝基化合物的废水的方法
WO2024133157A1 (fr) Procédé de synthèse d&#39;isophorone en phase liquide avec recyclage du catalyseur alcalin par électrodialyse
EP1903032B1 (fr) Procédé de purification de lactames
EP3083547B1 (fr) Procede de separation de composes mandeliques sous forme salifiee et son utilisation pour la preparation d&#39;aldehyde aromatique
CN105461532A (zh) 一种丙烯氧化制备丙烯醛和丙烯酸的清洁生产的方法
KR101324879B1 (ko) 황산화물 생산을 위한 방법 및 장치
EP0860425B1 (fr) Procede de preparation de solutions aqueuses d&#39;hydroxydes de tetraalkyle-ammonium
KR20080019240A (ko) 에탄올과 물의 혼합물 제조 방법 및 장치
CN111253000A (zh) 一种膜法高值化处理脂肪酸废水工艺
CN102180569A (zh) 兰炭生产废水资源化处理工艺方法
CN104812741A (zh) 由甘油生产表氯醇的连续方法
JPS62158231A (ja) ジクロロヒドリンの製法
CN111333249A (zh) 含氯代有机物废液处理方法
CN109422321B (zh) 一种环己酮生产废水的处理系统及方法
US5413682A (en) Recovery of fluoride from waste solutions
EP0296990B1 (fr) Procédé de fabrication de polybutadiène hydroxylé
CN109553213B (zh) 一种环己酮生产过程的皂化废碱液的处理方法
FR2884514A1 (fr) Procede perfectionne de fabrication de (meth) acrylates d&#39;alkyle par esterification directe
CN114684986B (zh) 一种山梨酸废水资源化利用方法
CN115043539B (zh) 一种环氧树脂生产中废水的处理方法
CN114369013B (zh) 一种从含水废液中回收丙二醇甲醚的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23833785

Country of ref document: EP

Kind code of ref document: A1