WO2024131932A1 - 氢氧化镍钴中间产品品质提升方法及湿法冶金处理方法 - Google Patents

氢氧化镍钴中间产品品质提升方法及湿法冶金处理方法 Download PDF

Info

Publication number
WO2024131932A1
WO2024131932A1 PCT/CN2023/140944 CN2023140944W WO2024131932A1 WO 2024131932 A1 WO2024131932 A1 WO 2024131932A1 CN 2023140944 W CN2023140944 W CN 2023140944W WO 2024131932 A1 WO2024131932 A1 WO 2024131932A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
intermediate product
treatment
quality
cobalt hydroxide
Prior art date
Application number
PCT/CN2023/140944
Other languages
English (en)
French (fr)
Inventor
孙宁磊
李诺
丁剑
付国燕
林洁媛
刘苏宁
王淑婵
彭建华
Original Assignee
中国恩菲工程技术有限公司
中国有色工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国恩菲工程技术有限公司, 中国有色工程有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2024131932A1 publication Critical patent/WO2024131932A1/zh

Links

Definitions

  • the present application relates to the field of metallurgical technology, and in particular to a method for improving the quality of a nickel-cobalt hydroxide intermediate product and a high-pressure leaching hydrometallurgical treatment method for laterite nickel ore containing the same.
  • high-pressure leaching hydrometallurgy of limonite-type laterite nickel ore is one of the main process methods of nickel metallurgy.
  • the process flow of this method is: leaching-iron and aluminum removal-precipitation of nickel and cobalt, obtaining a large amount of nickel cobalt hydroxide (MHP) intermediate products, whose impurities mainly include manganese, magnesium, iron, aluminum, etc.; converting MHP into nickel sulfate solution, that is, leaching-impurity removal-extraction separation of impurities and nickel and cobalt, to obtain the final nickel and cobalt product.
  • MHP nickel cobalt hydroxide
  • the inventors of the present application have realized that the above process method has the following problems: 1) The nickel-cobalt hydroxide intermediate product needs to be transported during the process, and the transportation process will incur huge freight costs; 2) The extraction and impurity removal system and the nickel-cobalt separation system have huge flow rates, complex procedures, and cumbersome processes, and some evaporation systems need to be built, resulting in increased production investment costs. 3) The reagents that need to be added during impurity removal will introduce other impurities, and the organic back-extraction solution loaded after extraction needs to be further neutralized. Therefore, it is of great significance in the field of metallurgy to provide an efficient treatment method.
  • the purpose of the present application is to provide a method for improving the quality of nickel-cobalt hydroxide intermediate products and a laterite nickel ore high-pressure leaching hydrometallurgical treatment method containing the same.
  • the above-mentioned purpose of the present application is achieved through the following technical solutions.
  • a method for improving the quality of a nickel-cobalt hydroxide intermediate product uses a nickel-cobalt hydroxide intermediate product obtained by precipitating nickel and cobalt by a precipitation method in the high-pressure leaching hydrometallurgical process of laterite nickel ore as a raw material, and adopts a process combining high-temperature heat treatment with wet acid leaching treatment to reduce the water content of the nickel-cobalt hydroxide intermediate product and remove the impurity magnesium element, thereby improving the quality of the nickel-cobalt hydroxide intermediate product.
  • high temperature heat treatment is first used, followed by wet acid leaching treatment.
  • wet acid leaching treatment is first used, followed by high temperature heat treatment.
  • the temperature is 300°C to 1000°C and the time is 0.5h to 6h.
  • a rotary kiln is directly used for drying and roasting, or the material is first dried and then fed into a rotary kiln for roasting.
  • the pH is controlled to be 4 to 7.5, the temperature is 20° C. to 100° C., and the time is 0.5 h to 4 h.
  • water is added for slurrying to control the liquid-solid ratio to (2-8):1; wherein the acid is one or more selected from hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, and carbonic acid.
  • the method further comprises: filtering and drying the filter cake, wherein the drying temperature is 100° C. to 150° C. and the drying time is 2 h to 6 h.
  • the method further comprises: returning the filtrate to the laterite nickel ore wet process system for nickel and cobalt recovery, wherein the filtrate is a solution containing nickel and cobalt impurities.
  • the raw material has a moisture content of 40% to 70% and a magnesium content of 2% to 5%.
  • the final product obtained after quality improvement does not contain moisture and has a magnesium content of no more than 0.2%.
  • the present application provides a high-pressure leaching hydrometallurgical treatment method for laterite nickel ore, which includes: performing high-pressure leaching treatment on laterite nickel ore, and precipitating nickel and cobalt by precipitation method to obtain a nickel-cobalt hydroxide intermediate product; using the nickel-cobalt hydroxide intermediate product as a raw material, and reducing the water content of the nickel-cobalt hydroxide intermediate product and removing the impurity magnesium element by combining high-temperature heat treatment with wet acid leaching treatment to improve the quality of the nickel-cobalt hydroxide intermediate product; acid dissolving, removing impurities, and extracting the improved intermediate product to obtain a final nickel-cobalt product.
  • high temperature heat treatment is first used, followed by wet acid leaching treatment.
  • wet acid leaching treatment is first used, followed by high temperature heat treatment.
  • the temperature is 300°C to 1000°C and the time is 0.5h to 6h.
  • a rotary kiln is directly used for drying and roasting, or the material is first dried and then fed into a rotary kiln for roasting.
  • the pH is controlled to be 4 to 7.5, the temperature is 20° C. to 100° C., and the time is 0.5 h to 4 h.
  • water is added for slurrying to control the liquid-solid ratio to (2-8):1; wherein the acid is one or more selected from hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, and carbonic acid.
  • the method further comprises: filtering and drying the filter cake, wherein the drying temperature is 100° C. to 150° C. and the drying time is 2 h to 6 h.
  • the method further comprises: returning the filtrate to the laterite nickel ore wet process system for nickel and cobalt recovery, wherein the filtrate is a solution containing nickel and cobalt impurities.
  • the raw material has a moisture content of 40% to 70% and a magnesium content of 2% to 5%.
  • the final product obtained after quality improvement does not contain moisture and has a magnesium content of no more than 0.2%.
  • this application adopts a process combining high-temperature heat treatment and wet acid leaching treatment to improve and optimize its water content and impurity magnesium, reduce the water content of the nickel cobalt hydroxide intermediate product to zero, remove the magnesium element, improve the quality of the nickel cobalt hydroxide intermediate product, and obtain a nickel cobalt oxide product with low impurities that can be directly sold, and has the advantages of simple process and low cost.
  • FIG1 is a schematic flow chart of a method for improving the quality of nickel cobalt hydroxide intermediate products in the present application.
  • FIG2 is a schematic flow chart of a method for improving the quality of a nickel-cobalt hydroxide intermediate product according to an embodiment of the present application.
  • FIG3 is a schematic flow chart of a method for improving the quality of a nickel cobalt hydroxide intermediate product according to an embodiment of the present application.
  • FIG4 is a schematic flow chart of a high-pressure leaching hydrometallurgical treatment method for laterite nickel ore according to an embodiment of the present application.
  • Figure 1 schematically shows a flow chart of a method for improving the quality of a nickel cobalt hydroxide intermediate product provided in the present application.
  • a high-temperature heat treatment combined with a wet acid leaching treatment is used to improve the quality of MHP to obtain a product with improved quality.
  • This application starting from the two aspects of water content and impurity magnesium content, adopts high-temperature heat treatment process and wet acid leaching treatment process to reduce the water content of nickel cobalt hydroxide intermediate product to zero, high nickel cobalt content, remove the magnesium element, and improve the quality of nickel cobalt hydroxide intermediate product.
  • It is an efficient process means to improve the quality of MHP, and it is also expected in the subsequent hydrometallurgical treatment of MHP intermediate product refining.
  • the present application provides a high-pressure leaching hydrometallurgical treatment method for laterite nickel ore.
  • the quality of the nickel-cobalt hydroxide intermediate product is improved by the above-mentioned quality improvement method, roasting reduces the physical amount, increases the nickel-cobalt content, removes magnesium, reduces its impact on downstream processes, and reduces the high cost, large equipment investment, and high subsequent extraction pressure of the hydrometallurgical treatment process.
  • FIG2 schematically shows the process of the method for improving the quality of the nickel cobalt hydroxide intermediate product provided in an embodiment of the present application.
  • the method for improving the quality of the nickel cobalt hydroxide intermediate product provided in this embodiment is to dry the filter cake of the nickel cobalt hydroxide intermediate product and perform high-temperature heat treatment; then the powder obtained after the high-temperature heat treatment is subjected to wet selective leaching treatment to selectively dissolve the Mg element therein, and other valuable metals remain in the solid.
  • the method includes the following steps:
  • the nickel cobalt hydroxide intermediate product is dried to remove the moisture in MHP, the drying temperature is 100°C to 150°C, the drying time is 2h to 6h, and a dried block solid is obtained. Flash drying can be used for drying, and the raw material does not contain moisture after drying.
  • the intermediate product of nickel-cobalt hydroxide is the intermediate product of nickel-cobalt hydroxide MHP obtained by precipitation of nickel and cobalt in the process of high-pressure leaching of laterite nickel ore hydrometallurgy.
  • the impurities in the raw materials mainly include manganese, magnesium, iron, aluminum, etc.
  • the magnesium content is 2% ⁇ 5%, moisture content is 40% ⁇ 70%.
  • the dried solid block is subjected to high temperature heat treatment at a temperature of 300° C. to 1000° C. for a time of 0.5 h to 6 h to obtain a solid powder.
  • High temperature heat treatment can be carried out by high temperature roasting in a rotary kiln, the temperature can be, for example, 450°C, 550°C, 650°C, 750°C, 850°C, 950°C, etc., the time is 0.5h to 6h, the hydroxide is decomposed into oxides, and brown-black powder is obtained after roasting.
  • Manganese, magnesium, iron, and aluminum in the raw materials all exist in the form of hydroxides, which can be effectively decomposed to form oxides under the above conditions.
  • the inventors of the present application also found that if the temperature is too low, it cannot be completely decomposed, and it is easy to agglomerate and cannot form loose powder; and if the temperature is too high, the energy consumption increases.
  • a drying treatment is performed before high temperature heat treatment, and free water in MHP can be removed by drying treatment.
  • free water can be removed quickly and completely in about 4 hours. High temperature and long time will increase energy consumption.
  • direct drying and roasting in a rotary kiln can also be used.
  • the MHP product with a moisture content of 40% to 70% is dehydrated and converted into oxides with the same metal content and less physical volume, so that the valuable metal content of the intermediate product is further enriched, saving a large amount of freight in the intermediate links; the above treatment steps can also decompose the basic sulfates of various metals contained in the hydroxide into sulfates.
  • the solid powder obtained by high temperature heat treatment is treated by acid leaching to selectively dissolve magnesium, add water for slurrying, control the liquid-solid ratio (2-8):1; for example, it can be 2:1, 4:1, 6:1, etc., control the pH to 4-7.5, the temperature is 20°C-100°C, for example, it can be 40°C, 60°C, 80°C, etc., the time is 0.5h-4h, filter and dry to obtain the intermediate product after upgrading.
  • the acid can be one or more of hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, carbonic acid, etc.
  • the product After acid leaching, the product is filtered and dried to obtain a nickel cobalt oxide powder product with low impurities.
  • the product can be sold after packaging, which reduces the subsequent processing costs.
  • the treated solution containing nickel and cobalt impurities can be returned to the laterite nickel ore wet process system for nickel and cobalt recovery.
  • the solution after iron and aluminum removal is mixed to a first stage of nickel and cobalt precipitation, and the solution after iron and aluminum removal is returned to a first stage and mixed to a second stage of nickel and cobalt precipitation.
  • FIG3 schematically shows the process of the second nickel cobalt hydroxide intermediate product quality improvement method provided in an embodiment of the present application.
  • the method for improving the quality of the nickel cobalt hydroxide intermediate product provided in this embodiment is different from the previous embodiment in that the acid leaching treatment is placed first, that is, Mg is first removed from the MHP slurry, and then filtering and high-temperature treatment are performed, thereby improving the quality of the nickel cobalt hydroxide intermediate product.
  • the following steps are included:
  • the nickel cobalt hydroxide intermediate product is subjected to an acid leaching treatment method to selectively dissolve the magnesium element, and a filter cake is obtained by filtration.
  • the specific acid leaching treatment conditions are the same as those in the previous embodiment.
  • this application Based on the nickel-cobalt hydroxide intermediate product obtained by precipitation of nickel and cobalt in the high-pressure leaching hydrometallurgical process of laterite nickel ore, this application adopts a process combining high-temperature heat treatment and wet acid leaching treatment to improve the quality of the nickel-cobalt hydroxide intermediate product.
  • Figures 2 and 3 schematically show two combined methods, one is calcination first and then magnesium removal, and the other is magnesium removal first and then calcination. Based on the water content of MHP itself, it is preferred to first remove magnesium by wet method, then dry and then treat by pyrolysis; compared with the lifting method of first drying and pyrolysis, then wet treatment, and then drying, it can further reduce energy consumption under the condition of basically the same process effect.
  • FIG4 schematically shows a high-pressure leaching hydrometallurgical treatment method for laterite nickel ore provided in an embodiment of the present application, comprising:
  • High-pressure leaching is performed on the laterite nickel ore to remove iron and aluminum, and nickel and cobalt are precipitated by precipitation to obtain nickel and cobalt hydroxide intermediate products.
  • high-pressure leaching of HPAL for example, adding sulfuric acid in a pressure autoclave at 250°C, leaches out the valuable elements in the laterite nickel ore, and impurities are also leached out.
  • limestone is first used to remove iron and aluminum, and then nickel and cobalt are precipitated to form MHP intermediate products.
  • the precipitation method includes one of the active magnesium oxide or magnesium hydroxide precipitation method, the sodium hydroxide precipitation method, and the calcium oxide or calcium hydroxide precipitation method.
  • the nickel cobalt hydroxide intermediate product obtained in this step has a water content in the range of 40% to 70%, and a magnesium content of 2% to 5%, which is higher than other impurities.
  • the nickel cobalt hydroxide intermediate product obtained by the magnesium oxide precipitation method has a relatively high magnesium content, generally 3% to 5%
  • the nickel cobalt hydroxide intermediate product obtained by the sodium hydroxide and lime milk precipitation method has a relatively low magnesium content, generally 2% to 3%.
  • the high content of impurity magnesium will cause a relatively high subsequent extraction pressure, and it is also necessary to build a magnesium sulfate evaporation system for post-treatment, which requires a large equipment investment.
  • the nickel cobalt hydroxide intermediate product is improved in quality by the nickel cobalt hydroxide intermediate product quality improvement method of the present application to obtain an improved intermediate product.
  • the improved intermediate product does not contain water, and the impurity magnesium content is reduced, and magnesium can be effectively removed to no more than 0.2%.
  • the intermediate product after upgrading is subjected to acid dissolution, impurity removal, and extraction to obtain a nickel-cobalt product. Acid dissolution, impurity removal, and extraction are all carried out by conventional methods.
  • the intermediate product after upgrading is subjected to the removal of magnesium, the physical amount of post-processing is reduced, the impurity magnesium content is greatly reduced, the extraction pressure is reduced, the steps of extracting magnesium, magnesium stripping to form a magnesium sulfate solution, and evaporating and crystallizing to produce magnesium sulfate heptahydrate are omitted, the process is simplified, and the investment cost is reduced.
  • Sodium hydroxide is used to precipitate the MHP product (nickel 39%, cobalt 3.5%, magnesium 3%, and water content 65%).
  • the drying temperature is controlled at 120°C for 4 hours; the dried block solid is subjected to high-temperature heat treatment at 900°C for 2 hours.
  • the brown-black powder obtained by high-temperature heat treatment is treated by sulfuric acid acid leaching and stirring, and the pH is controlled at 6 for 2 hours, and the temperature is controlled at room temperature 40°C. After the treatment, it is filtered and dried to become the upgraded product. After measurement, the product does not contain water, and contains 55% nickel, 5.3% cobalt, and 0.05% magnesium.
  • the laterite nickel ore hydrometallurgical MHP product dry magnesium content of 2.1%) with a water content of 65% was roasted at 800°C for 2 hours to obtain a brown-black powder.
  • the brown-black powder was slurried with water, the liquid-to-solid ratio was controlled at 2:1, the temperature was 60 degrees, the time was 2 hours, the pH was adjusted to 5.0 with sulfuric acid, filtered and washed, and dried to obtain a low-impurity nickel cobalt oxide powder product that can be directly sold.
  • the nickel and cobalt leaching rates were 0.12% and 0.56% respectively, and the magnesium leaching rate was >90%.
  • the magnesium content in the final nickel cobalt oxide product was only 0.13%.
  • Sodium hydroxide is used to precipitate the MHP product (nickel 39%, cobalt 3.5%, magnesium 3%, and water content 65%).
  • the carbonic acid leaching and stirring method is used to treat it, and carbon dioxide is introduced to control the pH at 4 for 2 hours, and the temperature is controlled at room temperature 40°C.
  • the filter cake is dried, and the drying temperature is controlled at 120°C for 4 hours; the dried block solid is subjected to high-temperature treatment at 900°C for 2 hours. The obtained solid is the final product.
  • the product does not contain water, contains 51% nickel, 4.9% cobalt, and 0.2% magnesium.
  • the laterite nickel ore is subjected to high-pressure leaching at a temperature of 250°C, iron and aluminum are removed by limestone neutralization, and nickel and cobalt are precipitated by sodium hydroxide precipitation to obtain the nickel-cobalt hydroxide intermediate product MHP.
  • the product has a water content of 63% and a magnesium content of 2.5%.
  • the nickel cobalt hydroxide intermediate product MHP is first subjected to a drying and high-temperature heat treatment, wherein it is dried at 150°C for 3 hours and calcined at 800°C for 3 hours; then acid leaching treatment is adopted, carbon dioxide is introduced, the pH value is controlled at 5, the temperature is kept at room temperature, and the time is 4 hours to improve the quality, and the improved intermediate product is obtained, which contains 0.15% magnesium.
  • the intermediate product after upgrading is acid-dissolved with sulfuric acid, impurities such as manganese, copper, and zinc are removed with p204, and nickel and cobalt are separated and cobalt is extracted with p507 extractant to obtain the final nickel-cobalt product.
  • the extraction pressure is lower.
  • the water content of the nickel cobalt hydroxide intermediate product obtained by the precipitation method of nickel cobalt in the prior art is high, generally 40% to 70%, among which the magnesium oxide precipitation method is relatively low, but also up to 45%. Due to the high water content, the transportation of MHP from the production site to the refinery is equivalent to transporting more than half of the water, which consumes huge freight.
  • the present application reduces the water content of the nickel cobalt hydroxide intermediate product by starting from the water content, thereby reducing the transportation cost of MHP.
  • the magnesium content of MHP obtained by different precipitation methods is different.
  • the magnesium content obtained by the magnesium oxide precipitation method is relatively high, generally 3% to 5%, and the magnesium content obtained by the sodium hydroxide and lime milk precipitation method is relatively low, generally 2% to 3%.
  • the present application reduces the impurity content in the nickel cobalt hydroxide intermediate product, especially the magnesium content therein, thereby reducing the subsequent extraction pressure and reducing the equipment investment cost, thereby avoiding the problem of high investment cost caused by the magnesium sulfate evaporation system that needs to be built in the prior art.

Abstract

一种氢氧化镍钴中间产品品质提升方法和红土镍矿高压浸出湿法冶金处理方法。所述氢氧化镍钴中间产品品质提升方法是通过采用高温热处理与湿法酸浸出处理相结合工艺进行品质提升。采用所述处理方法可以实现氢氧化镍钴中间产品的品质提升,得到了低杂质可直接外售的氧化镍钴产品,且具有工艺简单,成本低的优点。基于上述品质提升后产品进行红土镍矿高压浸出湿法冶金处理,简化了下游工艺,降低了运输耗资,减少了设备投资,降低了后续萃取压力。

Description

氢氧化镍钴中间产品品质提升方法及湿法冶金处理方法 技术领域
本申请要求于2022年12月23日提交中国专利局、申请号为202211661445.5,发明名称为“氢氧化镍钴中间产品品质提升方法及湿法冶金处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及冶金技术领域,特别是涉及一种氢氧化镍钴中间产品品质提升方法及包含其的红土镍矿高压浸出湿法冶金处理方法。
背景技术
目前褐铁矿型红土镍矿高压浸出湿法冶金是镍冶金的主要工艺方法之一。该方法的工艺流程为:浸出-除铁铝-沉镍钴,获得大量的氢氧化镍钴(MHP)中间产品,其杂质主要有锰、镁、铁、铝等;将MHP转化为硫酸镍溶液,即经浸出-除杂-萃取分离杂质与镍钴,获得最终镍钴产品。
本申请发明人认识到上述工艺方法存在如下问题:1)过程中需要运输氢氧化镍钴中间产品,而运输过程会产生巨额运费;2)萃取除杂体系以及镍钴分离体系流量巨大,工序复杂,流程繁琐,且还需要建设一些蒸发系统,导致生产投资成本增加。3)除杂时还需加入的试剂会引入其他杂质,萃取后负载有机相反萃溶液需要进一步中和处理等。故提供一种高效的处理方法在冶金领域中具有重要意义。
发明内容
本申请的目的在于提供一种氢氧化镍钴中间产品品质提升方法及包含其的红土镍矿高压浸出湿法冶金处理方法。本申请的上述目的是通过以下技术方案实现的。
根据本申请的一个方面,本申请提供的一种氢氧化镍钴中间产品品质提升方法,是以红土镍矿高压浸出湿法冶金过程中经沉淀法沉镍钴得到的氢氧化镍钴中间产品为原料,通过采用高温热处理与湿法酸浸出处理相结合工艺,降低氢氧化镍钴中间产品的含水率,去除杂质镁元素,来提升氢氧化镍钴中间产品的品质。
可选地,先采用高温热处理,再采用湿法酸浸出处理。
或者,可选地,先采用湿法酸浸出处理,再采用高温热处理。
可选地,高温热处理时,温度为300℃~1000℃,时间为0.5h~6h。
可选地,高温热处理时,直接采用回转窑进行干燥焙烧,或者,采用先干燥后送入回转窑设备进行焙烧。
可选地,湿法酸浸出处理时,控制pH为4~7.5,温度20℃~100℃,时间0.5h~4h。
可选地,湿法酸浸出处理时,加水进行浆化,控制液固比(2~8):1;其中,酸为选自盐酸、硫酸、硝酸、草酸、碳酸中的一种或几种。
可选地,在湿法酸浸出处理步骤之后,还包括:过滤并对滤饼进行烘干处理,其中,干燥温度100℃~150℃,干燥时间为2h~6h。
可选地,还包括:将滤液返回红土镍矿湿法系统进行镍钴回收,所述滤液为含镍钴杂质的溶液。
可选地,原料中,含水率为40%~70%,镁元素含量为2%~5%。
可选地,提升品质后得到的最终产品,不含水分,且镁含量不高于0.2%。
根据本申请的另一个方面,本申请提供的一种红土镍矿高压浸出湿法冶金处理方法,该方法包括:对红土镍矿进行高压浸出处理,采用沉淀法沉镍钴,得到的氢氧化镍钴中间产品;以所述氢氧化镍钴中间产品为原料,通过采用高温热处理与湿法酸浸出处理相结合工艺,降低氢氧化镍钴中间产品的含水率,去除杂质镁元素,来提升氢氧化镍钴中间产品的品质;对提升后中间产品,进行酸溶,除杂,萃取,得到最终的镍钴产品。
可选地,先采用高温热处理,再采用湿法酸浸出处理。
或者,可选地,先采用湿法酸浸出处理,再采用高温热处理。
可选地,高温热处理时,温度为300℃~1000℃,时间为0.5h~6h。
可选地,高温热处理时,直接采用回转窑进行干燥焙烧,或者,采用先干燥后送入回转窑设备进行焙烧。
可选地,湿法酸浸出处理时,控制pH为4~7.5,温度20℃~100℃,时间0.5h~4h。
可选地,湿法酸浸出处理时,加水进行浆化,控制液固比(2~8):1;其中,酸为选自盐酸、硫酸、硝酸、草酸、碳酸中的一种或几种。
可选地,在湿法酸浸出处理步骤之后,还包括:过滤并对滤饼进行烘干处理,其中,干燥温度100℃~150℃,干燥时间为2h~6h。
可选地,还包括:将滤液返回红土镍矿湿法系统进行镍钴回收,所述滤液为含镍钴杂质的溶液。
可选地,原料中,含水率为40%~70%,镁元素含量为2%~5%。
可选地,提升品质后得到的最终产品,不含水分,且镁含量不高于0.2%。
有益效果:本申请从提升中间产品氢氧化镍钴的质量出发,采用高温热处理与湿法酸浸出处理相结合工艺,对其含水率和杂质镁这两个方面进行改进和优化,将氢氧化镍钴中间产品的含水率降低至零,去除了其中的镁元素,提升了氢氧化镍钴中间产品的品质,得到了低杂质可直接外售的氧化镍钴产品,且具有工艺简单,成本低的优点。
此外,通过提升红土镍矿高压浸出湿法冶金处理中的MHP中间产品的质量出发,提升其品质,基于上述品质提升后产品继续进行红土镍矿高压浸出湿法冶金处理,简化了下游工艺,降低了运输耗资,减少了设备投资,降低了后续萃取压力。
附图说明
图1是本申请中氢氧化镍钴中间产品品质提升方法的流程示意图。
图2是本申请一实施例氢氧化镍钴中间产品品质提升方法的流程示意图。
图3是本申请一实施例氢氧化镍钴中间产品品质提升方法的流程示意图。
图4是本申请一实施例红土镍矿高压浸出湿法冶金处理方法流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1示意性示出了本申请提供的一种氢氧化镍钴中间产品品质提升方法的流程示意图。如图1所示,采用高温热处理与湿法酸浸出处理相结合工艺对MHP进行品质提升,得到品质提升后产品。
本申请,从含水率和杂质镁含量两个方面出发,通过采用高温热处理工艺和湿法酸浸出处理工艺,将氢氧化镍钴中间产品的含水率降为零,镍钴含量高,去除了其中的镁元素,提升氢氧化镍钴中间产品的品质。无需改变现有工艺以及设备,降低了含水率,减少了巨额输送费用,后处理的实物量减少,且杂质镁含量大幅降低,使得后续萃取压力降低,且无需蒸发系统等设备投资,是一种提升MHP质量高效工艺手段,也是后续湿法冶金处理MHP中间产品精炼中期望的。
本申请提供的一种红土镍矿高压浸出湿法冶金处理方法,从氢氧化镍钴中间产品的质量出发,通过上述品质提升方法提升氢氧化镍钴中间产品的品质,焙烧减少实物量,提高镍钴含量,去除镁,降低了其对下游工艺的影响,降低了湿法冶金处理工艺所存在的耗资高,设备投资大,后续萃取压力大等问题。
图2示意性地示出了本申请一实施例中提供的氢氧化镍钴中间产品品质提升方法的流程。该实施例中提供的氢氧化镍钴中间产品品质提升方法,是将氢氧化镍钴中间产品滤饼干燥,进行高温热处理;然后对高温热处理后获得的粉末采用湿法选择性浸出处理,将其中Mg元素选择性溶出,其他有价金属留存在固体中。具体地,如图2所示,包括以下步骤:
1)先对氢氧化镍钴中间产品进行干燥,脱除MHP中水分,干燥温度100℃~150℃,干燥时间2h~6h,得到干燥后块状固体。可以采用闪蒸干燥方式进行干燥,干燥后原料中不含水分。
其中,氢氧化镍钴中间产品是红土镍矿高压浸出湿法冶金过程中经沉淀法沉镍钴得到的氢氧化镍钴中间产品MHP,原料中杂质主要有锰、镁、铁、铝等,镁元素含量为2%~ 5%,含水率为40%~70%。
2)对干燥后块状固体进行高温热处理,高温热处理的温度300℃~1000℃,时间为0.5h~6h,得到固体粉末。
高温热处理可以采用回转窑进行高温焙烧,温度例如可以为450℃、550℃、650℃、750℃、850℃、950℃等,时间为0.5h~6h,将氢氧化物分解成氧化物,焙烧后得到棕黑粉末。原料中锰、镁、铁、铝都以氢氧化物形式存在,基于上述条件下可有效分解形成氧化物,此外,本申请发明人还发现,温度太低,无法完全分解,而且容易结块,无法形成散粉;而温度太高能耗增加。
该实施例中,在高温热处理前先进行干燥处理的方式,通过干燥处理可以先将MHP中的游离水去除,上述条件下可迅速脱去游离水,且4h左右即可脱出干净,温度高,时间长,会增加能耗。当然不限于此,也可以采用回转窑直接干燥焙烧。
经过上述的处理后,含水率为40%~70%的MHP产品脱除水分,并转变为金属量不变,实物量更少的氧化物,使得中间产品有价金属含量得到进一步富集,节省中间环节大量运费;上述处理步骤还可将其中氢氧化物中夹杂的各个金属的碱式硫酸盐分解为硫酸盐。
3)将高温热处理得到的固体粉末采用酸浸出处理方法将镁元素选择性溶出,加水进行浆化,控制液固比(2~8):1;例如可以为2:1、4:1、6:1等,控制pH为4~7.5,温度20℃~100℃,例如可以为40℃、60℃、80℃等,时间0.5h~4h,过滤烘干,得到提升后中间产品。其中,酸可以采用盐酸、硫酸、硝酸、草酸、碳酸等中的一种或几种。
经过上述湿法处理过程中,MHP中原来夹带的一些可溶性盐会被水直接溶解,如硫酸镁。由于金属沉淀顺序为铁铝镍钴锰镁,所以酸洗会洗掉一些镁,通过控制pH在镍钴不溶出的区间,让氧化镁溶出,加酸调节pH为4.5,或通入二氧化碳。
4)酸浸处理后进行过滤并烘干,获得低杂质的氧化镍钴粉体产品。该产品包装后便可外售,降低了后续处理成本。
此外,处理后含镍钴杂质溶液可返回至红土镍矿湿法系统进行镍钴回收,例如除铁铝后液混合去一段镍钴沉淀,再如返回一段除铁铝后液混合去二段沉镍钴。
图3示意性地示出了本申请一实施例中提供的第二氢氧化镍钴中间产品品质提升方法的流程。该实施例提供的氢氧化镍钴中间产品品质提升方法,与上一实施例不同的是将酸浸出处理置于最前,也就是先在MHP矿浆中去除Mg,再进行过滤和高温处理等步骤,提升了氢氧化镍钴中间产品品质。具体地,如图2所示,包括以下步骤:
1)将氢氧化镍钴中间产品采用酸浸出处理方法将镁元素选择性溶出,过滤得到滤饼。具体酸浸出处理条件与上一实施例相同。
2)对所述滤饼进行干燥,干燥温度为100℃~150℃,干燥时间为2h~6h,通过干燥先脱除滤饼中水分。
3)对干燥后得到固体进行高温热处理,高温热处理的温度300℃~1000℃,时间为 0.5h~4h,得到提升后中间产品。
基于红土镍矿高压浸出湿法冶金过程中经沉淀法沉镍钴得到的氢氧化镍钴中间产品,本申请采用高温热处理与湿法酸浸出处理相结合工艺,来提升氢氧化镍钴中间产品的品质。
图2和图3示意性示出了两种结合方式,一个先焙烧后除镁,一个先除镁后焙烧。基于MHP本身含水,可以优选采用先湿法除镁,再烘干后火法处理;相比先干燥火法处理后,再进行湿法处理,又干燥的提升方法,在工艺效果基本相同的情况能够进一步降低能耗。
图4示意性示出了本申请一实施例中提供的红土镍矿高压浸出湿法冶金处理方法,包括:
1)对红土镍矿进行高压浸出处理,除去铁铝,采用沉淀法沉镍钴,得到氢氧化镍钴中间产品。其中,高压浸出HPAL,例如在250℃下的加压釜中加入硫酸,浸出红土镍矿中的有价元素,同时杂质也被浸出,一般都是先采用石灰石进行除铁铝,再沉淀镍钴形成MHP中间产品。沉淀法包括活性氧化镁或氢氧化镁沉淀法、氢氧化钠沉淀法、氧化钙或氢氧化钙沉淀法中的一种。
该步骤得到的氢氧化镍钴中间产品,其含水率范围在40%~70%,镁元素含量为2%~5%,相比其他杂质其镁含量较高,其中,采用氧化镁沉淀法获得氢氧化镍钴中间产品,其镁含量较高一般在3%~5%,而采用氢氧化钠和石灰乳沉淀法获得氢氧化镍钴中间产品,其镁含量较低,一般在2%~3%,上述高含量杂质镁会造成后续萃取压力较大,而且还需要建设硫酸镁蒸发系统进行后处理,设备投资大。
2)将所述氢氧化镍钴中间产品采用本申请氢氧化镍钴中间产品品质提升方法进行品质提升,得到提升后中间产品。其中,所述提升后中间产品不含有水分,且杂质镁含量降低,镁可以有效去除至不高于0.2%。
3)对所述提升后中间产品进行酸溶,除杂,萃取得到镍钴产品。其中,酸溶,除杂,萃取均采用常规方法。该步骤中,基于提升后去除镁的中间产品进行,后处理的实物量减少,杂质镁含量大幅降低,降低了萃取压力,省略了萃取镁,镁反萃形成硫酸镁溶液,蒸发结晶生产七水硫酸镁的步骤,简化了工艺,降低了投资成本。
下面结合具体实施例对本申请中的的技术方案做进一步说明:
实施例1
采用氢氧化钠沉淀MHP产品(镍39%、钴3.5%、镁3%,含水率为65%)。首先,进行干燥,干燥温度控制在120℃,干燥时间为4h;对干燥后的块状固体进行高温热处理,处理温度为900℃,处理时间为2h。其次,对高温热处理获得的棕黑色粉末,采用硫酸酸浸搅拌的方式处理,控制pH在6,时间为2h,温度控制在室温40℃。处理完毕后过滤烘干,成为提升后产品。经过测定,该产品不含水分,其含镍55%,含钴5.3%,含镁0.05%。
实施例2
首先,将含水65%的红土镍矿湿法冶金MHP产品(干基镁含量为2.1%),在800℃焙烧2h,焙烧后得到棕黑色粉末。其次,采用水对棕黑色粉末进行浆化,液固比控制在2:1,温度为60度,时间为2h,采用硫酸调节pH为5.0,过滤洗涤,经烘干获得低杂质的可直接外售的氧化镍钴粉体产品。镍钴浸出率分别为0.12%和0.56%,镁浸出率>90%。经检测,最终氧化镍钴产品中镁含量仅为0.13%。
实施例3
采用氢氧化钠沉淀MHP产品(镍39%、钴3.5%、镁3%,含水率为65%)。首先,采用碳酸浸搅拌的方式处理,通入二氧化碳,控制pH在4,时间为2h,温度控制在室温40℃。其次,对滤饼干燥,干燥温度控制在120℃,干燥时间为4h;对干燥后的块状固体进行高温处理,处理温度为900℃,处理时间为2h。获得的固体为最终产品。经过测定,产品不含水分,含镍51%,含钴4.9%,含镁0.2%。
实施例4
首先,对红土镍矿进行高压浸出处理,温度250℃,通过石灰石中和来除去铁铝,采用氢氧化钠沉淀法沉镍钴,得到氢氧化镍钴中间产品MHP。经测定,该产品其含水率63%,含镁2.5%。
其次,对氢氧化镍钴中间产品MHP,先进行干燥高温热处理,其中,150℃干燥3h,800℃焙烧3h;再采用酸浸出处理,通入二氧化碳,控制pH=5,温度常温,时间4h,进行品质提升,得到提升后中间产品,其含镁0.15%。
最后,对提升后中间产品采用硫酸进行酸溶,采用p204除杂(去除锰、铜、锌等杂质),通过p507萃取剂,镍钴分离,萃取钴,得到最终的镍钴产品。相比不提升品质,萃取压力小。
与现有技术相比,本申请的一些实施例中还具有以下优点:
(1)现有技术经沉淀法沉镍钴得到的氢氧化镍钴中间产品含水率高,一般在40%~70%,其中氧化镁沉淀法相对较低,但也达45%,由于高含水率,使得MHP从生产地运输到精炼厂,就相当于运输了一半以上的水,耗费巨额的运费。本申请通过从含水率出发,降低氢氧化镍钴中间产品含水率,降低了MHP的运输费用。
(2)采用氧化镁沉淀法沉镍钴得到的镍含量只有35%左右,采用氢氧化钠沉淀法可达到40%左右,实物量偏大,对后续处理造成不便。本申请从实物量角度出发,通过提高氢氧化镍钴中间产品干基有价元素含量,降低了实物量,改进后更加便于后续处理工艺的进行。
(3)不同沉淀法获得的MHP镁含量不同,氧化镁沉淀法获得镁含量较高一般在3%~5%,氢氧化钠和石灰乳沉淀法获得镁含量较低,一般在2%~3%。本申请通过降低氢氧化镍钴中间产品中杂质含量,尤其是其中的镁含量,从而减轻了后续萃取压力,同时降低了设备投资成本,避免了现有技术中还需建设的硫酸镁蒸发系统而带来的投资成本大的问题。
本申请的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本申请限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本申请的原理和实际应用,并且使本领域的普通技术人员能够理解本申请从而设计适于特定用途的带有各种修改的各种实施例。

Claims (22)

  1. 一种氢氧化镍钴中间产品品质提升方法,其中,所述品质提升方法是以红土镍矿高压浸出湿法冶金过程中经沉淀法沉镍钴得到的氢氧化镍钴中间产品为原料,通过采用高温热处理与湿法酸浸出处理相结合工艺,降低氢氧化镍钴中间产品的含水率,去除杂质镁元素,来提升氢氧化镍钴中间产品的品质。
  2. 如权利要求1所述的氢氧化镍钴中间产品品质提升方法,其中,先采用高温热处理,再采用湿法酸浸出处理。
  3. 如权利要求1所述的氢氧化镍钴中间产品品质提升方法,其中,先采用湿法酸浸出处理,再采用高温热处理。
  4. 如权利要求1所述的氢氧化镍钴中间产品品质提升方法,其中,高温热处理时,温度为300℃~1000℃,时间为0.5h~6h。
  5. 如权利要求2所述的氢氧化镍钴中间产品品质提升方法,其中,高温热处理时,直接采用回转窑进行干燥焙烧,或者,采用先干燥后送入回转窑设备进行焙烧。
  6. 如权利要求1所述的氢氧化镍钴中间产品品质提升方法,其中,湿法酸浸出处理时,控制pH为4~7.5,温度20℃~100℃,时间0.5h~4h。
  7. 如权利要求1所述的氢氧化镍钴中间产品品质提升方法,其中,湿法酸浸出处理时,加水进行浆化,控制液固比(2~8):1;其中,酸为选自盐酸、硫酸、硝酸、草酸、碳酸中的一种或几种。
  8. 如权利要求2所述的氢氧化镍钴中间产品品质提升方法,其中,在湿法酸浸出处理步骤之后,还包括:过滤并对滤饼进行烘干处理,其中,干燥温度100℃~150℃,干燥时间为2h~6h。
  9. 如权利要求8所述的氢氧化镍钴中间产品品质提升方法,其中,还包括:将滤液返回红土镍矿湿法系统进行镍钴回收,所述滤液为含镍钴杂质的溶液。
  10. 如权利要求1所述的氢氧化镍钴中间产品品质提升方法,其中,原料中,含水率为40%~70%,镁元素含量为2%~5%。
  11. 如权利要求1所述的氢氧化镍钴中间产品品质提升方法,其中,提升品质后得到的最终产品,不含水分,且镁含量不高于0.2%。
  12. 一种红土镍矿高压浸出湿法冶金处理方法,其中,包括:
    对红土镍矿进行高压浸出处理,采用沉淀法沉镍钴,得到的氢氧化镍钴中间产品;
    以所述氢氧化镍钴中间产品为原料,通过采用高温热处理与湿法酸浸出处理相结合工艺,降低氢氧化镍钴中间产品的含水率,去除杂质镁元素,来提升氢氧化镍钴中间产品的品质;
    对提升后中间产品,进行酸溶,除杂,萃取,得到最终的镍钴产品。
  13. 根据权利要求12所述的红土镍矿高压浸出湿法冶金处理方法,其中,先采用高温热处理,再采用湿法酸浸出处理。
  14. 根据权利要求12所述的红土镍矿高压浸出湿法冶金处理方法,其中,先采用湿法酸浸出处理,再采用高温热处理。
  15. 根据权利要求12所述的红土镍矿高压浸出湿法冶金处理方法,其中,
    高温热处理时,温度为300℃~1000℃,时间为0.5h~6h。
  16. 根据权利要求13所述的红土镍矿高压浸出湿法冶金处理方法,其中,高温热处理时,直接采用回转窑进行干燥焙烧,或者,采用先干燥后送入回转窑设备进行焙烧。
  17. 根据权利要求12所述的红土镍矿高压浸出湿法冶金处理方法,其中,湿法酸浸出处理时,控制pH为4~7.5,温度20℃~100℃,时间0.5h~4h。
  18. 根据权利要求12所述的红土镍矿高压浸出湿法冶金处理方法,其中,湿法酸浸出处理时,加水进行浆化,控制液固比(2~8):1;其中,酸为选自盐酸、硫酸、硝酸、草酸、碳酸中的一种或几种。
  19. 根据权利要求13所述的红土镍矿高压浸出湿法冶金处理方法,其中,在湿法酸浸出处理步骤之后,还包括:过滤并对滤饼进行烘干处理,其中,干燥温度100℃~150℃,干燥时间为2h~6h。
  20. 根据权利要求19所述的红土镍矿高压浸出湿法冶金处理方法,其中,还包括:将滤液返回红土镍矿湿法系统进行镍钴回收,所述滤液为含镍钴杂质的溶液。
  21. 根据权利要求12所述的红土镍矿高压浸出湿法冶金处理方法,其中,原料中,含水率为40%~70%,镁元素含量为2%~5%。
  22. 根据权利要求12所述的红土镍矿高压浸出湿法冶金处理方法,其中,提升品质后得到的最终产品,不含水分,且镁含量不高于0.2%。
PCT/CN2023/140944 2022-12-23 2023-12-22 氢氧化镍钴中间产品品质提升方法及湿法冶金处理方法 WO2024131932A1 (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211661445.5 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024131932A1 true WO2024131932A1 (zh) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
CN112095003B (zh) 一种从红土镍矿中回收多种有价金属及酸碱双介质再生循环的方法
CN103146919B (zh) 一种用硫酸常压强化浸出红土镍矿的方法
AU2009202417A1 (en) Hydrometallurgical process for a nickel oxide ore
WO2018101039A1 (ja) イオン交換処理方法、スカンジウムの回収方法
CN112430733A (zh) 一种处理红土镍矿的方法
AU2019331801B2 (en) Method for producing nickel sulfate compound
CN113265532B (zh) 一种镍铁合金湿法浸出镍氨溶液的方法和应用
EP3276014B1 (en) Cobalt powder production method
JP6439530B2 (ja) スカンジウムの回収方法
CN111575502A (zh) 一种从镍矿中提取镍元素的方法
JP2020509166A (ja) 硫酸亜鉛溶液から鉄を回収する方法
CN113502394A (zh) 一种钴或镍的中间品回收的方法
CN114058848A (zh) 电镀污泥或其他多金属混合物回收铜、镍、锌、铬、铁的系统及工艺
EP3132874B1 (en) Method for producing nickel powder having low carbon concentration and low sulfur concentration
CN104862503B (zh) 从红土镍矿中提取钪的方法
CN111778404A (zh) 一种镍钴钼磷钒合金料的浸出分离方法
CN101693554A (zh) 石煤矿提取五氧化二钒的方法
WO2024131932A1 (zh) 氢氧化镍钴中间产品品质提升方法及湿法冶金处理方法
JP6358299B2 (ja) 高純度酸化スカンジウムの製造方法
CN106566933B (zh) 一种用于降低硫酸镍生产中的混合渣中钴含量的方法
AU4056993A (en) Process for the separation of cobalt from nickel
CA3211857A1 (en) Method for leaching copper using pressure leaching technique
CN216514040U (zh) 电镀污泥或其他多金属混合物回收铜、镍、锌、铬、铁的系统
CN115125393A (zh) 一种褐铁型红土镍矿酸碱循环利用低碳处理的方法
CN116121556A (zh) 氢氧化镍钴中间产品品质提升方法及湿法冶金处理方法